1
|
Huang L, Song X, Li J, Wang Y, Hua X, Liu M, Liu M, Wu S. Neuroimaging predictors of malignant brain oedema after thrombectomy in ischemic stroke: a systematic review and meta-analysis. Ann Med 2025; 57:2453635. [PMID: 39834283 PMCID: PMC11753013 DOI: 10.1080/07853890.2025.2453635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/06/2024] [Accepted: 01/03/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND We systematically reviewed neuroimaging predictors for malignant brain oedema (MBE) after thrombectomy in patients with ischemic stroke. METHODS We searched MEDLINE and EMBASE in November 2023 for studies of patients with ischemic stroke. We included studies investigating neuroimaging predictors or prediction models for MBE after thrombectomy. We estimated effect size for the association between predictors and MBE by odds ratios (ORs) or standardized mean differences (SMDs), and pooled results using random-effects modelling. RESULTS We included 19 studies (n = 6007) with 17 neuroimaging factors and 5 models. Lower Alberta Stroke Program Early CT scores (ASPECTS, n = 3052, SMD -1.84, 95% CI -2.52 - -1.16; df = 9) and longer extent of arterial occlusion at baseline were associated with higher risk of MBE. Post-thrombectomy ASPECTS was associated with MBE in general stroke patients (n = 453, SMD -2.91, -4.02 - -1.79; df = 1), but not in successfully reperfused patients (n = 110, SMD 0.24, -0.16 - 0.65). Successful reperfusion reduced risk of MBE (n = 4851, OR 0.39, 0.30-0.51; df = 13). Contrast enhancement on CT after thrombectomy was associated with higher risk of MBE (n = 998, OR 4.82, 2.53-9.20; df = 4). More reserved brain volume capacity (baseline: n = 683, OR 0.83, 0.77-0.91, p < .001; post-thrombectomy: n = 329, OR 0.53, 0.37-0.77, p < .001) and good collaterals (baseline: n = 2301, OR 0.14, 0.10-0.20, df = 3; post-thrombectomy: n = 1006, OR 0.28, 0.15-0.51; df = 2) were associated with lower risk of MBE. CONCLUSION Lower ASPECTS and longer arterial occlusion at baseline, and post-thrombectomy CT contrast enhancement increased risk of MBE. Reperfusion after thrombectomy, more reserved brain volume and good collaterals at baseline and post-thrombectomy reduced its risk.
Collapse
Affiliation(s)
- Linrui Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xindi Song
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Jingjing Li
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Yanan Wang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Xing Hua
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Ming Liu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
| | - Simiao Wu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, China
- Center for Cerebrovascular Diseases, West China Hospital, Sichuan University, Chengdu, China
- Institute of Brain Science and Diseases, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Anderson CS. Rethinking the Significance of Hemorrhagic Transformation After Reperfusion Therapy for Acute Ischemic Stroke. Neurology 2025; 104:e213647. [PMID: 40228182 DOI: 10.1212/wnl.0000000000213647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Accepted: 03/06/2025] [Indexed: 04/16/2025] Open
Affiliation(s)
- Craig S Anderson
- Institute for Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China; and
- The George Institute for Global Health, University of New South Wales, Sydney, Australia
| |
Collapse
|
3
|
Xu H, Zheng M, Liu W, Peng W, Qiu J, Huang W, Zhang J, Xin E, Xia N, Lin R, Qiu C, Cao G, Chen W, Yang Y, Qian Y, Chen J. Enhanced Prediction of Malignant Cerebral Edema in Large Vessel Occlusion with Successful Recanalization Through Automated Weighted Net Water Uptake. World Neurosurg 2024; 188:e312-e319. [PMID: 38796145 DOI: 10.1016/j.wneu.2024.05.101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND Malignant cerebral edema (MCE) is associated with both net water uptake (NWU) and infarct volume. We hypothesized that NWU weighted by the affected Alberta Stroke Program Early Computed Tomography Score (ASPECTS) regions could serve as a quantitative imaging biomarker of aggravated edema development in acute ischemic stroke with large vessel occlusion (LVO). The aim of this study was to evaluate the performance of weighted NWU (wNWU) to predict MCE in patients with mechanical thrombectomy (MT). METHODS We retrospectively analyzed consecutive patients who underwent MT due to LVO. NWU was computed from nonenhanced computed tomography scans upon admission using automated ASPECTS software. wNWU was derived by multiplying NWU with the number of affected ASPECTS regions in the ischemic hemisphere. Predictors of MCE were assessed through multivariate logistic regression analysis and receiver operating characteristic curves. RESULTS NWU and wNWU were significantly higher in MCE patients than in non-MCE patients. Vessel recanalization status influenced the performance of wNWU in predicting MCE. In patients with successful recanalization, wNWU was an independent predictor of MCE (adjusted odds ratio 1.61; 95% confidence interval [CI] 1.24-2.09; P < 0.001). The model integrating wNWU, National Institutes of Health Stroke Scale, and collateral score exhibited an excellent performance in predicting MCE (area under the curve 0.80; 95% CI 0.75-0.84). Among patients with unsuccessful recanalization, wNWU did not influence the development of MCE (adjusted odds ratio 0.99; 95% CI 0.60-1.62; P = 0.953). CONCLUSIONS This study revealed that wNWU at admission can serve as a quantitative predictor of MCE in LVO with successful recanalization after MT and may contribute to the decision for early intervention.
