1
|
Maliia MD, Köksal-Ersöz E, Benard A, Calas T, Nica A, Denoyer Y, Yochum M, Wendling F, Benquet P. Localization of the epileptogenic network from scalp EEG using a patient-specific whole-brain model. Netw Neurosci 2025; 9:18-37. [PMID: 40161993 PMCID: PMC11949544 DOI: 10.1162/netn_a_00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/27/2024] [Indexed: 04/02/2025] Open
Abstract
Computational modeling is a key tool for elucidating the neuronal mechanisms underlying epileptic activity. Despite considerable progress, existing models often lack realistic accuracy in representing electrophysiological epileptic activity. In this study, we used a comprehensive human brain model based on a neural mass model, which is tailored to the layered structure of the neocortex and incorporates patient-specific imaging data. This approach allowed the simulation of scalp EEGs in an epileptic patient suffering from type 2 focal cortical dysplasia (FCD). The simulation specifically addressed epileptic activity induced by FCD, faithfully reproducing intracranial interictal epileptiform discharges (IEDs) recorded with electrocorticography. For constructing the patient-specific scalp EEG, we carefully defined a clear delineation of the epileptogenic zone by numerical simulations to ensure fidelity to the topography, polarity, and diffusion characteristics of IEDs. This nuanced approach improves the accuracy of the simulated EEG signal, provides a more accurate representation of epileptic activity, and enhances our understanding of the mechanism behind the epileptogenic networks. The accuracy of the model was confirmed by a postoperative reevaluation with a secondary EEG simulation that was consistent with the lesion's removal. Ultimately, this personalized approach may prove instrumental in optimizing and tailoring epilepsy treatment strategies.
Collapse
Affiliation(s)
- Mihai Dragos Maliia
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
- “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
| | | | - Adrien Benard
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
- “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
| | - Tristan Calas
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | - Anca Nica
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
- “Van Gogh” Epilepsy Surgery Unit, Neurology Department, CIC 1414, University Hospital, Rennes, France
| | - Yves Denoyer
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
- Neurology Department, Lorient Hospital, Lorient, France
| | - Maxime Yochum
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| | | | - Pascal Benquet
- University of Rennes, INSERM, LTSI-U1099, Rennes, France
| |
Collapse
|
2
|
Boerwinkle VL, Gunnarsdottir KM, Sussman BL, Wyckoff SN, Cediel EG, Robinson B, Reuther WR, Kodali A, Sarma SV. Combining interictal intracranial EEG and fMRI to compute a dynamic resting-state index for surgical outcome validation. FRONTIERS IN NETWORK PHYSIOLOGY 2025; 4:1491967. [PMID: 39936165 PMCID: PMC11811083 DOI: 10.3389/fnetp.2024.1491967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025]
Abstract
Introduction Accurate localization of the seizure onset zone (SOZ) is critical for successful epilepsy surgery but remains challenging with current techniques. We developed a novel seizure onset network characterization tool that combines dynamic biomarkers of resting-state intracranial stereoelectroencephalography (rs-iEEG) and resting-state functional magnetic resonance imaging (rs-fMRI), vetted against surgical outcomes. This approach aims to reduce reliance on capturing seizures during invasive monitoring to pinpoint the SOZ. Methods We computed the source-sink index (SSI) from rs-iEEG for all implanted regions and from rs-fMRI for regions identified as potential SOZs by noninvasive modalities. The SSI scores were evaluated in 17 pediatric drug-resistant epilepsy (DRE) patients (ages 3-15 years) by comparing outcomes classified as successful (Engel I or II) versus unsuccessful (Engel III or IV) at 1 year post-surgery. Results Of 30 reviewed patients, 17 met the inclusion criteria. The combined dynamic index (im-DNM) integrating rs-iEEG and rs-fMRI significantly differentiated good (Engel I-II) from poor (Engel III-IV) surgical outcomes, outperforming the predictive accuracy of individual biomarkers from either modality alone. Conclusion The combined dynamic network model demonstrated superior predictive performance than standalone rs-fMRI or rs-iEEG indices. Significance By leveraging interictal data from two complementary modalities, this combined approach has the potential to improve epilepsy surgical outcomes, increase surgical candidacy, and reduce the duration of invasive monitoring.
