1
|
Zawadzki JA, Girard TA, Samsom J, Foussias G, Siddiqui I, Lerch JP, Grady C, Wong AHC. Excessive left anterior hippocampal and caudate activation in schizophrenia underlie cognitive underperformance in a virtual navigation task. Psychiatry Res Neuroimaging 2024; 341:111826. [PMID: 38735228 DOI: 10.1016/j.pscychresns.2024.111826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/07/2023] [Accepted: 05/05/2024] [Indexed: 05/14/2024]
Abstract
We used a virtual navigation paradigm in a city environment to assess neuroanatomical correlates of cognitive deficits in schizophrenia spectrum disorders (SSD). We studied a total of N = 36 subjects: 18 with SSD and 18 matched unaffected controls. Participants completed 10 rapid, single-trial navigation tasks within the virtual city while undergoing functional magnetic resonance imaging (fMRI). All trials tested ability to find different targets seen earlier, during the passive viewing of a path around different city blocks. SSD patients had difficulty finding previously-encountered targets, were less likely to find novel shortcuts to targets, and more likely to attempt retracing of the path observed during passive viewing. Based on a priori region-of-interest analyses, SSD participants had hyperactivation of the left hippocampus when passively viewing turns, hyperactivation of the left caudate when finding targets, and hypoactivation of a focal area of the dorsolateral prefrontal cortex when targets were initially shown during passive viewing. We propose that these brain-behaviour relations may bias or reinforce stimulus-response navigation approaches in SSD and underlie impaired performance when allocentric spatial memory is required, such as when forming efficient shortcuts. This pattern may extend to more general cognitive impairments in SSD that could be used to design remediation strategies.
Collapse
Affiliation(s)
- John A Zawadzki
- Institute of Medical Science, University of Toronto, ON, Canada; Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Todd A Girard
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, Canada
| | - James Samsom
- Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - George Foussias
- Institute of Medical Science, University of Toronto, ON, Canada; Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada
| | - Ishraq Siddiqui
- Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada
| | - Jason P Lerch
- Department of Medical Biophysics, University of Toronto, ON, Canada; Program in Neuroscience and Mental Health, The Hospital for Sick Children, Toronto, ON, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Cheryl Grady
- Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Department of Psychology, University of Toronto, ON, Canada; Rotman Research Institute at Baycrest, Toronto, ON, Canada
| | - Albert H C Wong
- Institute of Medical Science, University of Toronto, ON, Canada; Centre for Addiction & Mental Health, Campbell Family Mental Health Research Institute, Toronto, ON, Canada; Department of Psychiatry, University of Toronto, ON, Canada; Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
2
|
Stiers P, Goulas A. Task-specific subnetworks extend from prefrontal cortex to striatum. Cortex 2022; 156:106-125. [DOI: 10.1016/j.cortex.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 02/23/2022] [Accepted: 06/07/2022] [Indexed: 11/29/2022]
|
3
|
Affective disorders and сognitive impairment in the early stages of Parkinson's disease. КЛИНИЧЕСКАЯ ПРАКТИКА 2022. [DOI: 10.17816/clinpract100026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (BP) is the second most important age-related neurodegenerative disease in developed societies after Alzheimer's disease with a prevalence of 41 per 100,000 in the fourth decade of life to more than 1900 per 100,000 people over 80 years old.
Parkinson's disease (BP) is the second most important age-related neidgenerative disease in developed societies after Alzheimer's disease with a prevalence of 41 per 100,000 in the fourth decade of life to more than 1900 per 100,000 people over 80 years old.
Neurodegeneration associated with Parkinson's disease is likely to occur over several decades before the appearance of motor symptoms.
Affective and cognitive some of the most frequent non-engine manifestations of BP diseases that can lead to a variety of adverse outcomes
Collapse
|
4
|
Area 8A within the Posterior Middle Frontal Gyrus Underlies Cognitive Selection between Competing Visual Targets. eNeuro 2020; 7:ENEURO.0102-20.2020. [PMID: 32817199 PMCID: PMC7540933 DOI: 10.1523/eneuro.0102-20.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/25/2020] [Indexed: 11/23/2022] Open
Abstract
There are several distinct areas in the granular part of the lateral frontal cortex, and these areas provide high-level regulation of cognitive processing. Lesions of the dorsolateral frontal cortex that include area 8A in the human brain and lesions restricted to area 8A in the macaque monkey have demonstrated impairments in tasks requiring selection between visual targets based on rules, such as conditional if/then rules. These same subjects show no impairment in the ability to discriminate between visual stimuli nor in the ability to learn selection rules in general. Area 8A can be considered as a key area for the top-down control of attentional selection. The present functional neuroimaging study demonstrates that activity in area 8A that lies on the posterior part of the middle frontal gyrus underlies the trial-to-trial selection between competing visual targets based on previously acquired conditional rules. Critically, the activity of area 8A could clearly be dissociated from activity related to the performance of eye movements per se that lies posterior to it. Thus, area 8A with its rich corticocortical connections with the posterior parietal region involved in spatial processing and the multisensory temporal cortex appears to be the key prefrontal area for the higher order selection between competing stimuli in the environment, most likely by the allocation of attention.
Collapse
|