Collapse
Affiliation(s)
- Haoli Xu
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China; Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Mo Zheng
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenhui Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weili Peng
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jiamei Qiu
- Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wangle Huang
- Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jiaqi Zhang
- Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Enhui Xin
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Nengzhi Xia
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ru Lin
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Chaomin Qiu
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Guoquan Cao
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Weijian Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yunjun Yang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Department of Nuclear Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yinfeng Qian
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jun Chen
- Suzhou Medical College of Soochow University, Suzhou, Jiangsu, China; Cancer Center, Department of Interventional Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Virtanen P, Tomppo L, Georgiopoulos G, Brandstack N, Peltola E, Kokkonen T, Lappalainen K, Korvenoja A, Strbian D. Recanalization status and temporal evolution of early ischemic changes following stroke thrombectomy. Eur Stroke J 2024; 9:320-327. [PMID: 37991143 PMCID: PMC11318421 DOI: 10.1177/23969873231214207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/29/2023] [Indexed: 11/23/2023] Open
Abstract
INTRODUCTION Present-day computer tomography (CT) scanners have excellent spatial resolution and signal-to-noise ratio and are instrumental detecting early ischemic changes (EIC) in brain. We assessed the temporal changes of EIC based on the recanalization status after thrombectomy. PATIENTS AND METHODS The cohort comprises consecutive patients with acute ischemic stroke in anterior circulation treated with thrombectomy in tertiary referral hospital. All baseline and follow-up scans were screened for any ischemic changes and further classified using Alberta Stroke Program Early CT Score (ASPECTS). Generalized linear mixed models were used to analyze the impact of recanalization status using modified Thrombolysis in Cerebral Infarction (mTICI) on temporal evolution of ischemic changes. RESULTS We included 614 patients with ICA, M1, or M2 occlusions. Median ASPECTS score was 9 (IQR 7-10) at baseline and 7 (5-8) at approximately 24 h. mTICI 3 was achieved in 207 (33.8%), 2B 241 (39.3%), 2A in 77 (12.6%), and 0-1 in 88 (14.3%) patients. Compared to patients with mTICI 3, those with mTICI 0-1 and 2A had less favorable temporal changes of ASPECTS (p < 0.001). Effect of recanalization was noted in the cortical regions of ICA/M1 patients, but not in their deep structures or patients with M2 occlusions. All ischemic changes detected at baseline were also present at all follow-up images, regardless of the recanalization status. CONCLUSIONS Temporal evolution of the ischemic changes and ASPECTS are related to the success of the recanalization therapy in cortical regions of ICA/M1 patients, but not in their deep brain structures or M2 patients. In none of the patients did EIC revert in any brain region after successful recanalization.
Collapse
Affiliation(s)
- Pekka Virtanen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Liisa Tomppo
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Georgios Georgiopoulos
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece
- School of Biomedical Engineering and Imaging Sciences, King’s College London, London, UK
| | - Nina Brandstack
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Erno Peltola
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Tatu Kokkonen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Kimmo Lappalainen
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Antti Korvenoja
- Department of Radiology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Daniel Strbian
