1
|
Finotti G, Degni LAE, Badioli M, Dalbagno D, Starita F, Bardi L, Huang Y, Wei J, Sirigu A, Gazzola V, di Pellegrino G, Garofalo S. Cortical Beta Power Reflects the Influence of Pavlovian Cues on Human Decision-Making. J Neurosci 2025; 45:e0414242024. [PMID: 39715687 PMCID: PMC11800743 DOI: 10.1523/jneurosci.0414-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 12/25/2024] Open
Abstract
Reward-predictive cues can affect decision-making by enhancing instrumental responses toward the same (specific transfer) or similar (general transfer) rewards. The main theories on cue-guided decision-making consider specific transfer as driven by the activation of previously learned instrumental actions induced by cues sharing the sensory-specific properties of the reward they are associated with. However, to date, such theoretical assumption has never been directly investigated at the neural level. We hypothesize that such reactivation occurs within the premotor system and could be mapped by lateralized beta (12-30 Hz) desynchronization, a widely used marker of action selection and decision-making policy. To test this hypothesis, 42 participants (22 females) performed a pavlovian-to-instrumental transfer paradigm, while electroencephalographic activity was recorded. We anticipated increased beta desynchronization during the transfer phase when cues promoting specific transfer were presented, compared with cues predicting general transfer and neutral cues. The evidence collected confirmed our hypothesis, thus providing the first neural evidence in favor of the theorized reactivation of instrumental actions and corroborating the presence of two dissociable neural pathways underpinning specific and general transfer.
Collapse
Affiliation(s)
- Gianluca Finotti
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
| | - Luigi A E Degni
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
- International School of Advanced Studies, University of Camerino, Camerino 62032, Italy
| | - Marco Badioli
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
| | - Daniela Dalbagno
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
| | - Francesca Starita
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
| | - Lara Bardi
- Department of Experimental Psychology, Ghent University, Gent 9000, Belgium
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, France and IMind Center of Excellence for Autism, Le Vinatier Hospital, Bron 69675, France
| | - Yulong Huang
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, France and IMind Center of Excellence for Autism, Le Vinatier Hospital, Bron 69675, France
| | - Junjie Wei
- Netherlands Institute for Neuroscience, KNAW, Amsterdam 1105BA, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| | - Angela Sirigu
- Institute of Cognitive Sciences Marc Jeannerod CNRS, UMR 5229, France and IMind Center of Excellence for Autism, Le Vinatier Hospital, Bron 69675, France
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, KNAW, Amsterdam 1105BA, The Netherlands
- Department of Psychology, University of Amsterdam, Amsterdam 1018 WT, The Netherlands
| | - Giuseppe di Pellegrino
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
| | - Sara Garofalo
- Department of Psychology, Center for studies and research in Cognitive Neuroscience, University of Bologna, Cesena 47521, Italy
| |
Collapse
|
2
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
3
|
Anil K, Ganis G, Freeman JA, Marsden J, Hall SD. Exploring the Feasibility of Bidirectional Control of Beta Oscillatory Power in Healthy Controls as a Potential Intervention for Parkinson's Disease Movement Impairment. SENSORS (BASEL, SWITZERLAND) 2024; 24:5107. [PMID: 39204803 PMCID: PMC11358931 DOI: 10.3390/s24165107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Neurofeedback (NF) is a promising intervention for improvements in motor performance in Parkinson's disease. This NF pilot study in healthy participants aimed to achieve the following: (1) determine participants' ability to bi-directionally modulate sensorimotor beta power and (2) determine the effect of NF on movement performance. A real-time EEG-NF protocol was used to train participants to increase and decrease their individual motor cortex beta power amplitude, using a within-subject double-blind sham-controlled approach. Movement was assessed using a Go/No-go task. Participants completed the NASA Task Load Index and provided verbal feedback of the NF task difficulty. All 17 participants (median age = 38 (19-65); 10 females) reliably reduced sensorimotor beta power. No participant could reliably increase their beta activity. Participants reported that the NF task was challenging, particularly increasing beta. A modest but significant increase in reaction time correlated with a reduction in beta power only in the real condition. Findings suggest that beta power control difficulty varies by modulation direction, affecting participant perceptions. A correlation between beta power reduction and reaction times only in the real condition suggests that intentional beta power reduction may shorten reaction times. Future research should examine the minimum beta threshold for meaningful motor improvements, and the relationship between EEG mechanisms and NF learning to optimise NF outcomes.