Collapse
Affiliation(s)
- Varina L. Boerwinkle
- Division of Child Neurology, University of North Carolina in Chapel Hill, Chapel Hill, NC, United States
| | | | - Bethany L. Sussman
- Neuroscience Research, Barrow Neurological Institute at Phoenix Children’s Hospital, Phoenix, AZ, United States
| | | | - Emilio G. Cediel
- Division of Child Neurology, University of North Carolina in Chapel Hill, Chapel Hill, NC, United States
| | - Belfin Robinson
- Division of Child Neurology, University of North Carolina in Chapel Hill, Chapel Hill, NC, United States
| | - William R. Reuther
- Division of Child Neurology, University of North Carolina in Chapel Hill, Chapel Hill, NC, United States
| | - Aryan Kodali
- Division of Child Neurology, University of North Carolina in Chapel Hill, Chapel Hill, NC, United States
| | - Sridevi V. Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
Chen M, Guo K, Lu K, Meng K, Lu J, Pang Y, Zhang L, Hu Y, Yu R, Zhang R. Localizing the seizure onset zone and predicting the surgery outcomes in patients with drug-resistant epilepsy: A new approach based on the causal network. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 258:108483. [PMID: 39536406 DOI: 10.1016/j.cmpb.2024.108483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND OBJECTIVE Accurate localization of the seizure onset zone (SOZ) is crucial for surgical treatment in patients with drug-resistant epilepsy (DRE). However, clinical identification of SOZ often relies on physician experience and has a certain subjectivity. Therefore, it is emergent to develop quantitative computational tools to assist clinicians in identifying SOZ. METHODS We conduct a retrospective study on intracranial electroencephalography (iEEG) data from 46 patients with DRE. The interactions between different brain regions are quantified by using the phase transfer entropy (PTE), based on which the causal influence index (CII) is proposed to quantify the degree of influence of nodes on the network. Subsequently, the features extracted by the CII are used to construct a random forest classification model, which the performance in identifying SOZ and the generalizability are validated in patients with successful surgeries. Then, based on the CII features of the clinically labeled SOZ, a logistic regression prediction model is constructed to predict the probability of surgical success. The statistical analysis between patients with successful and failed surgery is conducted with the Mann-Whitney U test. Finally, the consistency between the predicted SOZ and the clinically labeled SOZ is verified across different Engel classes. RESULTS The classification model combining the low-frequency and high-frequency features can achieve an accuracy of 82.18% (sensitivity: 85.01%, specificity: 79.69%) and an area under curve (AUC) of 0.90 in identifying SOZ. Furthermore, the model exhibits strong generalizability in identifying SOZ in patients with MRI lesional and non-lesional, as well as those implanted with electrocorticography (ECOG) and stereotactic EEG (SEEG) electrodes. Moreover, the prediction model could achieve an average accuracy of 79.8% and an AUC of 0.84. Of note, the prediction of surgical success probability is significant between patients with successful and failed surgeries (P<0.001). Correspondingly, the highest consistency between model-predicted SOZ and clinically labeled SOZ can be observed in patients with successful surgeries, but this consistency gradually decreases with increasing Engel classes. CONCLUSIONS These results demonstrate that the CII may be a potential biomarker for identifying the SOZ in patients with DRE, which may provide a new perspective for the treatment of epilepsy.
Collapse
Affiliation(s)
- Mingming Chen
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Kunlin Guo
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Kai Lu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Kunying Meng
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Junfeng Lu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yajing Pang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Lipeng Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Yuxia Hu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China
| | - Renping Yu
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Rui Zhang
- Henan Key Laboratory of Brain Science and Brain-Computer Interface Technology, School of Electrical and Information Engineering, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| |
Collapse
|
4
|
Raghavan M, Pilet J, Carlson C, Anderson CT, Mueller W, Lew S, Ustine C, Shah-Basak P, Youssofzadeh V, Beardsley SA. Gamma amplitude-envelope correlations are strongly elevated within hyperexcitable networks in focal epilepsy. Sci Rep 2024; 14:17736. [PMID: 39085280 PMCID: PMC11291981 DOI: 10.1038/s41598-024-67120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Methods to quantify cortical hyperexcitability are of enormous interest for mapping epileptic networks in patients with focal epilepsy. We hypothesize that, in the resting state, cortical hyperexcitability increases firing-rate correlations between neuronal populations within seizure onset zones (SOZs). This hypothesis predicts that in the gamma frequency band (40-200 Hz), amplitude envelope correlations (AECs), a relatively straightforward measure of functional connectivity, should be elevated within SOZs compared to other areas. To test this prediction, we analyzed archived samples of interictal electrocorticographic (ECoG) signals recorded from patients who became seizure-free after surgery targeting SOZs identified by multiday intracranial recordings. We show that in the gamma band, AECs between nodes within SOZs are markedly elevated relative to those elsewhere. AEC-based node strength, eigencentrality, and clustering coefficient are also robustly increased within the SOZ with maxima in the low-gamma band (permutation test Z-scores > 8) and yield moderate discriminability of the SOZ using ROC analysis (maximal mean AUC ~ 0.73). By contrast to AECs, phase locking values (PLVs), a measure of narrow-band phase coupling across sites, and PLV-based graph metrics discriminate the seizure onset nodes weakly. Our results suggest that gamma band AECs may provide a clinically useful marker of cortical hyperexcitability in focal epilepsy.
