1
|
Rahman M, Karwowski W, Fafrowicz M, Hancock PA. Neuroergonomics Applications of Electroencephalography in Physical Activities: A Systematic Review. Front Hum Neurosci 2019; 13:182. [PMID: 31214002 PMCID: PMC6558147 DOI: 10.3389/fnhum.2019.00182] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/20/2019] [Indexed: 11/13/2022] Open
Abstract
Recent years have seen increased interest in neuroergonomics, which investigates the brain activities of people engaged in diverse physical and cognitive activities at work and in everyday life. The present work extends upon prior assessments of the state of this art. However, here we narrow our focus specifically to studies that use electroencephalography (EEG) to measure brain activity, correlates, and effects during physical activity. The review uses systematically selected, openly published works derived from a guided search through peer-reviewed journals and conference proceedings. Identified studies were then categorized by the type of physical activity and evaluated considering methodological and chronological aspects via statistical and content-based analyses. From the identified works (n = 110), a specific number (n = 38) focused on less mobile muscular activities, while an additional group (n = 22) featured both physical and cognitive tasks. The remainder (n = 50) investigated various physical exercises and sporting activities and thus were here identified as a miscellaneous grouping. Most of the physical activities were isometric exertions, moving parts of upper and lower limbs, or walking and cycling. These primary categories were sub-categorized based on movement patterns, the use of the event-related potentials (ERP) technique, the use of recording methods along with EEG and considering mental effects. Further information on subjects' gender, EEG recording devices, data processing, and artifact correction methods and citations was extracted. Due to the heterogeneous nature of the findings from various studies, statistical analyses were not performed. These were thus included in a descriptive fashion. Finally, contemporary research gaps were pointed out, and future research prospects to address those gaps were discussed.
Collapse
Affiliation(s)
- Mahjabeen Rahman
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, United States
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Neurobiology Department, The Maloploska Center of Biotechnology, Jagiellonian University in Krakow, Krakow, Poland
| | - Peter A Hancock
- Department of Psychology, University of Central Florida, Orlando, FL, United States
| |
Collapse
|
2
|
The Role of Attention and Saccades on Parietofrontal Encoding of Contextual and Grasp-specific Affordances of Tools: An ERP Study. Neuroscience 2018; 394:243-266. [PMID: 30347278 DOI: 10.1016/j.neuroscience.2018.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 10/02/2018] [Accepted: 10/10/2018] [Indexed: 11/23/2022]
Abstract
The ability to recognize a tool's affordances (how a spoon should be appropriately grasped and used), is vital for daily life. Prior research has identified parietofrontal circuits, including mirror neurons, to be critical in understanding affordances. However, parietofrontal action-encoding regions receive extensive visual input and are adjacent to parietofrontal attention control networks. It is unclear how eye movements and attention modulate parietofrontal encoding of affordances. To address this issue, scenes depicting tools in different use-contexts and grasp-postures were presented to healthy subjects across two experiments, with stimuli durations of 100 ms or 500 ms. The 100-ms experiment automatically restricted saccades and required covert attention, while the 500-ms experiment allowed overt attention. The two experiments elicited similar behavioral decisions on tool-use correctness and isolated the influence of attention on parietofrontal activity. Parietofrontal ERPs (P600) distinguishing tool-use contexts (e.g., spoon-yogurt vs. spoon-ball) were similar in both experiments. Conversely, parietofrontal ERPs distinguishing tool-grasps were characterized by posterior to frontal N130-N200 ERPs in the 100-ms experiment and by saccade-perturbed N130-N200 ERPs, frontal N400 and parietal P500 in the 500-ms experiment. Particularly, only overt gaze toward the hand-tool interaction engaged mirror neurons (frontal N400) when discerning grasps that manipulate but not functionally use a tool - (grasp bowl rather than stem of spoon). Results here detail the first human electrophysiological evidence on how attention selectively modulates multiple parietofrontal grasp-perception circuits, especially the mirror neuron system, while unaffecting parietofrontal encoding of tool-use contexts. These results are pertinent to neurophysiological models of affordances that typically neglect the role of attention in action perception.