Collapse
Affiliation(s)
- Krithika Anil
- School of Health Professions, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
| | - Giorgio Ganis
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
- School of Psychology, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Jennifer A. Freeman
- Peninsula Allied Health Centre, School of Health Professions, University of Plymouth, Derriford Road, Plymouth PL6 8BH, UK
| | - Jonathan Marsden
- School of Health Professions, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
| | - Stephen D. Hall
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
- School of Psychology, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
4
|
Mustile M, Kourtis D, Edwards MG, Donaldson DI, Ietswaart M. Neural correlates of motor imagery and execution in real-world dynamic behavior: evidence for similarities and differences. Front Hum Neurosci 2024; 18:1412307. [PMID: 38974480 PMCID: PMC11224467 DOI: 10.3389/fnhum.2024.1412307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/20/2024] [Indexed: 07/09/2024] Open
Abstract
A large body of evidence shows that motor imagery and action execution behaviors result from overlapping neural substrates, even in the absence of overt movement during motor imagery. To date it is unclear how neural activations in motor imagery and execution compare for naturalistic whole-body movements, such as walking. Neuroimaging studies have not directly compared imagery and execution during dynamic walking movements. Here we recorded brain activation with mobile EEG during walking compared to during imagery of walking, with mental counting as a control condition. We asked 24 healthy participants to either walk six steps on a path, imagine taking six steps, or mentally count from one to six. We found beta and alpha power modulation during motor imagery resembling action execution patterns; a correspondence not found performing the control task of mental counting. Neural overlap occurred early in the execution and imagery walking actions, suggesting activation of shared action representations. Remarkably, a distinctive walking-related beta rebound occurred both during action execution and imagery at the end of the action suggesting that, like actual walking, motor imagery involves resetting or inhibition of motor processes. However, we also found that motor imagery elicits a distinct pattern of more distributed beta activity, especially at the beginning of the task. These results indicate that motor imagery and execution of naturalistic walking involve shared motor-cognitive activations, but that motor imagery requires additional cortical resources.
Collapse
Affiliation(s)
- Magda Mustile
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
- The Psychological Sciences Research Institute, University of Louvain, Louvain-la-Neuve, Belgium
| | - Dimitrios Kourtis
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| | - Martin G. Edwards
- The Psychological Sciences Research Institute, University of Louvain, Louvain-la-Neuve, Belgium
| | - David I. Donaldson
- School of Psychology and Neuroscience, University of St Andrews, St. Andrews, United Kingdom
| | - Magdalena Ietswaart
- Department of Psychology, Faculty of Natural Sciences, University of Stirling, Stirling, United Kingdom
| |
Collapse
|
5
|
da Silva ALM, Nascimento CP, Azevedo JEC, Vieira LR, Hamoy AO, Tiago ACDS, Martins Rodrigues JC, de Araujo DB, Favacho Lopes DC, de Mello VJ, Hamoy M. Unmasking hidden risks: The surprising link between PDE5 inhibitors and seizure susceptibility. PLoS One 2023; 18:e0294754. [PMID: 38033148 PMCID: PMC10688920 DOI: 10.1371/journal.pone.0294754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/08/2023] [Indexed: 12/02/2023] Open
Abstract
BACKGROUND Phosphodiesterase 5 inhibitors (PDE5i) are the first line treatment for erectile dysfunction; however, several articles and case reports have shown central nervous system effects, that can cause seizures in susceptible patients. This study aims to describe the changes caused by the use of Sildenafil and Tadalafil through the analysis of abnormalities expressed in the electrocorticogram (ECoG) of rats and evaluate the seizure threshold response and treatment of seizures with anticonvulsants. MATERIALS AND METHODS The study used 108 rats (Wistar). Before surgery for electrode placement in dura mater, the animals were randomly separated into 3 experiments for electrocorticogram analysis. Experiment 1: ECoG response to using PD5i (Sildenafil 20mg/kg and Tadalafil 2.6mg/kg p.o.). Experiment 2: ECoG response to the use of PD5i in association with Pentylenetetrazole (PTZ-30 mg/kg i.p.), a convulsive model. Experiment 3: ECoG response to anticonvulsant treatment (Phenytoin, Phenobarbital and Diazepam) of seizures induced by association IPDE5 + PTZ. All recordings were made thirty minutes after administration of the medication and analyzed for ten minutes, only once. We considered statistical significance level of *p<0.05, **p<0.01 and ***p < 0.001. RESULTS After administration of Sildenafil and Tadalafil, there were increases in the power of recordings in the frequency bands in oscillations in alpha (p = 0.0920) and beta (p = 0.602) when compared to the control group (p<0.001). After the use of Sildenafil and Tadalafil associated with PTZ, greater potency was observed in the recordings during seizures (p<0.001), however, the Sildenafil group showed greater potency when compared to Tadalafil (p<0.05). Phenobarbital and Diazepam showed a better response in controlling discharges triggered by the association between proconvulsant drugs. CONCLUSIONS PDE5i altered the ECoG recordings in the rats' motor cortexes, demonstrating cerebral asynchrony and potentiating the action of PTZ. These findings demonstrate that PDE5i can lower the seizure threshold.
