1
|
Xiong Z, Job X, Kilteni K. Costs and benefits of temporal expectations on somatosensory perception and decision-making. Cognition 2025; 261:106146. [PMID: 40233661 DOI: 10.1016/j.cognition.2025.106146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 04/06/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Our perception is shaped by prior expectations, including those about the timing of our sensations. These temporal expectations can be formed by recognizing patterns in the onset of sensory inputs. However, in the somatosensory domain, it remains unclear how these expectations impact the speed and accuracy of somatosensory judgments, as previous research has yielded mixed results. Here, participants used auditory tones to anticipate the onset of forces applied to their fingers and discriminated their intensity compared to a reference force. Experiment 1 showed that participants had worse discrimination sensitivity and higher thresholds for expected versus unexpected forces. Experiment 2 replicated and extended these costs to include perceptual accuracy, even when comparing expected to expectation-free forces, and further revealed reaction time benefits. Drift-diffusion modelling suggested that expectations speeded non-decisional processes while simultaneously slowing somatosensory evidence accumulation. These findings demonstrate both costs and benefits of temporal expectations in somatosensory perception and decision-making.
Collapse
Affiliation(s)
- Ziliang Xiong
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HD Nijmegen, Netherlands
| | - Xavier Job
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Konstantina Kilteni
- Department of Neuroscience, Karolinska Institute, 171 77 Stockholm, Sweden; Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6500 HD Nijmegen, Netherlands.
| |
Collapse
|
2
|
Lopes Alves R, Zortea M, Mayor D, Watson T, Steffert T. Effect of Different Frequencies of Transcutaneous Electrical Acupoint Stimulation (TEAS) on EEG Source Localization in Healthy Volunteers: A Semi-Randomized, Placebo-Controlled, Crossover Study. Brain Sci 2025; 15:270. [PMID: 40149791 PMCID: PMC11940437 DOI: 10.3390/brainsci15030270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Transcutaneous electrical acupoint stimulation (TEAS), also known as transcutaneous electroacupuncture stimulation, delivers electrical pulses to the skin over acupuncture points ("acupoints") via surface electrodes. Electroencephalography (EEG) is an important tool for assessing the changes in the central nervous system (CNS) that may result from applying different TEAS frequencies peripherally-i.e., acting via the peripheral nervous system (PNS)-and determining how these influence cerebral activity and neural plasticity. Methods: A total of 48 healthy volunteers were allocated in a semi-randomized crossover study to receive four different TEAS frequencies: 2.5 pulses per second (pps); 10 pps; 80 pps; and sham (160 pps at a low, clinically ineffective amplitude). TEAS was applied for 20 min to each hand at the acupuncture point Hegu (LI4). The EEG was recorded during an initial 5 min baseline recording, then during TEAS application, and after stimulation for a further 15 min, separated into three periods of 5 min (initial, intermediate, and final) in order to assess post-stimulation changes. Source localization analysis was conducted for the traditional five EEG frequency bands: delta (0.1-3.9 Hz), theta (4-7.9 Hz), alpha (8-13 Hz), beta (14-30 Hz), and gamma (30.1-45 Hz). Results: Within-group source localization analyses of EEG data showed that during the initial 5 min post-stimulation, theta oscillations in the 2.5 pps TEAS group increased over the parahippocampal gyrus (t = 4.42, p < 0.01). The 10 pps TEAS group exhibited decreased alpha rhythms over the inferior parietal gyrus (t = -4.20, p < 0.05), whereas the sham (160 pps) TEAS group showed decreased delta rhythms over the postcentral gyrus (t = -3.97, p < 0.05). During the intermediate 5 min post-stimulation, the increased theta activity over the left parahippocampal gyrus (BA27) remained in the 2.5 pps TEAS group (t = 3.97, p < 0.05). However, diminished alpha rhythms were observed in the 10 pps TEAS group over the postcentral gyrus (t = -4.20, p < 0.01), as well as in the delta rhythms in the sham (160 pps) TEAS group in the same area (t = -4.35, p < 0.01). In the final 5 min post-stimulation, reduced alpha rhythms were exhibited over the insula in the 10 pps TEAS group (t = -4.07, p < 0.05). Interaction effects of condition by group demonstrate decreased alpha rhythms in the 10 pps TEAS group over the supramarginal gyrus during the initial 5 min post-stimulation (t = -4.31, p < 0.05), and decreased delta rhythms over the insula in the sham TEAS group during the final 5 min post-stimulation (t = -4.42, p < 0.01). Conclusions: This study revealed that low TEAS frequencies of 2.5 pps and 10 pps modulate theta and alpha oscillations over the brain areas related to emotional and attentional processes driven by external stimuli, as well as neural synchronization of delta rhythms in the sham group in brain areas related to stimulus expectation at baseline. It is hoped that these findings will stimulate further research in order to evaluate such TEAS modulation effects in clinical patients.