Collapse
Affiliation(s)
- Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Jared Pilet
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Wade Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sean Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Candida Ustine
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Priyanka Shah-Basak
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vahab Youssofzadeh
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
5
|
Sadoun MSN, Laleg-Kirati TM. Seizure Onset Zone Localization in Focal Epilepsy using stereo-EEG: SCSA and Visibility Graph complementary features. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-7. [PMID: 40039514 DOI: 10.1109/embc53108.2024.10782524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Despite how limiting the symptoms of Epilepsy are in daily life, over a third of epileptic conditions are drug-resistant. These seizures stem from a specific region of the brain: the Seizure Onset Zone (SOZ). The available treatment options include surgical resection or neurostimulation of the SOZ and both options require its accurate localization. In this scope, we aim to analyse stereo-electroencephalograph (s-EEG) data from a feature engineering perspective to propose reliable computer-aided SOZ localization algorithms. This paper investigates Semi-Classical Signal Analysis (SCSA) and Visibility Graphs (VG) features and establishes their complementarity. The study considers brain -scale signals simulated through the Epileptor model using The Virtual Brain (TVB). Results have been undeniably satisfactory and a valid contribution to Seizure Onset Zone localization.Clinical relevance- The paper contributes to the design of frameworks for assisting medical experts in Seizure Onset Zone localization in focal epilepsy.
Collapse
|
6
|
Karimi-Rouzbahani H, McGonigal A. Generalisability of epileptiform patterns across time and patients. Sci Rep 2024; 14:6293. [PMID: 38491096 PMCID: PMC10942983 DOI: 10.1038/s41598-024-56990-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024] Open
Abstract
The complexity of localising the epileptogenic zone (EZ) contributes to surgical resection failures in achieving seizure freedom. The distinct patterns of epileptiform activity during interictal and ictal phases, varying across patients, often lead to suboptimal localisation using electroencephalography (EEG) features. We posed two key questions: whether neural signals reflecting epileptogenicity generalise from interictal to ictal time windows within each patient, and whether epileptiform patterns generalise across patients. Utilising an intracranial EEG dataset from 55 patients, we extracted a large battery of simple to complex features from stereo-EEG (SEEG) and electrocorticographic (ECoG) neural signals during interictal and ictal windows. Our features (n = 34) quantified many aspects of the signals including statistical moments, complexities, frequency-domain and cross-channel network attributes. Decision tree classifiers were then trained and tested on distinct time windows and patients to evaluate the generalisability of epileptogenic patterns across time and patients, respectively. Evidence strongly supported generalisability from interictal to ictal time windows across patients, particularly in signal power and high-frequency network-based features. Consistent patterns of epileptogenicity were observed across time windows within most patients, and signal features of epileptogenic regions generalised across patients, with higher generalisability in the ictal window. Signal complexity features were particularly contributory in cross-patient generalisation across patients. These findings offer insights into generalisable features of epileptic neural activity across time and patients, with implications for future automated approaches to supplement other EZ localisation methods.
Collapse
Affiliation(s)
- Hamid Karimi-Rouzbahani
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia.
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia.