Collapse
|
3
|
Veldman MP, Maurits NM, Zijdewind I, Maffiuletti NA, van Middelkoop S, Mizelle JC, Hortobágyi T. Somatosensory electrical stimulation improves skill acquisition, consolidation, and transfer by increasing sensorimotor activity and connectivity. J Neurophysiol 2018; 120:281-290. [PMID: 29641307 DOI: 10.1152/jn.00860.2017] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The interaction between the somatosensory and motor systems is important for normal human motor function and learning. Enhancing somatosensory input using somatosensory electrical stimulation (SES) can increase motor performance, but the neuronal mechanisms underlying these effects are largely unknown. With EEG, we examined whether skill acquisition, consolidation, and interlimb transfer after SES was related to increased activity in sensorimotor regions, as assessed by the N30 somatosensory evoked potential or rather increased connectivity between these regions, as assessed by the phase slope index (PSI). Right- and left-hand motor performance and EEG measures were taken before, immediately after, and 24 h ( day 2) after either SES ( n = 12; 5 men) or Control ( n = 12; 5 men). The results showed skill acquisition and consolidation in the stimulated right hand immediately after SES (6%) and on day 2 (9%) and interlimb transfer to the nonstimulated left hand on day 2 relative to Control (8%, all P < 0.05). Increases in N30 amplitudes correlated with skill acquisition while PSI from electrodes that represent the posterior parietal and primary somatosensory cortex to the electrode representing the primary motor cortex correlated with skill consolidation. In contrast, interlimb transfer did not correlate with the EEG-derived neurophysiological estimates obtained in the present study, which may indicate the involvement of subcortical structures in interlimb transfer after SES. In conclusion, weak peripheral somatosensory inputs in the form of SES improve skill acquisition, consolidation, and interlimb transfer that coincide with different cortical adaptations, including enhanced N30 amplitudes and PSI. NEW & NOTEWORTHY The relationship between adaptations in synaptic plasticity and motor learning following somatosensory electrical stimulation (SES) is incompletely understood. Here, we used for the first time a multifactorial approach that examined skill acquisition, consolidation, and interlimb transfer following 20 min of SES. In addition, we quantified sensorimotor integration and the magnitude and direction of connectivity with EEG. Following artificial electrical stimulation, increases in sensorimotor integration and connectivity were found to correlate with skill acquisition and consolidation, respectively.
Collapse
Affiliation(s)
- Menno P Veldman
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences , Groningen , The Netherlands
| | - Natasha M Maurits
- Department of Neurology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands.,University of Groningen, Neuroimaging Center , Groningen , The Netherlands
| | - Inge Zijdewind
- Department of Neuroscience, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | | | - Stella van Middelkoop
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences , Groningen , The Netherlands
| | - J Chris Mizelle
- Department of Kinesiology, East Carolina University , Greenville, North Carolina
| | - Tibor Hortobágyi
- University of Groningen, University Medical Center Groningen, Center for Human Movement Sciences , Groningen , The Netherlands
| |
Collapse
|
4
|
Veldman M, Maurits N, Nijland M, Wolters N, Mizelle J, Hortobágyi T. Spectral and temporal electroencephalography measures reveal distinct neural networks for the acquisition, consolidation, and interlimb transfer of motor skills in healthy young adults. Clin Neurophysiol 2018; 129:419-430. [DOI: 10.1016/j.clinph.2017.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 09/22/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023]
|
5
|
Wheaton LA. Neurorehabilitation in upper limb amputation: understanding how neurophysiological changes can affect functional rehabilitation. J Neuroeng Rehabil 2017; 14:41. [PMID: 28532464 PMCID: PMC5441064 DOI: 10.1186/s12984-017-0256-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 05/15/2017] [Indexed: 11/19/2022] Open
Abstract
Background Significant advances have been made in developing new prosthetic technologies with the goal of restoring function to persons that suffer partial or complete loss of the upper limb. Despite these technological advances, many challenges remain in understanding barriers in patient adoption of technology, and what critical factors should be of focus in prosthetics development from a motor control perspective. This points to a potential opportunity to improve our understanding of amputation using neurophysiology and plasticity, and integrate this knowledge into the development of prosthetics technology in novel ways. Here, argument will be made to include a stronger focus on the neural and behavioral changes that result from amputation, and a better appreciation of the time-scale of changes which may significantly affect device adaptation, functional device utility, and motor learning implemented in rehabilitation environments. Conclusion By strengthening our understanding of the neuroscience of amputation, we may improve the ability to couple neurorehabilitation with neuroengineering to support clinician needs in yielding improved outcomes in patients.