Collapse
Affiliation(s)
| | | | - David Mayor
- School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK; (D.M.); (T.W.)
| | - Tim Watson
- School of Health and Social Work, University of Hertfordshire, Hatfield AL10 9AB, UK; (D.M.); (T.W.)
| | - Tony Steffert
- MindSpire, Napier House, 14-16 Mount Ephraim Rd., Tunbridge Wells TN1 1EE, UK
- School of Life, Health and Chemical Sciences, Walton Hall, The Open University, Milton Keynes MK7 6AA, UK
| |
Collapse
|
3
|
Attout L, Capizzi M, Charras P. Enhancing rhythmic temporal expectations: The dominance of auditory modality under spatial uncertainty. Atten Percept Psychophys 2024; 86:1681-1693. [PMID: 38777989 DOI: 10.3758/s13414-024-02898-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
To effectively process the most relevant information, the brain anticipates the optimal timing for allocating attentional resources. Behavior can be optimized by automatically aligning attention with external rhythmic structures, whether visual or auditory. Although the auditory modality is known for its efficacy in representing temporal information, the current body of research has not conclusively determined whether visual or auditory rhythmic presentations have a definitive advantage in entraining temporal attention. The present study directly examined the effects of auditory and visual rhythmic cues on the discrimination of visual targets in Experiment 1 and on auditory targets in Experiment 2. Additionally, the role of endogenous spatial attention was also considered. When and where the target was the most likely to occur were cued by unimodal (visual or auditory) and bimodal (audiovisual) signals. A sequence of salient events was employed to elicit rhythm-based temporal expectations and a symbolic predictive cue served to orient spatial attention. The results suggest a superiority of auditory over visual rhythms, irrespective of spatial attention, whether the spatial cue and rhythm converge or not (unimodal or bimodal), and regardless of the target modality (visual or auditory). These findings are discussed in terms of a modality-specific rhythmic orienting, while considering a single, supramodal system operating in a top-down manner for endogenous spatial attention.
Collapse
Affiliation(s)
- Lucie Attout
- Univ Paul Valéry Montpellier 3, EPSYLON, 4556, F34000, Montpellier, EA, France.
| | - Mariagrazia Capizzi
- Mind, Brain, and Behavior Research Center (CIMCYC), Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Pom Charras
- Univ Paul Valéry Montpellier 3, EPSYLON, 4556, F34000, Montpellier, EA, France
| |
Collapse
|
4
|
Kobayashi K, Shiba Y, Honda S, Nakajima S, Fujii S, Mimura M, Noda Y. Short-Term Effect of Auditory Stimulation on Neural Activities: A Scoping Review of Longitudinal Electroencephalography and Magnetoencephalography Studies. Brain Sci 2024; 14:131. [PMID: 38391706 PMCID: PMC10887208 DOI: 10.3390/brainsci14020131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 12/24/2023] [Accepted: 01/24/2024] [Indexed: 02/24/2024] Open
Abstract
Explored through EEG/MEG, auditory stimuli function as a suitable research probe to reveal various neural activities, including event-related potentials, brain oscillations and functional connectivity. Accumulating evidence in this field stems from studies investigating neuroplasticity induced by long-term auditory training, specifically cross-sectional studies comparing musicians and non-musicians as well as longitudinal studies with musicians. In contrast, studies that address the neural effects of short-term interventions whose duration lasts from minutes to hours are only beginning to be featured. Over the past decade, an increasing body of evidence has shown that short-term auditory interventions evoke rapid changes in neural activities, and oscillatory fluctuations can be observed even in the prestimulus period. In this scoping review, we divided the extracted neurophysiological studies into three groups to discuss neural activities with short-term auditory interventions: the pre-stimulus period, during stimulation, and a comparison of before and after stimulation. We show that oscillatory activities vary depending on the context of the stimuli and are greatly affected by the interplay of bottom-up and top-down modulational mechanisms, including attention. We conclude that the observed rapid changes in neural activitiesin the auditory cortex and the higher-order cognitive part of the brain are causally attributed to short-term auditory interventions.
Collapse
Affiliation(s)
- Kanon Kobayashi
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.K.); (S.H.)
| | - Yasushi Shiba
- Faculty of Medicine, University of Tokyo, Tokyo 113-8655, Japan;
| | - Shiori Honda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.K.); (S.H.)
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.K.); (S.H.)
| | - Shinya Fujii
- Faculty of Environment and Information Studies, Keio University, Fujisawa 252-0816, Japan
| | - Masaru Mimura
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.K.); (S.H.)
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan; (K.K.); (S.H.)
| |
Collapse
|
5
|
Bonnet P, Bonnefond M, Kösem A. What is a Rhythm for the Brain? The Impact of Contextual Temporal Variability on Auditory Perception. J Cogn 2024; 7:15. [PMID: 38250558 PMCID: PMC10798173 DOI: 10.5334/joc.344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/02/2024] [Indexed: 01/23/2024] Open
Abstract
Temporal predictions can be formed and impact perception when sensory timing is fully predictable: for instance, the discrimination of a target sound is enhanced if it is presented on the beat of an isochronous rhythm. However, natural sensory stimuli, like speech or music, are not entirely predictable, but still possess statistical temporal regularities. We investigated whether temporal expectations can be formed in non-fully predictable contexts, and how the temporal variability of sensory contexts affects auditory perception. Specifically, we asked how "rhythmic" an auditory stimulation needs to be in order to observe temporal predictions effects on auditory discrimination performances. In this behavioral auditory oddball experiment, participants listened to auditory sound sequences where the temporal interval between each sound was drawn from gaussian distributions with distinct standard deviations. Participants were asked to discriminate sounds with a deviant pitch in the sequences. Auditory discrimination performances, as measured with deviant sound discrimination accuracy and response times, progressively declined as the temporal variability of the sound sequence increased. Moreover, both global and local temporal statistics impacted auditory perception, suggesting that temporal statistics are promptly integrated to optimize perception. Altogether, these results suggests that temporal predictions can be set up quickly based on the temporal statistics of past sensory events and are robust to a certain amount of temporal variability. Therefore, temporal predictions can be built on sensory stimulations that are not purely periodic nor temporally deterministic.