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia.
| | - Aileen McGonigal
- Neurosciences Centre, Mater Hospital, South Brisbane, 4101, Australia
- Mater Research Institute, University of Queensland, South Brisbane, 4101, Australia
- Queensland Brain Institute, University of Queensland, St Lucia, 4072, Australia
| |
Collapse
|
7
|
Sun L, Feng C, Zhang E, Chen H, Jin W, Zhu J, Yu L. High-performance prediction of epilepsy surgical outcomes based on the genetic neural networks and hybrid iEEG marker. Sci Rep 2024; 14:6198. [PMID: 38486013 PMCID: PMC10940588 DOI: 10.1038/s41598-024-56827-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Accurately identification of the seizure onset zone (SOZ) is pivotal for successful surgery in patients with medically refractory epilepsy. The purpose of this study is to improve the performance of model predicting the epilepsy surgery outcomes using genetic neural network (GNN) model based on a hybrid intracranial electroencephalography (iEEG) marker. We extracted 21 SOZ related markers based on iEEG data from 79 epilepsy patients. The least absolute shrinkage and selection operator (LASSO) regression was employed to integrated seven markers, selected after testing in pairs with all 21 biomarkers and 7 machine learning models, into a hybrid marker. Based on the hybrid marker, we devised a GNN model and compared its predictive performance for surgical outcomes with six other mainstream machine-learning models. Compared to the mainstream models, underpinning the GNN with the hybrid iEEG marker resulted in a better prediction of surgical outcomes, showing a significant increase of the prediction accuracy from approximately 87% to 94.3% (P = 0.0412). This study suggests that the hybrid iEEG marker can improve the performance of model predicting the epilepsy surgical outcomes, and validates the effectiveness of the GNN in characterizing and analyzing complex relationships between clinical data variables.
Collapse
Affiliation(s)
- Lipeng Sun
- Second Clinical Medical School, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chen Feng
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- School of Medicine, Epilepsy Center, Second Affiliated Hospital, Zhejiang University, Hangzhou, China
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, China
| | - En Zhang
- IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
- State Key Laboratory of Cognitive Neuroscience and Learning, Faculty of Psychology, Beijing Normal University, Beijing, China
| | - Huan Chen
- Department of Physical and Environmental Sciences, University of Toronto, Toronto, Canada
| | - Weifeng Jin
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, China
| | - Junming Zhu
- Department of Neurosurgery, School of Medicine, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
- School of Medicine, Epilepsy Center, Second Affiliated Hospital, Zhejiang University, Hangzhou, China.
| | - Li Yu
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China.
- Key Laboratory of Drug Safety Evaluation and Research of Zhejiang Province, Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
8
|
Lainscsek C, Salami P, Carvalho VR, Mendes EMAM, Fan M, Cash SS, Sejnowski TJ. Network-motif delay differential analysis of brain activity during seizures. CHAOS (WOODBURY, N.Y.) 2023; 33:123136. [PMID: 38156987 PMCID: PMC10757649 DOI: 10.1063/5.0165904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 11/28/2023] [Indexed: 01/03/2024]
Abstract
Delay Differential Analysis (DDA) is a nonlinear method for analyzing time series based on principles from nonlinear dynamical systems. DDA is extended here to incorporate network aspects to improve the dynamical characterization of complex systems. To demonstrate its effectiveness, DDA with network capabilities was first applied to the well-known Rössler system under different parameter regimes and noise conditions. Network-motif DDA, based on cortical regions, was then applied to invasive intracranial electroencephalographic data from drug-resistant epilepsy patients undergoing presurgical monitoring. The directional network motifs between brain areas that emerge from this analysis change dramatically before, during, and after seizures. Neural systems provide a rich source of complex data, arising from varying internal states generated by network interactions.
Collapse
Affiliation(s)
| | - Pariya Salami
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | - Eduardo M. A. M. Mendes
- Laboratório de Modelagem, Análise e Controle de Sistemas Não Lineares, Universidade Federal de Minas Gerais, Av. Antônio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil
| | - Miaolin Fan
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | - Sydney S. Cash
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA
| | | |
Collapse
|
9
|
Ramantani G, Westover MB, Gliske S, Sarnthein J, Sarma S, Wang Y, Baud MO, Stacey WC, Conrad EC. Passive and active markers of cortical excitability in epilepsy. Epilepsia 2023; 64 Suppl 3:S25-S36. [PMID: 36897228 PMCID: PMC10512778 DOI: 10.1111/epi.17578] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/11/2023]
Abstract
Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice.