- Department of Neurology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Kim PE, Yang H, Kim D, Sunwoo L, Kim CK, Kim BJ, Kim JT, Ryu WS, Kim HS. Automated Prediction of Proximal Middle Cerebral Artery Occlusions in Noncontrast Brain Computed Tomography. Stroke 2024; 55:1609-1618. [PMID: 38787932 PMCID: PMC11122774 DOI: 10.1161/strokeaha.123.045772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/27/2024] [Accepted: 04/11/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Early identification of large vessel occlusion (LVO) in patients with ischemic stroke is crucial for timely interventions. We propose a machine learning-based algorithm (JLK-CTL) that uses handcrafted features from noncontrast computed tomography to predict LVO. METHODS We included patients with ischemic stroke who underwent concurrent noncontrast computed tomography and computed tomography angiography in seven hospitals. Patients from 5 of these hospitals, admitted between May 2011 and March 2015, were randomly divided into training and internal validation (9:1 ratio). Those from the remaining 2 hospitals, admitted between March 2021 and September 2021, were designated for external validation. From each noncontrast computed tomography scan, we extracted differences in volume, tissue density, and Hounsfield unit distribution between bihemispheric regions (striatocapsular, insula, M1-M3, and M4-M6, modified from the Alberta Stroke Program Early Computed Tomography Score). A deep learning algorithm was used to incorporate clot signs as an additional feature. Machine learning models, including ExtraTrees, random forest, extreme gradient boosting, support vector machine, and multilayer perceptron, as well as a deep learning model, were trained and evaluated. Additionally, we assessed the models' performance after incorporating the National Institutes of Health Stroke Scale scores as an additional feature. RESULTS Among 2919 patients, 83 were excluded. Across the training (n=2463), internal validation (n=275), and external validation (n=95) datasets, the mean ages were 68.5±12.4, 67.6±13.8, and 67.9±13.6 years, respectively. The proportions of men were 57%, 53%, and 59%, with LVO prevalences of 17.0%, 16.4%, and 26.3%, respectively. In the external validation, the ExtraTrees model achieved a robust area under the curve of 0.888 (95% CI, 0.850-0.925), with a sensitivity of 80.1% (95% CI, 72.0-88.1) and a specificity of 88.6% (95% CI, 84.7-92.5). Adding the National Institutes of Health Stroke Scale score to the ExtraTrees model increased sensitivity (from 80.1% to 92.1%) while maintaining specificity. CONCLUSIONS Our algorithm provides reliable predictions of LVO using noncontrast computed tomography. By enabling early LVO identification, our algorithm has the potential to expedite the stroke workflow.
Collapse
Affiliation(s)
- Pyeong Eun Kim
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea (P.E.K., H.Y., D.K., W.-S.R.)
| | - Hyojung Yang
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea (P.E.K., H.Y., D.K., W.-S.R.)
- Department of Computer Science and Technology, University of Cambridge, United Kingdom (H.Y.)
| | - Dongmin Kim
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea (P.E.K., H.Y., D.K., W.-S.R.)
| | - Leonard Sunwoo
- Department of Radiology, Seoul National University College of Medicine, Republic of Korea (L.S.)
- Department of Radiology (L.S.), Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chi Kyung Kim
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea (C.K.K.)
| | - Beom Joon Kim
- Department of Neurology (B.J.K.), Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Joon-Tae Kim
- Department of Neurology, Chonnam National University Hospital, Gwangju, Republic of Korea (J.-T.K.)
| | - Wi-Sun Ryu
- Artificial Intelligence Research Center, JLK Inc, Seoul, Republic of Korea (P.E.K., H.Y., D.K., W.-S.R.)
| | - Ho Sung Kim
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles (H.S.K.)
| |
Collapse
|
6
|
Pham J, Ng FC. Novel advanced imaging techniques for cerebral oedema. Front Neurol 2024; 15:1321424. [PMID: 38356883 PMCID: PMC10865379 DOI: 10.3389/fneur.2024.1321424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/09/2024] [Indexed: 02/16/2024] Open
Abstract
Cerebral oedema following acute ischemic infarction has been correlated with poor functional outcomes and is the driving mechanism of malignant infarction. Measurements of midline shift and qualitative assessment for herniation are currently the main CT indicators for cerebral oedema but have limited sensitivity for small cortical infarcts and are typically a delayed sign. In contrast, diffusion-weighted (DWI) or T2-weighted magnetic resonance imaging (MRI) are highly sensitive but are significantly less accessible. Due to the need for early quantification of cerebral oedema, several novel imaging biomarkers have been proposed. Based on neuroanatomical shift secondary to space-occupying oedema, measures such as relative hemispheric volume and cerebrospinal fluid displacement are correlated with poor outcomes. In contrast, other imaging biometrics, such as net water uptake, T2 relaxometry and blood brain barrier permeability, reflect intrinsic tissue changes from the influx of fluid into the ischemic region. This review aims to discuss quantification of cerebral oedema using current and developing advanced imaging techniques, and their role in predicting clinical outcomes.