Collapse
Affiliation(s)
- Pierre Bonnet
- Lyon Neuroscience Research Center (CRNL), Computation, Cognition and Neurophysiology team (Cophy), Inserm U1028, Université Claude Bernard Lyon1, CNRS UMR 5292, 69000 Lyon, France
| | - Mathilde Bonnefond
- Lyon Neuroscience Research Center (CRNL), Computation, Cognition and Neurophysiology team (Cophy), Inserm U1028, Université Claude Bernard Lyon1, CNRS UMR 5292, 69000 Lyon, France
| | - Anne Kösem
- Lyon Neuroscience Research Center (CRNL), Computation, Cognition and Neurophysiology team (Cophy), Inserm U1028, Université Claude Bernard Lyon1, CNRS UMR 5292, 69000 Lyon, France
| |
Collapse
|
6
|
Capizzi M, Chica AB, Lupiáñez J, Charras P. Attention to space and time: Independent or interactive systems? A narrative review. Psychon Bull Rev 2023; 30:2030-2048. [PMID: 37407793 PMCID: PMC10728255 DOI: 10.3758/s13423-023-02325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 07/07/2023]
Abstract
While there is ample evidence for the ability to selectively attend to where in space and when in time a relevant event might occur, it remains poorly understood whether spatial and temporal attention operate independently or interactively to optimize behavior. To elucidate this important issue, we provide a narrative review of the literature investigating the relationship between the two. The studies were organized based on the attentional manipulation employed (endogenous vs. exogenous) and the type of task (detection vs. discrimination). Although the reviewed findings depict a complex scenario, three aspects appear particularly important in promoting independent or interactive effects of spatial and temporal attention: task demands, attentional manipulation, and their combination. Overall, the present review provides key insights into the relationship between spatial and temporal attention and identifies some critical gaps that need to be addressed by future research.
Collapse
Affiliation(s)
- Mariagrazia Capizzi
- Mind, Brain and Behavior Research Center (CIMCYC), Department of Experimental Psychology, University of Granada, Granada, Spain.
| | - Ana B Chica
- Mind, Brain and Behavior Research Center (CIMCYC), Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Juan Lupiáñez
- Mind, Brain and Behavior Research Center (CIMCYC), Department of Experimental Psychology, University of Granada, Granada, Spain
| | - Pom Charras
- Univ Paul Valéry Montpellier 3, EPSYLON EA 4556, F34000, Montpellier, France
| |
Collapse
|
7
|
Prasad R, Tarai S, Bit A. Investigation of frequency components embedded in EEG recordings underlying neuronal mechanism of cognitive control and attentional functions. Cogn Neurodyn 2023; 17:1321-1344. [PMID: 37786663 PMCID: PMC10542063 DOI: 10.1007/s11571-022-09888-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/03/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
Attentional cognitive control regulates the perception to enhance human behaviour. The current study examines the atltentional mechanisms in terms of time and frequency of EEG signals. The cognitive load is higher for processing local attentional stimulus, thereby demanding higher response time (RT) with low response accuracy (RA). On the other hand, the global attentional mechanisms broadly promote the perception while demanding a low cognitive load with faster RT and high RA. Attentional mechanisms refer to perceptual systems that afford and allocate the adaptive behaviours for prioritizing the processing of relevant stimuli based on the local and global features. The early sensory component of C1, which was associated with the local attentional mechanism, showed higher amplitudes than the global attentional mechanisms in parieto-occipital regions. Further, the local attentional mechanisms were also sustained in N2 and P3 components increasing higher amplitude in the left and right hemispheric sides of temporal regions (T7 and T8). Theta band frequency had shown higher power spectrum density (PSD) values while processing local attentional mechanisms. However, the significance of other frequency bands was noticeably minute. Hence, integrating the attentional mechanisms in terms of ERP and frequency signatures, a hybrid custom weight allocation model (CWAM) was built to assess and predict the contribution of insignificant channels to significant ones. The CWAM model was formulated based on the computational linear regression derivatives. All the derivatives are computationally derived the significant score while channelizing the hierarchical performance of each channel with respect to the frequent and deviant occurrences of global-local stimulus. This model enables us to configure the neural dynamicity of cognitive allocation of resources within the different locations of the human brain while processing the attentional stimulus. CWAM is reported to be the first model to evaluate the performance of the non-significant channels for enhancing the response of significant channels. The findings of the CWAM model suggest that the brain's performance may be determined by the underlying contribution of the non-significant channels. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-022-09888-x.
