1
|
Todorović S, Anton JL, Sein J, Nazarian B, Chanoine V, Rauchbauer B, Kotz SA, Runnqvist E. Cortico-Cerebellar Monitoring of Speech Sequence Production. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2024; 5:701-721. [PMID: 39175789 PMCID: PMC11338302 DOI: 10.1162/nol_a_00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/27/2023] [Indexed: 08/24/2024]
Abstract
In a functional magnetic resonance imaging study, we examined speech error monitoring in a cortico-cerebellar network for two contrasts: (a) correct trials with high versus low articulatory error probability and (b) overtly committed errors versus correct trials. Engagement of the cognitive cerebellar region Crus I in both contrasts suggests that this region is involved in overarching performance monitoring. The activation of cerebellar motor regions (superior medial cerebellum, lobules VI and VIII) indicates the additional presence of a sensorimotor driven implementation of control. The combined pattern of pre-supplementary motor area (active across contrasts) and anterior cingulate cortex (only active in the contrast involving overt errors) activations suggests sensorimotor driven feedback monitoring in the medial frontal cortex, making use of proprioception and auditory feedback through overt errors. Differential temporal and parietal cortex activation across contrasts indicates involvement beyond sensorimotor driven feedback in line with speech production models that link these regions to auditory target processing and internal modeling-like mechanisms. These results highlight the presence of multiple, possibly hierarchically interdependent, mechanisms that support the optimizing of speech production.
Collapse
Affiliation(s)
- Snežana Todorović
- Laboratoire Parole et Langage, CNRS–Aix-Marseille Université, Aix-en-Provence, France
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Jean-Luc Anton
- Centre IRM, Marseille, France
- INT, CNRS–Aix-Marseille Université, Marseille, France
| | - Julien Sein
- Centre IRM, Marseille, France
- INT, CNRS–Aix-Marseille Université, Marseille, France
| | - Bruno Nazarian
- Centre IRM, Marseille, France
- INT, CNRS–Aix-Marseille Université, Marseille, France
| | - Valérie Chanoine
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Birgit Rauchbauer
- Laboratoire Parole et Langage, CNRS–Aix-Marseille Université, Aix-en-Provence, France
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| | - Sonja A. Kotz
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht, The Netherlands
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Elin Runnqvist
- Laboratoire Parole et Langage, CNRS–Aix-Marseille Université, Aix-en-Provence, France
- Institute of Language, Communication and the Brain, Aix-en-Provence, France
| |
Collapse
|
2
|
Martin KC, DeMarco AT, Dyslin SM, Turkeltaub PE. Rapid auditory and phonemic processing relies on the left planum temporale. RESEARCH SQUARE 2024:rs.3.rs-4189759. [PMID: 38645022 PMCID: PMC11030499 DOI: 10.21203/rs.3.rs-4189759/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
After initial bilateral acoustic processing of the speech signal, much of the subsequent language processing is left-lateralized. The reason for this lateralization remains an open question. Prevailing hypotheses describe a left hemisphere (LH) advantage for rapidly unfolding information-such as the segmental (e.g., phonetic and phonemic) components of speech. Here we investigated whether and where damage to the LH predicted impaired performance on judging the directionality of frequency modulated (FM) sweep stimuli that changed within short (25ms) or longer (250ms) temporal windows. Performance was significantly lower for stroke survivors (n = 50; 18 female) than controls (n = 61; 34 female) on FM Sweeps judgments, particularly on the short sweeps. Support vector regression lesion-symptom mapping (SVR-LSM) revealed that part of the left planum temporale (PT) was related to worse performance on judging the short FM sweeps, controlling for performance on the long sweeps. We then investigated whether damage to this particular area related to diminished performance on two levels of linguistic processing that theoretically depend on rapid auditory processing: stop consonant identification and pseudoword repetition. We separated stroke participants into subgroups based on whether their LH lesion included the part of the left PT that related to diminished short sweeps judgments. Participants with PT lesions (PT lesion+, n = 24) performed significantly worse than those without (PT lesion-, n = 26) on stop consonant identification and pseudoword repetition, controlling for lesion size and hearing ability. Interestingly, PT lesions impacted pseudoword repetition more than real word repetition (PT lesion-by-repetition trial type interaction), which is of interest because pseudowords rely solely on sound perception and sequencing, whereas words can also rely on lexical-semantic knowledge. We conclude that the left PT is a critical region for processing auditory information in short temporal windows, and it may also be an essential transfer point in auditory-to-linguistic processing.
Collapse
Affiliation(s)
| | - Andrew T DeMarco
- Georgetown University Medical Center, MedStar National Rehabilitation Hospital
| | | | - Peter E Turkeltaub
- Georgetown University Medical Center, MedStar National Rehabilitation Hospital
| |
Collapse
|