Collapse
Affiliation(s)
- Jenny Pham
- Department of Radiology, Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Felix C. Ng
- Department of Neurology, Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Department of Medicine at Royal Melbourne Hospital, Melbourne Brain Centre, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
7
|
Trofimov AO, Trofimova KA, Semyachkina-Glushkovskaya OV, Nemoto EM, Bragina OA, Bragin DE. Comparison of Cerebral Saturation and Brain Net Water Uptake After Moderate Traumatic Brain Injury. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1463:57-60. [PMID: 39400800 DOI: 10.1007/978-3-031-67458-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The aim was to study the relationship between net water uptake (NWU) and cerebral oxygenation in patients with posttraumatic ischaemia (PTI) foci after moderate traumatic brain injury (moTBI). MATERIALS AND METHODS Perfusion computed tomography (PCT) was performed for 72 patients with PTI foci after moTBI in 2013-2022. The mean age of the patients was 32.7 ± 12.5 years (from 18 to 65 years), 25 women and 47 men. Cerebral tissue oxygen saturation (SctO2) was evaluated using Fore-Sight 2030 (CAS Medical Systems Inc., USA) in the region of the frontal lobe pole (FLP). NWU was calculated from non-contrast CT. Data are shown as a median [interquartile range]. P < 0.05 was considered statistically significant. RESULTS SctO2 in FLP varied within the range from 61% to 88%. It was 62% [55.4;72.1] over the lesion frontal lobe with PTI and 64% [58.5;73.7] over the opposite FLP side. The average NWU in the FLP cortex on the PTI side was 4.98% [2.21;7.39]. In the case when there were no focal injuries in the frontal lobes, SctO2 was significantly correlated with higher NWU (R = -0.780, p < 0.00001). CONCLUSIONS The cerebral oxygen tissue saturation correlates with net water uptake in patients with PTI after moTBI (p < 0.005).
Collapse
Affiliation(s)
- Alex O Trofimov
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Kseniia A Trofimova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | | | - Edwin M Nemoto
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Olga A Bragina
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| | - Denis E Bragin
- Department of Neurology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
| |
Collapse
|
8
|
Schleicher RL, Vorasayan P, McCabe ME, Bevers MB, Davis TP, Griffin JH, Hinduja A, Jadhav AP, Lee JM, Sawyer RN, Zlokovic BV, Sheth KN, Fedler JK, Lyden P, Kimberly WT. Analysis of brain edema in RHAPSODY. Int J Stroke 2024; 19:68-75. [PMID: 37382409 PMCID: PMC10789908 DOI: 10.1177/17474930231187268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND Cerebral edema is a secondary complication of acute ischemic stroke, but its time course and imaging markers are not fully understood. Recently, net water uptake (NWU) has been proposed as a novel marker of edema. AIMS Studying the RHAPSODY trial cohort, we sought to characterize the time course of edema and test the hypothesis that NWU provides distinct information when added to traditional markers of cerebral edema after stroke by examining its association with other markers. METHODS A total of 65 patients had measurable supratentorial ischemic lesions. Patients underwent head computed tomography (CT), brain magnetic resonance imaging (MRI) scans, or both at the baseline visit and after 2, 7, 30, and 90 days following enrollment. CT and MRI scans were used to measure four imaging markers of edema: midline shift (MLS), hemisphere volume ratio (HVR), cerebrospinal fluid (CSF) volume, and NWU using semi-quantitative threshold analysis. Trajectories of the markers were summarized, as available. Correlations of the markers of edema were computed and the markers compared by clinical outcome. Regression models were used to examine the effect of 3K3A-activated protein C (APC) treatment. RESULTS Two measures of mass effect, MLS and HVR, could be measured on all imaging modalities, and had values available across all time points. Accordingly, mass effect reached a maximum level by day 7, normalized by day 30, and then reversed by day 90 for both measures. In the first 2 days after stroke, the change in CSF volume was associated with MLS (ρ = -0.57, p = 0.0001) and HVR (ρ = -0.66, p < 0.0001). In contrast, the change in NWU was not associated with the other imaging markers (all p ⩾ 0.49). While being directionally consistent, we did not observe a difference in the edema markers by clinical outcome. In addition, baseline stroke volume was associated with all markers (MLS (p < 0.001), HVR (p < 0.001), change in CSF volume (p = 0.003)) with the exception of NWU (p = 0.5). Exploratory analysis did not reveal a difference in cerebral edema markers by treatment arm. CONCLUSIONS Existing cerebral edema imaging markers potentially describe two distinct processes, including lesional water concentration (i.e. NWU) and mass effect (MLS, HVR, and CSF volume). These two types of imaging markers may represent distinct aspects of cerebral edema, which could be useful for future trials targeting this process.