Collapse
Affiliation(s)
| | - Shashikanta Tarai
- Department of Humanities and Social Sciences, NIT Raipur, Raipur, India
| | - Arindam Bit
- Department of Biomedical Engineering, NIT Raipur, Raipur, India
| |
Collapse
|
8
|
Rassi E, Lin WM, Zhang Y, Emmerzaal J, Haegens S. β Band Rhythms Influence Reaction Times. eNeuro 2023; 10:ENEURO.0473-22.2023. [PMID: 37364994 PMCID: PMC10312120 DOI: 10.1523/eneuro.0473-22.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 06/28/2023] Open
Abstract
Despite their involvement in many cognitive functions, β oscillations are among the least understood brain rhythms. Reports on whether the functional role of β is primarily inhibitory or excitatory have been contradictory. Our framework attempts to reconcile these findings and proposes that several β rhythms co-exist at different frequencies. β Frequency shifts and their potential influence on behavior have thus far received little attention. In this human magnetoencephalography (MEG) experiment, we asked whether changes in β power or frequency in auditory cortex and motor cortex influence behavior (reaction times) during an auditory sweep discrimination task. We found that in motor cortex, increased β power slowed down responses, while in auditory cortex, increased β frequency slowed down responses. We further characterized β as transient burst events with distinct spectro-temporal profiles influencing reaction times. Finally, we found that increased motor-to-auditory β connectivity also slowed down responses. In sum, β power, frequency, bursting properties, cortical focus, and connectivity profile all influenced behavioral outcomes. Our results imply that the study of β oscillations requires caution as β dynamics are multifaceted phenomena, and that several dynamics must be taken into account to reconcile mixed findings in the literature.
Collapse
Affiliation(s)
- Elie Rassi
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychology, Centre for Cognitive Neuroscience, Paris-Lodron-University of Salzburg, 5020 Salzburg, Austria
| | - Wy Ming Lin
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Hector Research Institute for Education Sciences and Psychology, University of Tübingen, 72074 Tübingen, Germany
| | - Yi Zhang
- Department of Psychiatry, Columbia University, New York, NY 10032
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Human Movement Biomechanics Research Group, Department of Movement Sciences, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
- REVAL Rehabilitation Research Centre, Faculty of Rehabilitation Sciences, Hasselt University, 3500 Diepenbeek, Belgium
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Department of Psychiatry, Columbia University, New York, NY 10032
- Division of Systems Neuroscience, New York State Psychiatric Institute, New York, NY 10032
| |
Collapse
|
9
|
Abstract
Temporal attention is the selection and prioritization of information at a specific moment. Exogenous temporal attention is the automatic, stimulus driven deployment of attention. The benefits and costs of exogenous temporal attention on performance have not been isolated. Previous experimental designs have precluded distinguishing the effects of attention and expectation about stimulus timing. Here, we manipulated exogenous temporal attention and the uncertainty of stimulus timing independently and investigated visual performance at the attended and unattended moments with different levels of temporal uncertainty. In each trial, two Gabor patches were presented consecutively with a variable stimulus onset. To drive exogenous attention and test performance at attended and unattended moments, a task-irrelevant, brief cue was presented 100 ms before target onset, and an independent response cue was presented at the end of the trial. Exogenous temporal attention slightly improved accuracy, and the effects varied with temporal uncertainty, suggesting a possible interaction of temporal attention and expectations in time.
Collapse
Affiliation(s)
- Aysun Duyar
- Department of Psychology, New York University, New York, NY, USA
| | - Rachel N Denison
- Department of Psychology, New York University, New York, NY, USA
- Department of Psychological & Brain Sciences, Boston University, Boston, MA, USA
- Center for Neural Science, New York University, New York, NY, USA
| | - Marisa Carrasco
- Department of Psychology, New York University, New York, NY, USA
- Center for Neural Science, New York University, New York, NY, USA
| |
Collapse
|
10
|
Foldal MD, Leske S, Blenkmann AO, Endestad T, Solbakk AK. Attentional modulation of beta-power aligns with the timing of behaviorally relevant rhythmic sounds. Cereb Cortex 2023; 33:1876-1894. [PMID: 35639957 PMCID: PMC9977362 DOI: 10.1093/cercor/bhac179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 11/12/2022] Open
Abstract
It is largely unknown how attention adapts to the timing of acoustic stimuli. To address this, we investigated how hemispheric lateralization of alpha (7-13 Hz) and beta (14-24 Hz) oscillations, reflecting voluntary allocation of auditory spatial attention, is influenced by tempo and predictability of sounds. We recorded electroencephalography while healthy adults listened to rhythmic sound streams with different tempos that were presented dichotically to separate ears, thus permitting manipulation of spatial-temporal attention. Participants responded to stimulus-onset-asynchrony (SOA) deviants (-90 ms) for given tones in the attended rhythm. Rhythm predictability was controlled via the probability of SOA deviants per block. First, the results revealed hemispheric lateralization of beta-power according to attention direction, reflected as ipsilateral enhancement and contralateral suppression, which was amplified in high- relative to low-predictability conditions. Second, fluctuations in the time-resolved beta-lateralization aligned more strongly with the attended than the unattended tempo. Finally, a trend-level association was found between the degree of beta-lateralization and improved ability to distinguish between SOA-deviants in the attended versus unattended ear. Differently from previous studies, we presented continuous rhythms in which task-relevant and irrelevant stimuli had different tempo, thereby demonstrating that temporal alignment of beta-lateralization with attended sounds reflects top-down attention to sound timing.