Collapse
Affiliation(s)
- Georgia Ramantani
- Department of Neuropediatrics and Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - M Brandon Westover
- Department of Neurology, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Department of Data Science, Massachusetts General Hospital McCance Center for Brain Health, Boston, Massachusetts, USA
- Research Affiliate Faculty, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Research Affiliate Faculty, Broad Institute, Cambridge, Massachusetts, USA
| | - Stephen Gliske
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Johannes Sarnthein
- Department of Neurosurgery, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Sridevi Sarma
- Department of Biomedical Engineering, Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Yujiang Wang
- Interdisciplinary Computing and Complex BioSystems, School of Computing Science, Newcastle University, Newcastle Upon Tyne, UK
| | - Maxime O Baud
- Sleep-Wake-Epilepsy Center, NeuroTec, Center for Experimental Neurology, Department of Neurology, Inselspital Bern, University Hospital, University of Bern, Bern, Switzerland
| | - William C Stacey
- Department of Neurology, BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, BioInterfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
- Division of Neurology, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| | - Erin C Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Li Z, Zhang H, Niu S, Xing Y. Localizing epileptogenic zones with high-frequency oscillations and directed connectivity. Seizure 2023; 111:9-16. [PMID: 37487273 DOI: 10.1016/j.seizure.2023.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023] Open
Abstract
PURPOSE Precise localization of the epileptogenic zone (EZ) is essential for epilepsy surgery. Existing methods often fail to detect slow onset patterns or similar neural activities presented in the recorded signals. To address this issue, we propose a new measure to quantify epileptogenicity, i.e., the connectivity high-frequency epileptogenicity index (cHFEI). METHODS The cHFEI method combines directed connectivity and high-frequency oscillations (HFOs) to measure the epileptogenicity of regions involved in a brain network. By applying this method to stereoelectroencephalography (SEEG) recordings of 49 seizures in 20 patients, we calculated the accuracy, sensitivity, and precision with a visually identified epileptogenic zone as a reference. The performance was evaluated by the confusion matrix and the area under the receiver operating characteristic (ROC) curve. RESULTS Epileptic network estimation based on cHFEI successfully distinguished brain regions involved in seizure onset from the propagation network. Moreover, cHFEI outperformed other existing detection methods in the estimation of EZs in all patients, with an average area under the ROC curve of 0.88 and an accuracy of 0.85. CONCLUSIONS cHFEI can characterize EZ in a robust manner despite various seizure onset patterns and has potential application in epilepsy therapy.
Collapse
Affiliation(s)
- Zhaohui Li
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China; Hebei Key Laboratory of information transmission and signal processing, Yanshan University, Qinhuangdao 066004, China.
| | - Hao Zhang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Shipeng Niu
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Yanyu Xing
- School of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
11
|
Bernabei JM, Li A, Revell AY, Smith RJ, Gunnarsdottir KM, Ong IZ, Davis KA, Sinha N, Sarma S, Litt B. Quantitative approaches to guide epilepsy surgery from intracranial EEG. Brain 2023; 146:2248-2258. [PMID: 36623936 PMCID: PMC10232272 DOI: 10.1093/brain/awad007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/11/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Over the past 10 years, the drive to improve outcomes from epilepsy surgery has stimulated widespread interest in methods to quantitatively guide epilepsy surgery from intracranial EEG (iEEG). Many patients fail to achieve seizure freedom, in part due to the challenges in subjective iEEG interpretation. To address this clinical need, quantitative iEEG analytics have been developed using a variety of approaches, spanning studies of seizures, interictal periods, and their transitions, and encompass a range of techniques including electrographic signal analysis, dynamical systems modeling, machine learning and graph theory. Unfortunately, many methods fail to generalize to new data and are sensitive to differences in pathology and electrode placement. Here, we critically review selected literature on computational methods of identifying the epileptogenic zone from iEEG. We highlight shared methodological challenges common to many studies in this field and propose ways that they can be addressed. One fundamental common pitfall is a lack of open-source, high-quality data, which we specifically address by sharing a centralized high-quality, well-annotated, multicentre dataset consisting of >100 patients to support larger and more rigorous studies. Ultimately, we provide a road map to help these tools reach clinical trials and hope to improve the lives of future patients.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adam Li
- Department of Computer Science, Columbia University, New York, NY 10027, USA
| | - Andrew Y Revell
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Rachel J Smith
- Department of Electrical and Computer Engineering, University of Alabama at Birmingham, Birmingham, AL 35294, USA
- Neuroengineering Program, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kristin M Gunnarsdottir