Collapse
Affiliation(s)
- Riana L. Schleicher
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Pongpat Vorasayan
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Neurology, Department of Medicine, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Megan E. McCabe
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Matthew B. Bevers
- Divisions of Stroke, Cerebrovascular and Critical Care Neurology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas P. Davis
- Department of Pharmacology, University of Arizona Health Sciences, Tucson, AZ, USA
| | - John H. Griffin
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | - Archana Hinduja
- Department of Neurology, Ohio State University Wexner Medical Center, Columbus, OH, USA
| | | | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert N. Sawyer
- Department of Neurology, University of Buffalo Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA
| | - Berislav V. Zlokovic
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Kevin N. Sheth
- Division of Neurocritical Care, Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Janel K. Fedler
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Patrick Lyden
- Department of Physiology & Neuroscience, Keck School of Medicine of USC, Los Angeles, CA, USA
- Department of Neurology, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - W. Taylor Kimberly
- Division of Neurocritical Care and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
9
|
Thorén M, Escudero-Martínez I, Andersson T, Chen SY, Tsao N, Khurana D, Beretta S, Peeters A, Tsivgoulis G, Roffe C, Ahmed N. Reperfusion by endovascular thrombectomy and early cerebral edema in anterior circulation stroke: Results from the SITS-International Stroke Thrombectomy Registry. Int J Stroke 2023; 18:1193-1201. [PMID: 37226337 PMCID: PMC10676032 DOI: 10.1177/17474930231180451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/08/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND A large infarct and expanding cerebral edema (CED) due to a middle cerebral artery occlusion confers a 70% mortality unless treated surgically. There is still conflicting evidence whether reperfusion is associated with a lower risk for CED in acute ischemic stroke. AIM To investigate the association of reperfusion with development of early CED after stroke thrombectomy. METHODS From the SITS-International Stroke Thrombectomy Registry, we selected patients with occlusion of the intracranial internal carotid or middle cerebral artery (M1 or M2). Successful reperfusion was defined as mTICI ⩾ 2b. Primary outcome was moderate or severe CED, defined as focal brain swelling ⩾1/3 of the hemisphere on imaging scans at 24 h. We used regression methods while adjusting for baseline variables. Effect modification by severe early neurological deficits, as indicators of large infarct at baseline and at 24 h, were explored. RESULTS In total, 4640 patients, median age 70 years and median National Institutes of Health Stroke Score (NIHSS) 16, were included. Of these, 86% had successful reperfusion. Moderate or severe CED was less frequent among patients who had reperfusion compared to patients without reperfusion: 12.5% versus 29.6%, p < 0.05, crude risk ratio (RR) 0.42 (95% confidence interval (CI): 0.37-0.49), and adjusted RR 0.50 (95% CI: 0.44-0.57). Analysis of effect modification indicated that severe neurological deficits weakened the association between reperfusion and lower risk of CED. The RR reduction was less favorable in patients with severe neurological deficits, defined as NIHSS score 15 or more at baseline and at 24 h, used as an indicator for larger infarction. CONCLUSION In patients with large artery anterior circulation occlusion stroke who underwent thrombectomy, successful reperfusion was associated with approximately 50% lower risk for early CED. Severe neurological deficit at baseline seems to be a predictor for moderate or severe CED also in patients with successful reperfusion by thrombectomy.
Collapse
Affiliation(s)
- Magnus Thorén
- Stroke Research Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Danderyd Hospital, Stockholm, Sweden
| | - Irene Escudero-Martínez
- Department of Neurology, Hospital Universitari i Politécnic La Fe, Valencia, Spain
- Neurovascular Research Laboratory, Instituto de Biomedicina de Sevilla (IBiS), Sevilla, Spain
| | - Tomas Andersson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Nicole Tsao
- Global Medical Affairs, Biogen, Cambridge, MA, USA
| | - Dheeraj Khurana
- Department of Neurology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Simone Beretta
- Department of Neurology and Stroke Unit, San Gerardo Hospital, Monza, Italy
| | - Andre Peeters
- Department of Neurology and Stroke Unit, Cliniques Universitaires Saint-Luc, Brussels, Belgium
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, Athens, Greece
| | | | - Niaz Ahmed
- Stroke Research Unit, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
10
|
Pham J, Gan C, Dabboucy J, Stella DL, Dowling R, Yan B, Bush S, Williams C, Mitchell PJ, Desmond P, Thijs V, Asadi H, Brooks M, Maingard J, Jhamb A, Pavlin-Premrl D, Campbell BC, Ng FC. Occult contrast retention post-thrombectomy on 24-h follow-up dual-energy CT: Associations and impact on imaging analysis. Int J Stroke 2023; 18:1228-1237. [PMID: 37260232 DOI: 10.1177/17474930231182018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
BACKGROUND Following reperfusion treatment in ischemic stroke, computed tomography (CT) imaging at 24 h is widely used to assess radiological outcomes. Even without visible hyperattenuation, occult angiographic contrast may persist in the brain and confound Hounsfield unit-based imaging metrics, such as net water uptake (NWU). AIMS We aimed to assess the presence and factors associated with retained contrast post-thrombectomy on 24-h imaging using dual-energy CT (DECT), and its impact on the accuracy of NWU as a measure of cerebral edema. METHODS Consecutive patients with anterior circulation large vessel occlusion who had post-thrombectomy DECT performed 24-h post-treatment from two thrombectomy stroke centers were retrospectively studied. NWU was calculated by interside comparison of HUs of the infarct lesion and its mirror homolog. Retained contrast was quantified by the difference in NWU values with and without adjustment for iodine. Patients with visible hyperdensities from hemorrhagic transformation or visible contrast retention and bilateral infarcts were excluded. Cerebral edema was measured by relative hemispheric volume (rHV) and midline shift (MLS). RESULTS Of 125 patients analyzed (median age 71 (IQR = 61-80), baseline National Institutes of Health Stroke Scale (NIHSS) 16 (IQR = 9.75-21)), reperfusion (defined as extended-Thrombolysis-In-Cerebral-Infarction 2b-3) was achieved in 113 patients (90.4%). Iodine-subtracted NWU was significantly higher than unadjusted NWU (17.1% vs 10.8%, p < 0.001). In multivariable median regression analysis, increased age (p = 0.024), number of passes (p = 0.006), final infarct volume (p = 0.023), and study site (p = 0.021) were independently associated with amount of retained contrast. Iodine-subtracted NWU correlated with rHV (rho = 0.154, p = 0.043) and MLS (rho = 0.165, p = 0.033) but unadjusted NWU did not (rHV rho = -0.035, p = 0.35; MLS rho = 0.035, p = 0.347). CONCLUSIONS Angiographic iodine contrast is retained in brain parenchyma 24-h post-thrombectomy, even without visually obvious hyperdensities on CT, and significantly affects NWU measurements. Adjustment for retained iodine using DECT is required for accurate NWU measurements post-thrombectomy. Future quantitative studies analyzing CT after thrombectomy should consider occult contrast retention.