Collapse
Affiliation(s)
- Alex Luiz Menezes da Silva
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Chirlene Pinheiro Nascimento
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Julianne Elba Cunha Azevedo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Luana Rodrigues Vieira
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Akira Otake Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Allan Carlos da Silva Tiago
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - João Cleiton Martins Rodrigues
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Daniella Bastos de Araujo
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Dielly Catrina Favacho Lopes
- Laboratory of Experimental Neuropathology, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Vanessa Jóia de Mello
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| | - Moisés Hamoy
- Laboratory of Pharmacology and Toxicology of Natural Products, Institute of Biological Sciences, Federal University of Pará, UFPA, Belém, Pará, Brazil
| |
Collapse
|
6
|
Szul MJ, Papadopoulos S, Alavizadeh S, Daligaut S, Schwartz D, Mattout J, Bonaiuto JJ. Diverse beta burst waveform motifs characterize movement-related cortical dynamics. Prog Neurobiol 2023; 228:102490. [PMID: 37391061 DOI: 10.1016/j.pneurobio.2023.102490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/03/2023] [Accepted: 06/21/2023] [Indexed: 07/02/2023]
Abstract
Classical analyses of induced, frequency-specific neural activity typically average band-limited power over trials. More recently, it has become widely appreciated that in individual trials, beta band activity occurs as transient bursts rather than amplitude-modulated oscillations. Most studies of beta bursts treat them as unitary, and having a stereotyped waveform. However, we show there is a wide diversity of burst shapes. Using a biophysical model of burst generation, we demonstrate that waveform variability is predicted by variability in the synaptic drives that generate beta bursts. We then use a novel, adaptive burst detection algorithm to identify bursts from human MEG sensor data recorded during a joystick-based reaching task, and apply principal component analysis to burst waveforms to define a set of dimensions, or motifs, that best explain waveform variance. Finally, we show that bursts with a particular range of waveform motifs, ones not fully accounted for by the biophysical model, differentially contribute to movement-related beta dynamics. Sensorimotor beta bursts are therefore not homogeneous events and likely reflect distinct computational processes.
Collapse
Affiliation(s)
- Maciej J Szul
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France.
| | - Sotirios Papadopoulos
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - Sanaz Alavizadeh
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| | | | - Denis Schwartz
- CERMEP - Imagerie du Vivant, MEG Departement, Lyon, France
| | - Jérémie Mattout
- Université Claude Bernard Lyon 1, Université de Lyon, France; Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| | - James J Bonaiuto
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Lyon, France; Université Claude Bernard Lyon 1, Université de Lyon, France
| |
Collapse
|
7
|
Gilbert ZD, Martin Del Campo-Vera R, Tang AM, Chen KH, Sebastian R, Shao A, Tabarsi E, Chung RS, Leonor A, Sundaram S, Heck C, Nune G, Liu CY, Kellis S, Lee B. Baseline hippocampal beta band power Is lower in the presence of movement uncertainty. J Neural Eng 2022; 19. [PMID: 35803209 DOI: 10.1088/1741-2552/ac7fb9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 07/08/2022] [Indexed: 11/12/2022]
Abstract
Objective This study aimed to characterize hippocampal neural signatures of uncertainty by measuring beta band power in the period prior to movement cue. Approach Participants with epilepsy were implanted with hippocampal depth electrodes for stereo electroencephalographic (SEEG) monitoring. Hippocampal beta (13-30 Hz) power changes have been observed during motor tasks such as the direct reach (DR) and Go/No-Go (GNG) tasks. The primary difference between the tasks is the presence of uncertainty about whether movement should be executed. Previous research on cortical responses to uncertainty has found that baseline beta power changes with uncertainty. SEEG data were sampled throughout phases of the DR and GNG tasks. Beta-band power during the fixation phase was compared between the DR and GNG task using a Wilcoxon rank sum test. This unpaired test was also used to analyze response times from cue to task completion between tasks. Main Results Eight patients who performed both reaching tasks were analyzed in this study. Movement response times in the GNG task were on average 210 milliseconds slower than in the DR task. All patients exhibited a significantly increased response latency in the GNG task compared to the DR task (Wilcoxon rank-sum p-value < 0.001). Six out of eight patients demonstrated statistically significant differences in beta power in single hippocampal contacts between the fixation phases of the GNG and DR tasks. At the group level, baseline beta power was significantly lower in the GNG task than in the DR task (Wilcoxon rank-sum p-value < 0.001). Significance This novel study found that, in the presence of task uncertainty, baseline beta power in the hippocampus is lower than in its absence. This finding implicates movement uncertainty as an important factor in baseline hippocampal beta power during movement preparation.