Collapse
Affiliation(s)
- Maja D Foldal
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Sabine Leske
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Department of Musicology, University of Oslo, Sem Sælands vei 2, 0371 Oslo, Norway
| | - Alejandro O Blenkmann
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway
| | - Tor Endestad
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Department of Neuropsychology, Helgeland Hospital, Skjervengan 17, 8657 Mosjøen, Norway
| | - Anne-Kristin Solbakk
- Department of Psychology, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,RITMO Centre for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Forskningsveien 3A, 0373 Oslo, Norway.,Department of Neuropsychology, Helgeland Hospital, Skjervengan 17, 8657 Mosjøen, Norway.,Department of Neurosurgery, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| |
Collapse
|
11
|
Where and when matter in visual recognition. Atten Percept Psychophys 2023; 85:404-417. [PMID: 36333625 DOI: 10.3758/s13414-022-02607-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2022] [Indexed: 11/06/2022]
Abstract
Our perceptual system processes only a selected subset of an incoming stream of stimuli due to sensory biases and limitations in spatial and temporal attention and working memory capacity. In this study, we investigated perceptual access to sensory information that was temporally predictable or unpredictable and spread across the visual field. In a visual recognition task, participants were presented with an array of different number of alphabetical stimuli that were followed by a probe with a delay. They had to indicate whether the probe was included in the stimulus-set or not. To test the impact of temporal attention, coloured cues that were displayed before the visual stimuli indicated the presentation onset of the stimulus-set. We found that temporal predictability of stimulus onset yields higher performance. In addition, recognition performance was biased across the visual field with higher performance for stimuli that were presented on the upper and right visual quadrants. Our findings demonstrate that recognition accuracy is enhanced by temporal cues and has an inherently asymmetric shape across the visual field.
Collapse
|
12
|
Forward entrainment: Psychophysics, neural correlates, and function. Psychon Bull Rev 2022:10.3758/s13423-022-02220-y. [DOI: 10.3758/s13423-022-02220-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2022] [Indexed: 12/04/2022]
Abstract
AbstractWe define forward entrainment as that part of behavioral or neural entrainment that outlasts the entraining stimulus. In this review, we examine conditions under which one may optimally observe forward entrainment. In Part 1, we review and evaluate studies that have observed forward entrainment using a variety of psychophysical methods (detection, discrimination, and reaction times), different target stimuli (tones, noise, and gaps), different entraining sequences (sinusoidal, rectangular, or sawtooth waveforms), a variety of physiological measures (MEG, EEG, ECoG, CSD), in different modalities (auditory and visual), across modalities (audiovisual and auditory-motor), and in different species. In Part 2, we describe those experimental conditions that place constraints on the magnitude of forward entrainment, including an evaluation of the effects of signal uncertainty and attention, temporal envelope complexity, signal-to-noise ratio (SNR), rhythmic rate, prior experience, and intersubject variability. In Part 3 we theorize on potential mechanisms and propose that forward entrainment may instantiate a dynamic auditory afterimage that lasts a fraction of a second to minimize prediction error in signal processing.
Collapse
|
13
|
Saberi K, Hickok G. A critical analysis of Lin et al.'s (2021) failure to observe forward entrainment in pitch discrimination. Eur J Neurosci 2022; 56:5191-5200. [PMID: 35857282 PMCID: PMC9804316 DOI: 10.1111/ejn.15778] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 01/07/2023]
Abstract
Forward entrainment refers to that part of the entrainment process that outlasts the entraining stimulus. Several studies have demonstrated psychophysical forward entrainment in a pitch-discrimination task. In a recent paper, Lin et al. (2021) challenged these findings by demonstrating that a sequence of 4 entraining pure tones does not affect the ability to determine whether a frequency modulated pulse, presented after termination of the entraining sequence, has swept up or down in frequency. They concluded that rhythmic sequences do not facilitate pitch discrimination. Here, we describe several methodological and stimulus design flaws in Lin et al.'s study that may explain their failure to observe forward entrainment in pitch discrimination.