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Ian Z Ong
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nishant Sinha
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sridevi Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering & Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Wang A, Fan Z, Zhang Y, Wang J, Zhang X, Wang P, Mu W, Zhan G, Wang M, Zhang L, Gan Z, Kang X. Resting-state SEEG-based brain network analysis for the detection of epileptic area. J Neurosci Methods 2023; 390:109839. [PMID: 36933706 DOI: 10.1016/j.jneumeth.2023.109839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/18/2023]
Abstract
BACKGROUND Most epilepsy research is based on interictal or ictal functional connectivity. However, prolonged electrode implantation may affect patients' health and the accuracy of epileptic zone identification. Brief resting-state SEEG recordings reduce the observation of epileptic discharges by reducing electrode implantation and other seizure-inducing interventions. NEW METHOD The location coordinates of SEEG in the brain were identified using CT and MRI. Based on undirected brain network connectivity, five functional connectivity measures and data feature vector centrality were calculated. Network connectivity was calculated from multiple perspectives of linear correlation, information theory, phase, and frequency, and the relative influence of nodes on network connectivity was considered. We investigated the potential value of resting-state SEEG for epileptic zone identification by comparing the differences between epileptic and non-epileptic zones, as well as the differences between patients with different surgical outcomes. RESULTS By comparing the centrality of brain network connectivity between epileptic and non-epileptic zones, we found significant differences in the distribution of brain networks between the two zones. There was a significant difference in brain network between patients with good surgical outcomes and those with poor surgical outcomes (p < 0.01). By combining support vector machines with static node importance, we predicted an AUC of 0.94 ± 0.08 for the epilepsy zone. CONCLUSIONS AND SIGNIFICANCE The results illustrated that nodes in epileptic zones are distinct from those in non-epileptic zones. Analysis of resting-state SEEG data and the importance of nodes in the brain network may contribute to identifying the epileptic zone and predicting the outcome.
Collapse
Affiliation(s)
- Aiping Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Zhen Fan
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Yuan Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Junkongshuai Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Xueze Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Pengchao Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Wei Mu
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Gege Zhan
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Minjie Wang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China
| | - Lihua Zhang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China; Ji Hua Laboratory, 28 Island Ring South Rd., Foshan City 528200, China
| | - Zhongxue Gan
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China; Ji Hua Laboratory, 28 Island Ring South Rd., Foshan City 528200, China
| | - Xiaoyang Kang
- Laboratory for Neural Interface and Brain Computer Interface, Engineering Research Center of AI & Robotics, Ministry of Education, Shanghai Engineering Research Center of AI & Robotics, MOE Frontiers Center for Brain Science, State Key Laboratory of Medical Neurobiology, Institute of AI and Robotics, Academy for Engineering & Technology, Fudan University, 200433 Shanghai, China; Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000 Zhejiang, China; Ji Hua Laboratory, 28 Island Ring South Rd., Foshan City 528200, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou 311100, China.
| |
Collapse
|
13
|
Currey D, Craley J, Hsu D, Ahmed R, Venkataraman A. EPViz: A flexible and lightweight visualizer to facilitate predictive modeling for multi-channel EEG. PLoS One 2023; 18:e0282268. [PMID: 36848345 PMCID: PMC9970073 DOI: 10.1371/journal.pone.0282268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/11/2023] [Indexed: 03/01/2023] Open
Abstract
Scalp Electroencephalography (EEG) is one of the most popular noninvasive modalities for studying real-time neural phenomena. While traditional EEG studies have focused on identifying group-level statistical effects, the rise of machine learning has prompted a shift in computational neuroscience towards spatio-temporal predictive analyses. We introduce a novel open-source viewer, the EEG Prediction Visualizer (EPViz), to aid researchers in developing, validating, and reporting their predictive modeling outputs. EPViz is a lightweight and standalone software package developed in Python. Beyond viewing and manipulating the EEG data, EPViz allows researchers to load a PyTorch deep learning model, apply it to EEG features, and overlay the output channel-wise or subject-level temporal predictions on top of the original time series. These results can be saved as high-resolution images for use in manuscripts and presentations. EPViz also provides valuable tools for clinician-scientists, including spectrum visualization, computation of basic data statistics, and annotation editing. Finally, we have included a built-in EDF anonymization module to facilitate sharing of clinical data. Taken together, EPViz fills a much needed gap in EEG visualization. Our user-friendly interface and rich collection of features may also help to promote collaboration between engineers and clinicians.