Collapse
Affiliation(s)
- Jenny Pham
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Calvin Gan
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Jasmin Dabboucy
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
| | - Damien L Stella
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Richard Dowling
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Bernard Yan
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Steven Bush
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Cameron Williams
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Peter J Mitchell
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Patricia Desmond
- Department of Radiology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- The University of Melbourne, Parkville, VIC, Australia
| | - Vincent Thijs
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Division of Stroke, Florey Institute of Neuroscience and Mental Health, Heidelberg, VIC, Australia
| | - Hamed Asadi
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Mark Brooks
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Julian Maingard
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Ash Jhamb
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
| | - Davor Pavlin-Premrl
- Department of Radiology, Austin Health, Heidelberg, VIC, Australia
- Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Bruce Cv Campbell
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| | - Felix C Ng
- Department of Neurology, The Royal Melbourne Hospital, Parkville, VIC, Australia
- Department of Neurology, Austin Health, Heidelberg, VIC, Australia
- Melbourne Brain Centre, Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
11
|
Dhar R, Kumar A, Chen Y, Begunova Y, Olexa M, Prasad A, Carey G, Gonzalez I, Bhatia K, Hamed M, Heitsch L, Mainali S, Petersen N, Lee JM. Imaging biomarkers of cerebral edema automatically extracted from routine CT scans of large vessel occlusion strokes. J Neuroimaging 2023; 33:606-616. [PMID: 37095592 PMCID: PMC10524672 DOI: 10.1111/jon.13109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/13/2023] [Accepted: 04/15/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND AND PURPOSE Volumetric and densitometric biomarkers have been proposed to better quantify cerebral edema after stroke, but their relative performance has not been rigorously evaluated. METHODS Patients with large vessel occlusion stroke from three institutions were analyzed. An automated pipeline extracted brain, cerebrospinal fluid (CSF), and infarct volumes from serial CTs. Several biomarkers were measured: change in global CSF volume from baseline (ΔCSF); ratio of CSF volumes between hemispheres (CSF ratio); and relative density of infarct region compared with mirrored contralateral region (net water uptake [NWU]). These were compared to radiographic standards, midline shift and relative hemispheric volume (RHV) and malignant edema, defined as deterioration resulting in need for osmotic therapy, decompressive surgery, or death. RESULTS We analyzed 255 patients with 210 baseline CTs, 255 24-hour CTs, and 81 72-hour CTs. Of these, 35 (14%) developed malignant edema and 63 (27%) midline shift. CSF metrics could be calculated for 310 (92%), while NWU could only be obtained from 193 (57%). Peak midline shift was correlated with baseline CSF ratio (ρ = -.22) and with CSF ratio and ΔCSF at 24 hours (ρ = -.55/.63) and 72 hours (ρ = -.66/.69), but not with NWU (ρ = .15/.25). Similarly, CSF ratio was correlated with RHV (ρ = -.69/-.78), while NWU was not. Adjusting for age, National Institutes of Health Stroke Scale, tissue plasminogen activator treatment, and Alberta Stroke Program Early CT Score, CSF ratio (odds ratio [OR]: 1.95 per 0.1, 95% confidence interval [CI]: 1.52-2.59) and ΔCSF at 24 hours (OR: 1.87 per 10%, 95% CI: 1.47-2.49) were associated with malignant edema. CONCLUSION CSF volumetric biomarkers can be automatically measured from almost all routine CTs and correlate better with standard edema endpoints than net water uptake.