Collapse
Affiliation(s)
- Kourosh Saberi
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA
| | - Gregory Hickok
- Department of Cognitive SciencesUniversity of CaliforniaIrvineCaliforniaUSA,Department of Language ScienceUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
14
|
Lin WM, Oetringer DA, Bakker‐Marshall I, Emmerzaal J, Wilsch A, ElShafei HA, Rassi E, Haegens S. No behavioural evidence for rhythmic facilitation of perceptual discrimination. Eur J Neurosci 2022. [PMID: 33772897 PMCID: PMC9540985 DOI: 10.1111/ejn.15208 10.1101/2020.12.10.418947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
It has been hypothesized that internal oscillations can synchronize (i.e., entrain) to external environmental rhythms, thereby facilitating perception and behaviour. To date, evidence for the link between the phase of neural oscillations and behaviour has been scarce and contradictory; moreover, it remains an open question whether the brain can use this tentative mechanism for active temporal prediction. In our present study, we conducted a series of auditory pitch discrimination tasks with 181 healthy participants in an effort to shed light on the proposed behavioural benefits of rhythmic cueing and entrainment. In the three versions of our task, we observed no perceptual benefit of purported entrainment: targets occurring in-phase with a rhythmic cue provided no perceptual benefits in terms of discrimination accuracy or reaction time when compared with targets occurring out-of-phase or targets occurring randomly, nor did we find performance differences for targets preceded by rhythmic versus random cues. However, we found a surprising effect of cueing frequency on reaction time, in which participants showed faster responses to cue rhythms presented at higher frequencies. We therefore provide no evidence of entrainment, but instead a tentative effect of covert active sensing in which a faster external rhythm leads to a faster communication rate between motor and sensory cortices, allowing for sensory inputs to be sampled earlier in time.
Collapse
Affiliation(s)
- Wy Ming Lin
- Graduate Training Centre of NeuroscienceUniversity of TübingenTübingenGermany,Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Djamari A. Oetringer
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Iske Bakker‐Marshall
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Anna Wilsch
- Department of PsychologyNew York UniversityNew YorkNYUSA
| | - Hesham A. ElShafei
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Elie Rassi
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands,Department of PsychiatryColumbia UniversityNew YorkNYUSA,Division of Systems NeuroscienceNew York State Psychiatric InstituteNew YorkNYUSA
| |
Collapse
|
15
|
Lin WM, Oetringer DA, Bakker‐Marshall I, Emmerzaal J, Wilsch A, ElShafei HA, Rassi E, Haegens S. No behavioural evidence for rhythmic facilitation of perceptual discrimination. Eur J Neurosci 2022; 55:3352-3364. [PMID: 33772897 PMCID: PMC9540985 DOI: 10.1111/ejn.15208] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
It has been hypothesized that internal oscillations can synchronize (i.e., entrain) to external environmental rhythms, thereby facilitating perception and behaviour. To date, evidence for the link between the phase of neural oscillations and behaviour has been scarce and contradictory; moreover, it remains an open question whether the brain can use this tentative mechanism for active temporal prediction. In our present study, we conducted a series of auditory pitch discrimination tasks with 181 healthy participants in an effort to shed light on the proposed behavioural benefits of rhythmic cueing and entrainment. In the three versions of our task, we observed no perceptual benefit of purported entrainment: targets occurring in-phase with a rhythmic cue provided no perceptual benefits in terms of discrimination accuracy or reaction time when compared with targets occurring out-of-phase or targets occurring randomly, nor did we find performance differences for targets preceded by rhythmic versus random cues. However, we found a surprising effect of cueing frequency on reaction time, in which participants showed faster responses to cue rhythms presented at higher frequencies. We therefore provide no evidence of entrainment, but instead a tentative effect of covert active sensing in which a faster external rhythm leads to a faster communication rate between motor and sensory cortices, allowing for sensory inputs to be sampled earlier in time.
Collapse
Affiliation(s)
- Wy Ming Lin
- Graduate Training Centre of NeuroscienceUniversity of TübingenTübingenGermany,Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Djamari A. Oetringer
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Iske Bakker‐Marshall
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Jill Emmerzaal
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Anna Wilsch
- Department of PsychologyNew York UniversityNew YorkNYUSA
| | - Hesham A. ElShafei
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Elie Rassi
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - Saskia Haegens
- Donders Institute for Brain, Cognition, and BehaviourRadboud UniversityNijmegenThe Netherlands,Department of PsychiatryColumbia UniversityNew YorkNYUSA,Division of Systems NeuroscienceNew York State Psychiatric InstituteNew YorkNYUSA
| |
Collapse
|
16
|
Jones A, Ward EV, Csiszer EL, Szymczak J. Temporal Expectation Improves Recognition Memory for Spatially Attended Objects. J Cogn Neurosci 2022; 34:1616-1629. [PMID: 35604350 DOI: 10.1162/jocn_a_01872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Recent evidence suggests that temporal expectation is beneficial to memory formation. Rhythmic presentation of stimuli during encoding enhances subsequent recognition and is associated with distinct neural activity compared with when stimuli are presented in an arrhythmic manner. However, no prior study has examined how temporal expectation interacts with another important form of facilitation-spatial attention-to affect memory. This study systematically manipulated temporal expectation and spatial attention during encoding to examine their combined effect on behavioral recognition and associated ERPs. Participants performed eight experimental blocks consisting of an encoding phase and recognition test, with EEG recorded throughout. During encoding, pairs of objects and checkerboards were presented and participants were cued to attend to the left or right stream and detect targets as quickly as possible. In four blocks, stimulus presentation followed a rhythmic (constant, predictable) temporal structure, and in the other four blocks, stimulus onset was arrhythmic (random, unpredictable). An interaction between temporal expectation and spatial attention emerged, with greater recognition in the rhythmic than the arrhythmic condition for spatially attended items. Analysis of memory-specific ERP components uncovered effects of spatial attention. There were late positive component and FN400 old/new effects in the attended condition for both rhythmic and arrhythmic items, whereas in the unattended condition, there was an FN400 old/new effect and no late positive component effect. The study provides new evidence that memory improvement as a function of temporal expectation is dependent upon spatial attention.