Collapse
Affiliation(s)
- Zachary D Gilbert
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Roberto Martin Del Campo-Vera
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Austin M Tang
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Kuang-Hsuan Chen
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Rinu Sebastian
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Arthur Shao
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Emiliano Tabarsi
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Ryan S Chung
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Andrea Leonor
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Shivani Sundaram
- Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Christi Heck
- Neurorestoration Center and Department of Neurology, University of Southern California Keck School of Medicine, 2051 Marengo Street, Los Angeles, California, 90033, UNITED STATES
| | - George Nune
- Neurorestoration Center and Department of Neurology, University of Southern California Keck School of Medicine, 2051 Marengo Street, Los Angeles, California, 90033, UNITED STATES
| | - Charles Y Liu
- Neurorestoration Center and Department of Neurological Surgery and Neurology, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Spencer Kellis
- Neurorestoration Center and Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| | - Brian Lee
- Neuroresotoration Center and Department of Neurological Surgery, University of Southern California Keck School of Medicine, 1200 N State Street, Los Angeles, California, 90033, UNITED STATES
| |
Collapse
|
8
|
Lundqvist M, Wutz A. New methods for oscillation analyses push new theories of discrete cognition. Psychophysiology 2022; 59:e13827. [PMID: 33942323 PMCID: PMC11475370 DOI: 10.1111/psyp.13827] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/18/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022]
Abstract
Classical ways of analyzing neural time series data has led to static views on cognition, in which the cognitive processes are linked to sustained neural activity and interpreted as stationary states. The core analytical focus was on slow power modulations of neural oscillations averaged across many experimental trials. Whereas this custom analytical approach reduces the complexity and increases the signal-to-noise ratio, it may disregard or even remove important aspects of the underlying neural dynamics. Novel analysis methods investigate the instantaneous frequency and phase of neural oscillations and relate them to the precisely controlled timing of brief successive sensory stimuli. This enables to capture how cognitive processes unfold in discrete windows within and across oscillatory cycles. Moreover, several recent studies analyze the oscillatory power modulations on single experimental trials. They suggest that the power modulations are packed into discrete bursts of activity, which occur at different rates and times, and with different durations from trial-to-trial. Here, we review the current work that made use of these methodological advances for neural oscillations. These novel analysis perspectives emphasize that cognitive processes occur in discrete time windows, instead of sustained, stationary states. Evidence for discretization was observed for the entire range of cognitive functions from perception and attention to working memory, goal-directed thought and motor actions, as well as throughout the entire cortical hierarchy and in subcortical regions. These empirical observations create demand for new psychological theories and computational models of cognition in the brain, which integrate its discrete temporal dynamics.
Collapse
Affiliation(s)
- Mikael Lundqvist
- Department of Clinical NeuroscienceKarolinska InstituteStockholmSweden
- Picower Institute for Learning & MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Andreas Wutz
- Picower Institute for Learning & MemoryMassachusetts Institute of TechnologyCambridgeMAUSA
- Centre for Cognitive NeuroscienceUniversity of SalzburgSalzburgAustria
| |
Collapse
|
9
|
Breton VL, Aquilino MS, Repudi S, Saleem A, Mylvaganam S, Abu-Swai S, Bardakjian BL, Aqeilan RI, Carlen PL. Altered neocortical oscillations and cellular excitability in an in vitro Wwox knockout mouse model of epileptic encephalopathy. Neurobiol Dis 2021; 160:105529. [PMID: 34634460 PMCID: PMC8609180 DOI: 10.1016/j.nbd.2021.105529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 09/24/2021] [Accepted: 10/07/2021] [Indexed: 12/02/2022] Open
Abstract
Loss of function mutations of the WW domain-containing oxidoreductase (WWOX) gene are associated with severe and fatal drug-resistant pediatric epileptic encephalopathy. Epileptic seizures are typically characterized by neuronal hyperexcitability; however, the specific contribution of WWOX to that hyperexcitability has yet to be investigated. Using a mouse model of neuronal Wwox-deletion that exhibit spontaneous seizures, in vitro whole-cell and field potential electrophysiological characterization identified spontaneous bursting activity in the neocortex, a marker of the underlying network hyperexcitability. Spectral analysis of the neocortical bursting events highlighted increased phase-amplitude coupling, and a propagation from layer II/III to layer V. These bursts were NMDAR and gap junction dependent. In layer II/III pyramidal neurons, Wwox knockout mice demonstrated elevated amplitude of excitatory post-synaptic currents, whereas the frequency and amplitude of inhibitory post-synaptic currents were reduced, as compared to heterozygote and wild-type littermate controls. Furthermore, these neurons were depolarized and demonstrated increased action potential frequency, sag current, and post-inhibitory rebound. These findings suggest WWOX plays an essential role in balancing neocortical excitability and provide insight towards developing therapeutics for those suffering from WWOX disorders.
Collapse
Affiliation(s)
- Vanessa L Breton
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada.
| | - Mark S Aquilino
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada.
| | - Srinivasarao Repudi
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Afifa Saleem
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Shanthini Mylvaganam
- Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada
| | - Sara Abu-Swai
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Berj L Bardakjian
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario M5S 3G4, Canada
| | - Rami I Aqeilan
- The Concern Foundation Laboratories, The Lautenberg Center for Immunology and Cancer Research, Immunology and Cancer Research-IMRIC, Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Peter L Carlen
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada; Krembil Research Institute, Division of Fundamental Neurobiology, Toronto Western Hospital, Toronto, Ontario M5T 0S8, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario M5S 3G9, Canada; Department of Medicine (Neurology), University Health Network, Toronto, Ontario M5G 2C4, Canada
| |
Collapse
|
10
|
van Helvert MJL, Oostwoud Wijdenes L, Geerligs L, Medendorp WP. Cortical beta-band power modulates with uncertainty in effector selection during motor planning. J Neurophysiol 2021; 126:1891-1902. [PMID: 34731060 DOI: 10.1152/jn.00198.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Although beta-band activity during motor planning is known to be modulated by uncertainty about where to act, less is known about its modulations to uncertainty about how to act. To investigate this issue, we recorded oscillatory brain activity with EEG while human participants (n = 17) performed a hand choice reaching task. The reaching hand was either predetermined or of participants' choice, and the target was close to one of the two hands or at about equal distance from both. To measure neural activity in a motion artifact-free time window, the location of the upcoming target was cued 1,000-1,500 ms before the presentation of the target, whereby the cue was valid in 50% of trials. As evidence for motor planning during the cuing phase, behavioral observations showed that the cue affected later hand choice. Furthermore, reaction times were longer in the choice trials than in the predetermined trials, supporting the notion of a competitive process for hand selection. Modulations of beta-band power over central cortical regions, but not alpha-band or theta-band power, were in line with these observations. During the cuing period, reaches in predetermined trials were preceded by larger decreases in beta-band power than reaches in choice trials. Cue direction did not affect reaction times or beta-band power, which may be due to the cue being invalid in 50% of trials, retaining effector uncertainty during motor planning. Our findings suggest that effector uncertainty modulates beta-band power during motor planning.NEW & NOTEWORTHY Although reach-related beta-band power in central cortical areas is known to modulate with the number of potential targets, here we show, using a cuing paradigm, that the power in this frequency band, but not in the alpha or theta band, is also modulated by the uncertainty of which hand to use. This finding supports the notion that multiple possible effector-specific actions can be specified in parallel up to the level of motor preparation.