Collapse
Affiliation(s)
- Rajat Dhar
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Atul Kumar
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Yasheng Chen
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | | | - Madelynne Olexa
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Ayush Prasad
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Grace Carey
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Isabella Gonzalez
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Kunal Bhatia
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| | - Mohammad Hamed
- Department of Neurology, The Ohio State University, Columbus, OH
| | - Laura Heitsch
- Department of Emergency Medicine, Washington University School of Medicine, Saint Louis, MO
| | - Shraddha Mainali
- Department of Neurology, Virginia Commonwealth University, Richmond, VA
| | - Nils Petersen
- Department of Neurology, Yale School of Medicine, New Haven, CT
| | - Jin-Moo Lee
- Department of Neurology, Washington University School of Medicine, Saint Louis, MO
| |
Collapse
|
12
|
Han W, Song Y, Rocha M, Shi Y. Ischemic brain edema: Emerging cellular mechanisms and therapeutic approaches. Neurobiol Dis 2023; 178:106029. [PMID: 36736599 DOI: 10.1016/j.nbd.2023.106029] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/14/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Brain edema is one of the most devastating consequences of ischemic stroke. Malignant cerebral edema is the main reason accounting for the high mortality rate of large hemispheric strokes. Despite decades of tremendous efforts to elucidate mechanisms underlying the formation of ischemic brain edema and search for therapeutic targets, current treatments for ischemic brain edema remain largely symptom-relieving rather than aiming to stop the formation and progression of edema. Recent preclinical research reveals novel cellular mechanisms underlying edema formation after brain ischemia and reperfusion. Advancement in neuroimaging techniques also offers opportunities for early diagnosis and prediction of malignant brain edema in stroke patients to rapidly adopt life-saving surgical interventions. As reperfusion therapies become increasingly used in clinical practice, understanding how therapeutic reperfusion influences the formation of cerebral edema after ischemic stroke is critical for decision-making and post-reperfusion management. In this review, we summarize these research advances in the past decade on the cellular mechanisms, and evaluation, prediction, and intervention of ischemic brain edema in clinical settings, aiming to provide insight into future preclinical and clinical research on the diagnosis and treatment of brain edema after stroke.
Collapse
Affiliation(s)
- Wenxuan Han
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yang Song
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Marcelo Rocha
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America
| | - Yejie Shi
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, United States of America.
| |
Collapse
|
13
|
Trofimov A, Agarkova D, Trofimova K, Lidji-Goryaev C, Atochin D, Bragin D. On Net Water Uptake in Posttraumatic Ischemia Foci. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1425:629-634. [PMID: 37581836 PMCID: PMC11357831 DOI: 10.1007/978-3-031-31986-0_61] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
BACKGROUND The influence of cerebral edema and resultant secondary complications on the clinical outcome of traumatic brain injury (TBI) is well known. Clinical studies of brain water homeostasis dynamics in TBI are limited, which determines the relevance of our work. The purpose is to study changes in brain water homeostasis after TBI of varying severity compared to corresponding cerebral microcirculation parameters. MATERIALS This non-randomized retrospective single-center study complies with the Helsinki Declaration for patient's studies. The study included 128 patients with posttraumatic ischemia (PCI) after moderate-to-severe TBI in the middle cerebral artery territory who were admitted to the hospital between July 2015 and February 2022. PCI was evaluated by perfusion computed tomography (CT), and brain edema was determined using net water uptake (NWU) on baseline CT images. The patients were allocated according to Marshall's classification. Multivariate linear regression models were performed to analyze data. RESULTS NWU in PCI areas were significantly higher than in patients with its absence (8.1% vs. 4.2%, accordingly; p < 0.001). In the multivariable regression analysis, the mean transit time increase was significantly and independently associated with higher NWU (R2 = 0.089, p < 0.01). In the PCI zone, cerebral blood flow, cerebral blood volume, and time to peak were not significantly associated with NWU values (p > 0.05). No significant differences were observed between the NWU values in PCI foci in different Marshall groups (p = 0.308). CONCLUSION Marshall's classification does not predict the progression of posttraumatic ischemia. The blood passage delays through the cerebral microvascular bed is associated with brain tissue water content increase in the PCI focus.