Collapse
Affiliation(s)
| | - Emma V Ward
- Middlesex University, London, United Kingdom
| | | | | |
Collapse
|
17
|
Context dependency of time-based event-related expectations for different modalities. PSYCHOLOGICAL RESEARCH 2021; 86:1239-1251. [PMID: 34319439 PMCID: PMC9090878 DOI: 10.1007/s00426-021-01564-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 07/19/2021] [Indexed: 11/15/2022]
Abstract
Expectations about the temporal occurrence of events (when) are often tied with the expectations about certain event-related properties (what and where) happening at these time points. For instance, slowly waking up in the morning we expect our alarm clock to go off; however, the longer we do not hear it the more likely we already missed it. However, most current evidence for complex time-based event-related expectations (TBEEs) is based on the visual modality. Here we tested whether implicit TBEEs can act cross-modally. To this end, visual and auditory stimulus streams were presented which contained early and late targets embedded among distractors (to maximise temporal target uncertainty). Foreperiod-modality-contingencies were manipulated run-wise: visual targets either occurred early in 80% of trials and auditory targets occurred late in 80% of trials or vice versa. Participants showed increased sensitivity for expected auditory early/visual late targets which increased over time while the opposite pattern was observed for visual early/auditory late targets. A benefit in reaction times was only found for auditory early trials. Together, this pattern of results suggests that implicit context-dependent TBEEs for auditory targets after short foreperiods (be they correct or not) dominated and determined which modality became more expected at the late position irrespective of the veridical statistical regularity. Hence, TBEEs in cross-modal and uncertain environments are context-dependent, shaped by the dominant modality in temporal tasks (i.e., auditory) and only boost performance cross-modally when expectations about the event after the short foreperiod match with the run-wise context (i.e., auditory early/visual late).
Collapse
|
18
|
Schneider D, Herbst SK, Klatt LI, Wöstmann M. Target enhancement or distractor suppression? Functionally distinct alpha oscillations form the basis of attention. Eur J Neurosci 2021; 55:3256-3265. [PMID: 33973310 DOI: 10.1111/ejn.15309] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/07/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022]
Abstract
Recent advances in attention research have been propelled by the debate on target enhancement versus distractor suppression. A predominant neural correlate of attention is the modulation of alpha oscillatory power (~10 Hz), which signifies shifts of attention in time, space and between sensory modalities. However, the underspecified functional role of alpha oscillations limits the progress of tracking down the neurocognitive basis of attention. In this short opinion article, we review and critically examine a synthesis of three conceptual and methodological aspects that are indispensable for a mechanistic understanding of the role of alpha oscillations for attention. (a) Precise mapping of the anatomical source and the temporal response profile of neural signals reveals distinct alpha oscillatory processes that implement facilitatory versus suppressive components of attention. (b) A testable framework enables unanimous association of alpha modulation with either target enhancement or different forms of distractor suppression (active vs. automatic). (c) Linking anatomically specified alpha oscillations to behavior reveals the causal nature of alpha oscillations for attention. The three reviewed aspects substantially enrich study design, data analysis and interpretation of results to achieve the goal of understanding how anatomically specified and functionally relevant neural oscillations contribute to the implementation of facilitatory versus suppressive components of attention.
Collapse
Affiliation(s)
- Daniel Schneider
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Sophie K Herbst
- NeuroSpin, CEA, DRF/Joliot, INSERM, Cognitive Neuroimaging Unit, Université Paris-Saclay, 91191Gif/Yvette, France
| | - Laura-Isabelle Klatt
- Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Lübeck, Germany.,Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
19
|
Doelling KB, Assaneo MF. Neural oscillations are a start toward understanding brain activity rather than the end. PLoS Biol 2021; 19:e3001234. [PMID: 33945528 PMCID: PMC8121326 DOI: 10.1371/journal.pbio.3001234] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2021] [Indexed: 11/18/2022] Open
Abstract
Does rhythmic neural activity merely echo the rhythmic features of the environment, or does it reflect a fundamental computational mechanism of the brain? This debate has generated a series of clever experimental studies attempting to find an answer. Here, we argue that the field has been obstructed by predictions of oscillators that are based more on intuition rather than biophysical models compatible with the observed phenomena. What follows is a series of cautionary examples that serve as reminders to ground our hypotheses in well-developed theories of oscillatory behavior put forth by theoretical study of dynamical systems. Ultimately, our hope is that this exercise will push the field to concern itself less with the vague question of "oscillation or not" and more with specific biophysical models that can be readily tested.