Collapse
Affiliation(s)
- Milou J L van Helvert
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Leonie Oostwoud Wijdenes
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Linda Geerligs
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - W Pieter Medendorp
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
11
|
Barth B, Rohe T, Deppermann S, Fallgatter AJ, Ehlis AC. Neural oscillatory responses to performance monitoring differ between high- and low-impulsive individuals, but are unaffected by TMS. Hum Brain Mapp 2021; 42:2416-2433. [PMID: 33605509 PMCID: PMC8090766 DOI: 10.1002/hbm.25376] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/25/2021] [Accepted: 02/07/2021] [Indexed: 12/17/2022] Open
Abstract
Higher impulsivity may arise from neurophysiological deficits of cognitive control in the prefrontal cortex. Cognitive control can be assessed by time‐frequency decompositions of electrophysiological data. We aimed to clarify neuroelectric mechanisms of performance monitoring in connection with impulsiveness during a modified Eriksen flanker task in high‐ (n = 24) and low‐impulsive subjects (n = 21) and whether these are modulated by double‐blind, sham‐controlled intermittent theta burst stimulation (iTBS). We found a larger error‐specific peri‐response beta power decrease over fronto‐central sites in high‐impulsive compared to low‐impulsive participants, presumably indexing less effective motor execution processes. Lower parieto‐occipital theta intertrial phase coherence (ITPC) preceding correct responses predicted higher reaction time (RT) and higher RT variability, potentially reflecting efficacy of cognitive control or general attention. Single‐trial preresponse theta phase clustering was coupled to RT in correct trials (weighted ITPC), reflecting oscillatory dynamics that predict trial‐specific behavior. iTBS did not modulate behavior or EEG time‐frequency power. Performance monitoring was associated with time‐frequency patterns reflecting cognitive control (parieto‐occipital theta ITPC, theta weighted ITPC) as well as differential action planning/execution processes linked to trait impulsivity (frontal low beta power). Beyond that, results suggest no stimulation effect related to response‐locked time‐frequency dynamics with the current stimulation protocol. Neural oscillatory responses to performance monitoring differ between high‐ and low‐impulsive individuals, but are unaffected by iTBS.
Collapse
Affiliation(s)
- Beatrix Barth
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Tim Rohe
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,Department of Psychology, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Saskia Deppermann
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany
| | - Andreas Jochen Fallgatter
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany.,Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tuebingen, Tuebingen, Germany
| | - Ann-Christine Ehlis
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tuebingen, Tuebingen, Germany.,LEAD Graduate School & Research Network, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
12
|
Formica S, González-García C, Senoussi M, Brass M. Neural oscillations track the maintenance and proceduralization of novel instructions. Neuroimage 2021; 232:117870. [PMID: 33607280 DOI: 10.1016/j.neuroimage.2021.117870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 01/26/2021] [Accepted: 02/11/2021] [Indexed: 12/30/2022] Open
Abstract
Humans are capable of flexibly converting symbolic instructions into novel behaviors. Previous evidence and theoretical models suggest that the implementation of a novel instruction requires the reformatting of its declarative content into an action-oriented code optimized for the execution of the instructed behavior. While neuroimaging research focused on identifying the brain areas involved in such a process, the temporal and electrophysiological mechanisms remain poorly understood. These mechanisms, however, can provide information about the specific cognitive processes that characterize the proceduralization of information. In the present study, we recorded EEG activity while we asked participants to either simply maintain declaratively the content of novel S-R mappings or to proactively prepare for their implementation. By means of time-frequency analyses, we isolated the oscillatory features specific to the proceduralization of instructions. Implementation of the instructed mappings elicited stronger theta activity over frontal electrodes and suppression in mu and beta activity over central electrodes. On the contrary, activity in the alpha band, which has been shown to track the attentional deployment to task-relevant items, showed no differences between tasks. Together, these results support the idea that proceduralization of information is characterized by specific component processes such as orchestrating complex task settings and configuring the motor system that are not observed when instructions are held in a declarative format.
Collapse
Affiliation(s)
- Silvia Formica
- Department of Experimental Psychology, Ghent University, Belgium.