Collapse
Affiliation(s)
- Lewis A Wheaton
- School of Biological Sciences, Georgia Institute of Technology, 555 14th Street, Atlanta, GA, 30332-0356, USA.
| |
Collapse
|
6
|
Distinctive laterality of neural networks supporting action understanding in left- and right-handed individuals: An EEG coherence study. Neuropsychologia 2015; 75:20-9. [DOI: 10.1016/j.neuropsychologia.2015.05.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 04/01/2015] [Accepted: 05/20/2015] [Indexed: 12/11/2022]
|
7
|
Kelly RL, Wheaton LA. Differential mechanisms of action understanding in left and right handed subjects: the role of perspective and handedness. Front Psychol 2013; 4:957. [PMID: 24391619 PMCID: PMC3867734 DOI: 10.3389/fpsyg.2013.00957] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/05/2013] [Indexed: 11/13/2022] Open
Abstract
The ability to comprehend outcomes of skilled action is important for understanding the world around us. Prior studies have evaluated the perspective an action is performed in, but few have evaluated how handedness of the actor and the observer interact with action perspective. Understanding handedness affords the opportunity to identify the role of mirroring and matched limb action encoding, which may display unique strategies of action understanding. Right and left-handed subjects were presented with images of tools from egocentric or allocentric perspectives performing movements by either a left or right hand. Subjects had to judge the outcome of the task, and accuracy and latency were evaluated. Our hypothesis was that both left and right-handed subjects would predict action best from an egocentric perspective. In allocentric perspectives, identification of action outcomes would occur best in the mirror-matched dominant limb for all subjects. Results showed there was a significant effect on accuracy and latency with respect to perspective for both right and left-handed subjects. The highest accuracies and fastest latencies were found in the egocentric perspective. Handedness of subject also showed an effect on accuracy, where right-handed subjects were significantly more accurate in the task than left-handed subjects. An interaction effect revealed that left-handed subjects were less accurate at judging images from an allocentric viewpoint compared to all other conditions. These findings suggest that action outcomes are best facilitated in an internal perspective, regardless of the hand being used. The decreased accuracy for left-handed subjects on allocentric images could be due to asymmetrical lateralization of encoding action and motoric dominance, which may interfere with translating allocentric limb action outcomes. Further neurophysiological studies will help us understand the specific processes of how left and right-handed subjects may encode actions.
Collapse
Affiliation(s)
- Rachel L Kelly
- Cognitive Motor Control Laboratory, School of Applied Physiology, Georgia Institute of Technology Atlanta, GA, USA
| | - Lewis A Wheaton
- Cognitive Motor Control Laboratory, School of Applied Physiology, Georgia Institute of Technology Atlanta, GA, USA
| |
Collapse
|
8
|
Context and hand posture modulate the neural dynamics of tool–object perception. Neuropsychologia 2013; 51:506-19. [DOI: 10.1016/j.neuropsychologia.2012.12.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Revised: 11/12/2012] [Accepted: 12/02/2012] [Indexed: 10/27/2022]
|
9
|
Pouring or chilling a bottle of wine: an fMRI study on the prospective planning of object-directed actions. Exp Brain Res 2012; 218:189-200. [DOI: 10.1007/s00221-012-3016-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/25/2012] [Indexed: 10/28/2022]
|