Collapse
Affiliation(s)
| | - M. Florencia Assaneo
- Instituto de Neurobiología, Universidad Autónoma de México Santiago de Querétaro, México
| |
Collapse
|
20
|
Balasubramaniam R, Haegens S, Jazayeri M, Merchant H, Sternad D, Song JH. Neural Encoding and Representation of Time for Sensorimotor Control and Learning. J Neurosci 2021; 41:866-872. [PMID: 33380468 PMCID: PMC7880297 DOI: 10.1523/jneurosci.1652-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/10/2020] [Accepted: 11/12/2020] [Indexed: 11/21/2022] Open
Abstract
The ability to perceive and produce movements in the real world with precise timing is critical for survival in animals, including humans. However, research on sensorimotor timing has rarely considered the tight interrelation between perception, action, and cognition. In this review, we present new evidence from behavioral, computational, and neural studies in humans and nonhuman primates, suggesting a pivotal link between sensorimotor control and temporal processing, as well as describing new theoretical frameworks regarding timing in perception and action. We first discuss the link between movement coordination and interval-based timing by addressing how motor training develops accurate spatiotemporal patterns in behavior and influences the perception of temporal intervals. We then discuss how motor expertise results from establishing task-relevant neural manifolds in sensorimotor cortical areas and how the geometry and dynamics of these manifolds help reduce timing variability. We also highlight how neural dynamics in sensorimotor areas are involved in beat-based timing. These lines of research aim to extend our understanding of how timing arises from and contributes to perceptual-motor behaviors in complex environments to seamlessly interact with other cognitive processes.
Collapse
Affiliation(s)
| | | | | | - Hugo Merchant
- Instituto de Neurobiologia, UNAM, campus Juriquilla, Querétaro, México 76230
| | | | | |
Collapse
|
21
|
Delta/Theta band EEG activity shapes the rhythmic perceptual sampling of auditory scenes. Sci Rep 2021; 11:2370. [PMID: 33504860 PMCID: PMC7840678 DOI: 10.1038/s41598-021-82008-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/13/2021] [Indexed: 11/08/2022] Open
Abstract
Many studies speak in favor of a rhythmic mode of listening, by which the encoding of acoustic information is structured by rhythmic neural processes at the time scale of about 1 to 4 Hz. Indeed, psychophysical data suggest that humans sample acoustic information in extended soundscapes not uniformly, but weigh the evidence at different moments for their perceptual decision at the time scale of about 2 Hz. We here test the critical prediction that such rhythmic perceptual sampling is directly related to the state of ongoing brain activity prior to the stimulus. Human participants judged the direction of frequency sweeps in 1.2 s long soundscapes while their EEG was recorded. We computed the perceptual weights attributed to different epochs within these soundscapes contingent on the phase or power of pre-stimulus EEG activity. This revealed a direct link between 4 Hz EEG phase and power prior to the stimulus and the phase of the rhythmic component of these perceptual weights. Hence, the temporal pattern by which the acoustic information is sampled over time for behavior is directly related to pre-stimulus brain activity in the delta/theta band. These results close a gap in the mechanistic picture linking ongoing delta band activity with their role in shaping the segmentation and perceptual influence of subsequent acoustic information.
Collapse
|
22
|
Wöstmann M, Maess B, Obleser J. Orienting auditory attention in time: Lateralized alpha power reflects spatio-temporal filtering. Neuroimage 2020; 228:117711. [PMID: 33385562 PMCID: PMC7903158 DOI: 10.1016/j.neuroimage.2020.117711] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/30/2022] Open
Abstract
The deployment of neural alpha (8–12 Hz) lateralization in service of spatial attention is well-established: Alpha power increases in the cortical hemisphere ipsilateral to the attended hemifield, and decreases in the contralateral hemisphere, respectively. Much less is known about humans’ ability to deploy such alpha lateralization in time, and to thus exploit alpha power as a spatio-temporal filter. Here we show that spatially lateralized alpha power does signify – beyond the direction of spatial attention – the distribution of attention in time and thereby qualifies as a spatio-temporal attentional filter. Participants (N = 20) selectively listened to spoken numbers presented on one side (left vs right), while competing numbers were presented on the other side. Key to our hypothesis, temporal foreknowledge was manipulated via a visual cue, which was either instructive and indicated the to-be-probed number position (70% valid) or neutral. Temporal foreknowledge did guide participants’ attention, as they recognized numbers from the to-be-attended side more accurately following valid cues. In the magnetoencephalogram (MEG), spatial attention to the left versus right side induced lateralization of alpha power in all temporal cueing conditions. Modulation of alpha lateralization at the 0.8 Hz presentation rate of spoken numbers was stronger following instructive compared to neutral temporal cues. Critically, we found stronger modulation of lateralized alpha power specifically at the onsets of temporally cued numbers. These results suggest that the precisely timed hemispheric lateralization of alpha power qualifies as a spatio-temporal attentional filter mechanism susceptible to top-down behavioural goals.
Collapse
Affiliation(s)
- Malte Wöstmann
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany.
| | - Burkhard Maess
- Max-Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism (CBBM), University of Lübeck, Lübeck, Germany
| |
Collapse
|
23
|
Haegens S. Entrainment revisited: a commentary on. LANGUAGE, COGNITION AND NEUROSCIENCE 2020; 35:1119-1123. [PMID: 33718510 PMCID: PMC7954236 DOI: 10.1080/23273798.2020.1758335] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 04/14/2020] [Indexed: 06/12/2023]
Affiliation(s)
- Saskia Haegens
- Department of Psychiatry, Division of Systems Neuroscience, Columbia University and the Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands
| |
Collapse
|