Collapse
Affiliation(s)
- Danielle Currey
- Department of Computer Science, Johns Hopkins University, Baltimore, MD, United States of America
| | - Jeff Craley
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States of America
| | - David Hsu
- Department of Neurology, University of Wisconsin Madison, Madison, WI, United States of America
| | - Raheel Ahmed
- Department of Neurosurgery, University of Wisconsin Madison, Madison, WI, United States of America
| | - Archana Venkataraman
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, United States of America
- Department of Electrical and Computer Engineering, Boston University, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
14
|
Gunnarsdottir KM, Li A, Smith RJ, Kang JY, Korzeniewska A, Crone NE, Rouse AG, Cheng JJ, Kinsman MJ, Landazuri P, Uysal U, Ulloa CM, Cameron N, Cajigas I, Jagid J, Kanner A, Elarjani T, Bicchi MM, Inati S, Zaghloul KA, Boerwinkle VL, Wyckoff S, Barot N, Gonzalez-Martinez J, Sarma SV. Source-sink connectivity: a novel interictal EEG marker for seizure localization. Brain 2022; 145:3901-3915. [PMID: 36412516 PMCID: PMC10200292 DOI: 10.1093/brain/awac300] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 07/05/2022] [Accepted: 08/01/2022] [Indexed: 07/26/2023] Open
Abstract
Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.
Collapse
Affiliation(s)
| | - Adam Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Rachel J Smith
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Joon-Yi Kang
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Anna Korzeniewska
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Nathan E Crone
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Adam G Rouse
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jennifer J Cheng
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Michael J Kinsman
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Patrick Landazuri
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Utku Uysal
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Carol M Ulloa
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nathaniel Cameron
- Department of Neurosurgery, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jonathan Jagid
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Andres Kanner
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Turki Elarjani
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Manuel Melo Bicchi
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sara Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Varina L Boerwinkle
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Sarah Wyckoff
- Barrow Neurological Institute, Phoenix Children’s Hospital, Phoenix, AZ 85016, USA
| | - Niravkumar Barot
- Department of Neurology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
15
|
Al-Bakri AF, Martinek R, Pelc M, Zygarlicki J, Kawala-Sterniuk A. Implementation of a Morphological Filter for Removing Spikes from the Epileptic Brain Signals to Improve Identification Ripples. SENSORS (BASEL, SWITZERLAND) 2022; 22:7522. [PMID: 36236621 PMCID: PMC9571066 DOI: 10.3390/s22197522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Epilepsy is a very common disease affecting at least 1% of the population, comprising a number of over 50 million people. As many patients suffer from the drug-resistant version, the number of potential treatment methods is very small. However, since not only the treatment of epilepsy, but also its proper diagnosis or observation of brain signals from recordings are important research areas, in this paper, we address this very problem by developing a reliable technique for removing spikes and sharp transients from the baseline of the brain signal using a morphological filter. This allows much more precise identification of the so-called epileptic zone, which can then be resected, which is one of the methods of epilepsy treatment. We used eight patients with 5 KHz data set and depended upon the Staba 2002 algorithm as a reference to detect the ripples. We found that the average sensitivity and false detection rate of our technique are significant, and they are ∼94% and ∼14%, respectively.
Collapse
Affiliation(s)
- Amir F. Al-Bakri
- Department of Biomedical Engineering, College of Engineering, University of Babylon, Hillah 51001, Iraq
| | - Radek Martinek
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
- Department of Cybernetics and Biomedical Engineering, VSB-Technical University Ostrava—FEECS, 708 00 Ostrava–Poruba, Czech Republic
| | - Mariusz Pelc
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
- School of Computing and Mathematical Sciences, University of Greenwich, Park Row, London SE10 9LS, UK
| | - Jarosław Zygarlicki
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
| | - Aleksandra Kawala-Sterniuk
- Faculty of Electrical Engineering, Automatic Control and Informatics, Opole University of Technology, 45-758 Opole, Poland
| |
Collapse
|
16
|
Servilha-Menezes G, