Fyon F, Cailleau A, Lenormand T. Enhancer Runaway and the Evolution of Diploid Gene Expression.
PLoS Genet 2015;
11:e1005665. [PMID:
26561855 PMCID:
PMC4642963 DOI:
10.1371/journal.pgen.1005665]
[Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 10/22/2015] [Indexed: 11/18/2022] Open
Abstract
Evidence is mounting that the evolution of gene expression plays a major role in adaptation and speciation. Understanding the evolution of gene regulatory regions is indeed an essential step in linking genotypes and phenotypes and in understanding the molecular mechanisms underlying evolutionary change. The common view is that expression traits (protein folding, expression timing, tissue localization and concentration) are under natural selection at the individual level. Here, we use a theoretical approach to show that, in addition, in diploid organisms, enhancer strength (i.e., the ability of enhancers to activate transcription) may increase in a runaway process due to competition for expression between homologous enhancer alleles. These alleles may be viewed as self-promoting genetic elements, as they spread without conferring a benefit at the individual level. They gain a selective advantage by getting associated to better genetic backgrounds: deleterious mutations are more efficiently purged when linked to stronger enhancers. This process, which has been entirely overlooked so far, may help understand the observed overrepresentation of cis-acting regulatory changes in between-species phenotypic differences, and sheds a new light on investigating the contribution of gene expression evolution to adaptation.
With the advent of new sequencing technologies, the evolution of gene expression regulation is becoming a subject of intensive research. In this paper, we report an entirely new phenomenon acting on the evolution of gene regulatory sequences. We show that in a small genomic region around genes there is a selection pressure to increase expression, such that stronger enhancers are favored. This leads to an open-ended escalation of enhancer strength. This outcome is not a particular case and we expect it to occur for all genes in nearly all eukaryotic diploid organisms. We also show that this escalation is not stopped by stabilizing selection on expression profiles. Indeed, regulators may coevolve to maintain optimal phenotypes despite the enhancer strength escalation. This widespread phenomenon can significantly shift our understanding of gene regulatory regions and opens a wide array of possible tests.
Collapse