1
|
Toba MN, Malkinson TS, Howells H, Mackie MA, Spagna A. Same, Same but Different? A Multi-Method Review of the Processes Underlying Executive Control. Neuropsychol Rev 2024; 34:418-454. [PMID: 36967445 DOI: 10.1007/s11065-023-09577-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 09/26/2022] [Indexed: 03/29/2023]
Abstract
Attention, working memory, and executive control are commonly considered distinct cognitive functions with important reciprocal interactions. Yet, longstanding evidence from lesion studies has demonstrated both overlap and dissociation in their behavioural expression and anatomical underpinnings, suggesting that a lower dimensional framework could be employed to further identify processes supporting goal-directed behaviour. Here, we describe the anatomical and functional correspondence between attention, working memory, and executive control by providing an overview of cognitive models, as well as recent data from lesion studies, invasive and non-invasive multimodal neuroimaging and brain stimulation. We emphasize the benefits of considering converging evidence from multiple methodologies centred on the identification of brain mechanisms supporting goal-driven behaviour. We propose that expanding on this approach should enable the construction of a comprehensive anatomo-functional framework with testable new hypotheses, and aid clinical neuroscience to intervene on impairments of executive functions.
Collapse
Affiliation(s)
- Monica N Toba
- Laboratory of Functional Neurosciences (UR UPJV 4559), University Hospital of Amiens and University of Picardie Jules Verne, Amiens, France.
- CHU Amiens Picardie - Site Sud, Centre Universitaire de Recherche en Santé, Avenue René Laënnec, 80054, Amiens Cedex 1, France.
| | - Tal Seidel Malkinson
- Paris Brain Institute, ICM, Hôpital de La Pitié-Salpêtrière, Sorbonne Université, Inserm U 1127, CNRS UMR 7225, 75013, Paris, France
- Université de Lorraine, CRAN, F-54000, Nancy, France
| | - Henrietta Howells
- Laboratory of Motor Control, Department of Medical Biotechnologies and Translational Medicine, Humanitas Research Hospital, IRCCS, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa-Ann Mackie
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alfredo Spagna
- Department of Psychology, Columbia University, New York, NY, 10025, USA.
| |
Collapse
|
2
|
Moretta P, Cavallo ND, Fonzo E, Maiorino A, Ferrante C, Ambrosino P, Femiano C, Santangelo G, Marcuccio L. Visual vertical neglect in acquired brain injury: a systematic review. Front Psychol 2024; 15:1360057. [PMID: 38529094 PMCID: PMC10962212 DOI: 10.3389/fpsyg.2024.1360057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/28/2024] [Indexed: 03/27/2024] Open
Abstract
Vertical neglect represents a visuospatial deficit occurring as a possible consequence of acquired brain injury (ABI). Differently from unilateral spatial neglect on horizontal space, vertical neglect is poorly studied in the literature and rarely assessed in clinical practice. In the available studies, the terms "radial," "vertical," and "altitudinal" neglect are often used interchangeably, although they do not describe the same spatial dimension. "Altitudinal" and "vertical" refer to the sagittal plane, whereas "radial" refers to the transverse plane. The term "vertical" is sometimes used interchangeably with respect to both axes. The aim of this systematic review was to identify the main characteristics of vertical neglect after ABI, the diagnostic tools used, and the treatment options. We also proposed a clarification of the manifestations and characteristics of vertical and radial neglect. The 23 articles reviewed, showed that the vertical neglect occurred more frequently on the lower space than on the upper space, that its presence was associated with horizontal neglect, and that it could also occur with compromise of the radial space, with the near radial being more common. The most frequent etiology associated with vertical neglect is vascular, particularly ischaemic. The lesions side are very heterogeneous and include both cortical and subcortical areas and all lobes, although the temporal lobe is most affected. With regard to the assessment tools, paper and pencil tasks are the most commonly used diagnostic tools to identify vertical neglect, although in recent years the use of computer-based tasks increased. Taken together, our results suggest that vertical neglect may be underestimated in patients with right hemisphere lesions and should always be assessed, especially in cases where the patient shows signs of horizontal neglect. The clinical assessment of vertical neglect is very important since it can lead to important functional limitations in everyday life, such as poor wheelchair handling, stumbling over unnoticed obstacles located below (or above), walking down stairs, taking off shoes.