| | | | - Mehdi Senoussi
- Department of Experimental Psychology, Ghent University, Belgium
| | - Marcel Brass
- Department of Experimental Psychology, Ghent University, Belgium; School of Mind and Brain/Department of Psychology, Humboldt Universität zu Berlin, Germany
| |
Collapse
|
13
|
Prokic EJ, Stanford IM, Woodhall GL, Williams AC, Hall SD. Bradykinesia Is Driven by Cumulative Beta Power During Continuous Movement and Alleviated by Gabaergic Modulation in Parkinson's Disease. Front Neurol 2019; 10:1298. [PMID: 31920922 PMCID: PMC6933612 DOI: 10.3389/fneur.2019.01298] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 11/25/2019] [Indexed: 01/22/2023] Open
Abstract
Spontaneous and "event-related" motor cortex oscillations in the beta (15-30 Hz) frequency range are well-established phenomena. However, the precise functional significance of these features is uncertain. An understanding of the specific function is of importance for the treatment of Parkinson's disease (PD), where attenuation of augmented beta throughout the motor network coincides with functional improvement. Previous research using a discrete movement task identified normalization of elevated spontaneous beta and postmovement beta rebound following GABAergic modulation. Here, we explore the effects of the gamma-aminobutyric acid type A modulator, zolpidem, on beta power during the performance of serial movement in 17 (15M, 2F; mean age, 66 ± 6.3 years) PD patients, using a repeated-measures, double-blinded, randomized, placebo-control design. Motor symptoms were monitored before and after treatment, using time-based Unified Parkinson's Disease Rating Scale measurements and beta oscillations in primary motor cortex (M1) were measured during a serial-movement task, using magnetoencephalography. We demonstrate that a cumulative increase in M1 beta power during a 10-s tapping trial is reduced following zolpidem, but not placebo, which is accompanied by an improvement in movement speed and efficacy. This work provides a clear mechanism for the generation of abnormally elevated beta power in PD and demonstrates that perimovement beta accumulation drives the slowing, and impaired initiation, of movement. These findings further indicate a role for GABAergic modulation in bradykinesia in PD, which merits further exploration as a therapeutic target.
Collapse
Affiliation(s)
- Emma J. Prokic
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
- Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Ian M. Stanford
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Gavin L. Woodhall
- School of Life and Health Sciences, Aston University, Birmingham, United Kingdom
| | - Adrian C. Williams
- Queen Elizabeth Hospital, University Hospital Birmingham, Birmingham, United Kingdom
| | - Stephen D. Hall
- Brain Research and Imaging Centre, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
14
|
Gaetz W, Rhodes E, Bloy L, Blaskey L, Jackel CR, Brodkin ES, Waldman A, Embick D, Hall S, Roberts TPL. Evaluating motor cortical oscillations and age-related change in autism spectrum disorder. Neuroimage 2019; 207:116349. [PMID: 31726253 DOI: 10.1016/j.neuroimage.2019.116349] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
Autism spectrum disorder (ASD) is primarily characterized by impairments in social communication and the appearance of repetitive behaviors with restricted interests. Increasingly, evidence also points to a general deficit of motor tone and coordination in children and adults with ASD; yet the neural basis of motor functional impairment in ASD remains poorly characterized. In this study, we used magnetoencephalography (MEG) to (1) assess potential group differences between typically developing (TD) and ASD participants in motor cortical oscillatory activity observed on a simple button-press task and (2) to do so over a sufficiently broad age-range so as to capture age-dependent changes associated with development. Event-related desynchronization was evaluated in Mu (8-13 Hz) and Beta (15-30 Hz) frequency bands (Mu-ERD, Beta-ERD). In addition, post-movement Beta rebound (PMBR), and movement-related gamma (60-90 Hz) synchrony (MRGS) were also assessed in a cohort of 123 participants (63 typically developing (TD) and 59 with ASD) ranging in age from 8 to 24.9 years. We observed significant age-dependent linear trends in Beta-ERD and MRGS power with age for both TD and ASD groups; which did not differ significantly between groups. However, for PMBR, in addition to a significant effect of age, we also observed a significant reduction in PMBR power in the ASD group (p < 0.05). Post-hoc tests showed that this omnibus group difference was driven by the older cohort of children >13.2 years (p < 0.001) and this group difference was not observed when assessing PMBR activity for the younger PMBR groups (ages 8-13.2 years; p = 0.48). Moreover, for the older ASD cohort, hierarchical regression showed a significant relationship between PMBR activity and clinical scores of ASD severity (Social Responsiveness Scale (SRS T scores)), after regressing out the effect of age (p < 0.05). Our results show substantial age-dependent changes in motor cortical oscillations (Beta-ERD and MRGS) occur for both TD and ASD children and diverge only for PMBR, and most significantly for older adolescents and adults with ASD. While the functional significance of PMBR and reduced PMBR signaling remains to be fully elucidated, these results underscore the importance of considering age as a factor when assessing motor cortical oscillations and group differences in children with ASD.
Collapse
Affiliation(s)
- William Gaetz
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Edward Rhodes
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Luke Bloy
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Lisa Blaskey
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Carissa R Jackel
- Division of Developmental and Behavioral Pediatrics, Children's Hospital of Philadelphia, USA
| | - Edward S Brodkin
- Department of Psychiatry, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Amy Waldman
- Division of Neurology, Departments of Neurology and Pediatrics, Children's Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David Embick
- Department of Linguistics, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Hall
- Brain Research and Imaging Centre, University of Plymouth, Devon, UK
| | - Timothy P L Roberts
- Lurie Family Foundations' MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
15
|
Little S, Bonaiuto J, Barnes G, Bestmann S. Human motor cortical beta bursts relate to movement planning and response errors. PLoS Biol 2019; 17:e3000479. [PMID: 31584933 PMCID: PMC6795457 DOI: 10.1371/journal.pbio.3000479] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 10/16/2019] [Accepted: 09/10/2019] [Indexed: 11/30/2022] Open
Abstract
Motor cortical beta activity (13-30 Hz) is a hallmark signature of healthy and pathological movement, but its behavioural relevance remains unclear. Using high-precision magnetoencephalography (MEG), we show that during the classical event-related desynchronisation (ERD) and event-related synchronisation (ERS) periods, motor cortical beta activity in individual trials (n > 12,000) is dominated by high amplitude, transient, and infrequent bursts. Beta burst probability closely matched the trial-averaged beta amplitude in both the pre- and post-movement periods, but individual bursts were spatially more focal than the classical ERS peak. Furthermore, prior to movement (ERD period), beta burst timing was related to the degree of motor preparation, with later bursts resulting in delayed response times. Following movement (ERS period), the first beta burst was delayed by approximately 100 milliseconds when an incorrect response was made. Overall, beta burst timing was a stronger predictor of single trial behaviour than beta burst rate or single trial beta amplitude. This transient nature of motor cortical beta provides new constraints for theories of its role in information processing within and across cortical circuits, and its functional relevance for behaviour in both healthy and pathological movement.
Collapse
Affiliation(s)
- Simon Little
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Neurology, University of San Francisco, California, United States of America
| | - James Bonaiuto
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
- Institut des Sciences Cognitives Marc Jeannerod, CNRS UMR 5229, Bron, France
- Université Claude Bernard Lyon I, Lyon, France
| | - Gareth Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sven Bestmann
- Department of Clinical and Movement Neuroscience, UCL Queen Square Institute of Neurology, London, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
16
|
Tzagarakis C, Thompson A, Rogers RD, Pellizzer G. The Degree of Modulation of Beta Band Activity During Motor Planning Is Related to Trait Impulsivity. Front Integr Neurosci 2019; 13:1. [PMID: 30705624 PMCID: PMC6344424 DOI: 10.3389/fnint.2019.00001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 01/03/2019] [Indexed: 11/23/2022] Open
Abstract
Impulsivity is a prominent personality trait, and a key modulating component of neurologic and psychiatric disorders. How impulsivity is related to the brain mechanisms associated with action planning is poorly understood. Here, we investigated the relation between impulsivity and the modulation of beta band oscillatory activity associated with action planning and execution. Given that beta power decreases during action planning and decreases further during action execution, we hypothesized that during planning the level of beta band power of more impulsive individuals would be closer to the level reached during execution than that of less impulsive individuals. This could explain the tendency to "jump the gun" (commission errors) in high impulsivity. To test this hypothesis, we recruited healthy volunteers (50 participants analyzed) and used the Barratt Impulsiveness Scale questionnaire to evaluate their impulsivity as high or low. We then recorded their brain neuromagnetic signals while they performed an instructed-delay task that induced different levels of action planning by varying the number of spatial cues, hence the uncertainty, about the location of the upcoming target. During the early cue period of the task, we found a posterior (source localized in the occipito-parietal areas) and a left fronto-central group of channels (source localized in the left sensorimotor areas) where beta power was modulated by number of cues, whereas during the late cue period only the left fronto-central group was modulated. We found that the decrease of relative beta band power during action planning in the left fronto-central group of channels was more pronounced in the high impulsivity group than in the low impulsivity group. In addition, we found that the beta band-mediated functional connectivity between the posterior and the left fronto-central groups of channels was weaker in the high impulsivity group than in the low impulsivity group during the early cue period. Furthermore, high impulsives made more commission and movement errors in the task than low impulsives. These results reveal neural mechanisms through which impulsivity affects action planning and open the way for further study of the role of beta band activity in impulsivity, especially in the context of disease and therapeutics.
Collapse
Affiliation(s)
- Charidimos Tzagarakis
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Brain Sciences Center, Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Andrew Thompson
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Robert D. Rogers
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
- School of Psychology, Bangor University, Bangor, United Kingdom
- Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Giuseppe Pellizzer
- Department of Neuroscience, University of Minnesota, Minneapolis, MN, United States
- Brain Sciences Center, Minneapolis VA Health Care System, Minneapolis, MN, United States
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|