Collapse
Affiliation(s)
- A Trofimov
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - D Agarkova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - K Trofimova
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - C Lidji-Goryaev
- Department of Neurological Diseases, Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - D Atochin
- Cardiovascular Research Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - D Bragin
- Lovelace Biomedical Research Institute, Albuquerque, NM, USA
- Department of Neurology, University of New Mexico, School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
14
|
Gu Y, Zhou C, Piao Z, Yuan H, Jiang H, Wei H, Zhou Y, Nan G, Ji X. Cerebral edema after ischemic stroke: Pathophysiology and underlying mechanisms. Front Neurosci 2022; 16:988283. [PMID: 36061592 PMCID: PMC9434007 DOI: 10.3389/fnins.2022.988283] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/01/2022] [Indexed: 11/30/2022] Open
Abstract
Ischemic stroke is associated with increasing morbidity and has become the main cause of death and disability worldwide. Cerebral edema is a serious complication arising from ischemic stroke. It causes an increase in intracranial pressure, rapid deterioration of neurological symptoms, and formation of cerebral hernia, and is an important risk factor for adverse outcomes after stroke. To date, the detailed mechanism of cerebral edema after stroke remains unclear. This limits advances in prevention and treatment strategies as well as drug development. This review discusses the classification and pathological characteristics of cerebral edema, the possible relationship of the development of cerebral edema after ischemic stroke with aquaporin 4, the SUR1-TRPM4 channel, matrix metalloproteinase 9, microRNA, cerebral venous reflux, inflammatory reactions, and cerebral ischemia/reperfusion injury. It also summarizes research on new therapeutic drugs for post-stroke cerebral edema. Thus, this review provides a reference for further studies and for clinical treatment of cerebral edema after ischemic stroke.
Collapse
Affiliation(s)
- Yuhang Gu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Zhe Piao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Honghua Yuan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Huimin Jiang
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Huimin Wei
- Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
| | - Guangxian Nan
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
- *Correspondence: Guangxian Nan,
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Capital Medical University, Beijing, China
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
- Xunming Ji,
| |
Collapse
|
15
|
Kumar A, Chen Y, Corbin A, Hamzehloo A, Abedini A, Vardar Z, Carey G, Bhatia K, Heitsch L, Derakhshan JJ, Lee JM, Dhar R. Automated Measurement of Net Water Uptake From Baseline and Follow-Up CTs in Patients With Large Vessel Occlusion Stroke. Front Neurol 2022; 13:898728. [PMID: 35832178 PMCID: PMC9271791 DOI: 10.3389/fneur.2022.898728] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/06/2022] [Indexed: 11/13/2022] Open
Abstract
Quantifying the extent and evolution of cerebral edema developing after stroke is an important but challenging goal. Lesional net water uptake (NWU) is a promising CT-based biomarker of edema, but its measurement requires manually delineating infarcted tissue and mirrored regions in the contralateral hemisphere. We implement an imaging pipeline capable of automatically segmenting the infarct region and calculating NWU from both baseline and follow-up CTs of large-vessel occlusion (LVO) patients. Infarct core is extracted from CT perfusion images using a deconvolution algorithm while infarcts on follow-up CTs were segmented from non-contrast CT (NCCT) using a deep-learning algorithm. These infarct masks were flipped along the brain midline to generate mirrored regions in the contralateral hemisphere of NCCT; NWU was calculated as one minus the ratio of densities between regions, removing voxels segmented as CSF and with HU outside thresholds of 20-80 (normal hemisphere and baseline CT) and 0-40 (infarct region on follow-up). Automated results were compared with those obtained using manually-drawn infarcts and an ASPECTS region-of-interest based method that samples densities within the infarct and normal hemisphere, using intraclass correlation coefficient (ρ). This was tested on serial CTs from 55 patients with anterior circulation LVO (including 66 follow-up CTs). Baseline NWU using automated core was 4.3% (IQR 2.6-7.3) and correlated with manual measurement (ρ = 0.80, p < 0.0001) and ASPECTS (r = -0.60, p = 0.0001). Automatically segmented infarct volumes (median 110-ml) correlated to manually-drawn volumes (ρ = 0.96, p < 0.0001) with median Dice similarity coefficient of 0.83 (IQR 0.72-0.90). Automated NWU was 24.6% (IQR 20-27) and highly correlated to NWU from manually-drawn infarcts (ρ = 0.98) and the sampling-based method (ρ = 0.68, both p < 0.0001). We conclude that this automated imaging pipeline is able to accurately quantify region of infarction and NWU from serial CTs and could be leveraged to study the evolution and impact of edema in large cohorts of stroke patients.
Collapse
Affiliation(s)
- Atul Kumar
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Yasheng Chen
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Aaron Corbin
- Saint Louis University School of Medicine, Saint Louis, MO, United States
| | - Ali Hamzehloo
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Amin Abedini
- Department of Radiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Zeynep Vardar
- Department of Radiology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Grace Carey
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Kunal Bhatia
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Laura Heitsch
- Department of Emergency Medicine, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Jamal J. Derakhshan
- Department of Radiology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Jin-Moo Lee
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States
| | - Rajat Dhar
- Department of Neurology, Washington University in St. Louis School of Medicine, Saint Louis, MO, United States,*Correspondence: Rajat Dhar
| |
Collapse
|