Collapse
Affiliation(s)
- Pasquale Moretta
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, Benevento, Italy
| | - Nicola Davide Cavallo
- Department of Psychology, Università della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Eleonora Fonzo
- Department of Psychology, Università della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Antonio Maiorino
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, Benevento, Italy
| | - Cesario Ferrante
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, Benevento, Italy
| | - Pasquale Ambrosino
- Istituti Clinici Scientifici Maugeri IRCCS, Scientific Directorate of Telese Terme Institute, Benevento, Italy
| | - Cinzia Femiano
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, Benevento, Italy
| | - Gabriella Santangelo
- Department of Psychology, Università della Campania ‘Luigi Vanvitelli’, Caserta, Italy
| | - Laura Marcuccio
- Istituti Clinici Scientifici Maugeri IRCCS, Neuromotor Rehabilitation Unit of Telese Terme Institute, Benevento, Italy
| |
Collapse
|
3
|
Moreh E, Zohary E, Orlov T. The presence of semantic content in a visual recognition memory task reduces the severity of neglect. Neuropsychologia 2021; 157:107860. [PMID: 33901565 DOI: 10.1016/j.neuropsychologia.2021.107860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 04/10/2021] [Accepted: 04/12/2021] [Indexed: 11/29/2022]
Abstract
Patients with right hemisphere damage often show a lateral bias when asked to report the left side of mental images held in visual working memory (i.e. representational neglect). The neural basis of representational neglect is not well understood. One hypothesis suggests that it reflects a deficit in attentional-exploratory mechanisms, i.e. an inability to direct attention to the left side of the image. Another proposition states that intact visual working memory (VWM) is necessary for correctly creating a mental image. Here we examined two components of VWM in patients with unilateral spatial neglect (USN): memory for identity, and memory for spatial position. We manipulated the strength of memory representations by presenting two distinct categories of objects, in separate blocks. These were familiar namable objects (fruits, etc.), and unfamiliar abstract objects. The former category elicits stronger working-memory traces, thanks to preexisting visual and semantic representations in long-term memory. We hypothesized that if USN patients show a lateralized deficit in VWM, it should be more pronounced for abstract objects, due to their weaker working-memory traces. Importantly, to isolate a spatially lateralized deficit in memory from a failure to fully perceive the object-arrays, we ensured that all included patients perceived every item during the encoding phase. We used a working-memory task: participants viewed object arrays and had to memorize items' identities and spatial positions. Then, single objects were presented requiring 'old/new' recognition, and retrieval of 'old' items' original positions. Our results show a lateral bias in patients' recognition-memory performance. Remarkably, it was threefold milder for namable objects compared to abstract objects. We conclude that VWM lateralized deficit is substantial in USN patients and could play a role in representational neglect.
Collapse
Affiliation(s)
- Elior Moreh
- Physical Medicine and Rehabilitation Department, Hadassah Medical Center and Faculty of Medicine, Jerusalem, Israel; Neurobiology Department, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel.
| | - Ehud Zohary
- Neurobiology Department, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Tanya Orlov
- Neurobiology Department, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel; The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
4
|
Cohen-Dallal H, Soroker N, Pertzov Y. Working Memory in Unilateral Spatial Neglect: Evidence for Impaired Binding of Object Identity and Object Location. J Cogn Neurosci 2020; 33:46-62. [PMID: 32985947 DOI: 10.1162/jocn_a_01631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Working memory (WM) is known to be impaired in patients with stroke experiencing unilateral spatial neglect (USN). Here, we examined in a systematic manner three WM components: memory of object identity, memory of object location, and binding between object identity and location. Moreover, we used two different retention intervals to isolate maintenance from other mnemonic and perceptual processes. Fourteen USN first-event stroke patients with right-hemisphere damage were tested in two different WM experiments using long and short retention intervals and an analog response scale. Patients exhibited more identification errors for items displayed on the contralesional side. Localization errors were also more prominent in the contralesional side, especially after a long retention interval. These localization errors were often a result of swap errors, that is, erroneous localizations of correctly identified contralesional objects in correctly memorized locations of ipsilesional objects. We conclude that a key WM deficit in USN is a lateralized impairment in binding between the identity of an object and its spatial tag.
Collapse
Affiliation(s)
| | - Nachum Soroker
- Loewenstein Hospital, Raanana, Israel.,Tel-Aviv University
| | | |
Collapse
|
5
|
Ogourtsova T, Archambault PS, Lamontagne A. Post-stroke visual neglect affects goal-directed locomotion in different perceptuo-cognitive conditions and on a wide visual spectrum. Restor Neurol Neurosci 2018; 36:313-331. [PMID: 29782328 DOI: 10.3233/rnn-170766] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Unilateral spatial neglect (USN), a highly prevalent and disabling post-stroke deficit, has been shown to affect the recovery of locomotion. However, our current understanding of USN role in goal-directed locomotion control, and this, in different cognitive/perceptual conditions tapping into daily life demands, is limited. OBJECTIVES To examine goal-directed locomotion abilities in individuals with and without post-stroke USN vs. healthy controls. METHODS Participants (n = 45, n = 15 per group) performed goal-directed locomotion trials to actual, remembered and shifting targets located 7 m away at 0° and 15° right/left while immersed in a 3-D virtual environment. RESULTS Greater end-point mediolateral displacement and heading errors (end-point accuracy measures) were found for the actual and the remembered left and right targets among those with post-stroke USN compared to the two other groups (p < 0.05). A delayed onset of reorientation to the left and right shifting targets was also observed in USN+ participants vs. the other two groups (p < 0.05). Results on clinical near space USN assessment and walking speed explained only a third of the variance in goal-directed walking performance. CONCLUSION Post-stroke USN was found to affect goal-directed locomotion in different perceptuo-cognitive conditions, both to contralesional and ipsilesional targets, demonstrating the presence of lateralized and non-lateralized deficits. Beyond neglect severity and walking capacity, other factors related to attention, executive functioning and higher-order visual perceptual abilities (e.g. optic flow perception) may account for the goal-directed walking deficits observed in post-stroke USN+. Goal-directed locomotion can be explored in the design of future VR-based evaluation and training tools for USN to improve the currently used conventional methods.
Collapse
Affiliation(s)
- Tatiana Ogourtsova
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Feil-Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
| | - Philippe S Archambault
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Feil-Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
| | - Anouk Lamontagne
- School of Physical and Occupational Therapy, McGill University, Montreal, QC, Canada.,Feil-Oberfeld Research Centre, Jewish Rehabilitation Hospital, Laval, QC, Canada
| |
Collapse
|
6
|
Toraldo A, Romaniello C, Sommaruga P. Measuring and diagnosing unilateral neglect: a standardized statistical procedure. Clin Neuropsychol 2017; 31:1248-1267. [DOI: 10.1080/13854046.2017.1349181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alessio Toraldo
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Cristian Romaniello
- Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Paolo Sommaruga
- Technology Operative Center, Reti Televisive Italiane, Segrate, Italy
| |
Collapse
|
7
|
Influences of Long-Term Memory-Guided Attention and Stimulus-Guided Attention on Visuospatial Representations within Human Intraparietal Sulcus. J Neurosci 2015; 35:11358-63. [PMID: 26269642 DOI: 10.1523/jneurosci.1055-15.2015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Human parietal cortex plays a central role in encoding visuospatial information and multiple visual maps exist within the intraparietal sulcus (IPS), with each hemisphere symmetrically representing contralateral visual space. Two forms of hemispheric asymmetries have been identified in parietal cortex ventrolateral to visuotopic IPS. Key attentional processes are localized to right lateral parietal cortex in the temporoparietal junction and long-term memory (LTM) retrieval processes are localized to the left lateral parietal cortex in the angular gyrus. Here, using fMRI, we investigate how spatial representations of visuotopic IPS are influenced by stimulus-guided visuospatial attention and by LTM-guided visuospatial attention. We replicate prior findings that a hemispheric asymmetry emerges under stimulus-guided attention: in the right hemisphere (RH), visual maps IPS0, IPS1, and IPS2 code attentional targets across the visual field; in the left hemisphere (LH), IPS0-2 codes primarily contralateral targets. We report the novel finding that, under LTM-guided attention, both RH and LH IPS0-2 exhibit bilateral responses and hemispheric symmetry re-emerges. Therefore, we demonstrate that both hemispheres of IPS0-2 are independently capable of dynamically changing spatial coding properties as attentional task demands change. These findings have important implications for understanding visuospatial and memory-retrieval deficits in patients with parietal lobe damage. SIGNIFICANCE STATEMENT The human parietal lobe contains multiple maps of the external world that spatially guide perception, action, and cognition. Maps in each cerebral hemisphere code information from the opposite side of space, not from the same side, and the two hemispheres are symmetric. Paradoxically, damage to specific parietal regions that lack spatial maps can cause patients to ignore half of space (hemispatial neglect syndrome), but only for right (not left) hemisphere damage. Conversely, the left parietal cortex has been linked to retrieval of vivid memories regardless of space. Here, we investigate possible underlying mechanisms in healthy individuals. We demonstrate two forms of dynamic changes in parietal spatial representations: an asymmetric one for stimulus-guided attention and a symmetric one for long-term memory-guided attention.
Collapse
|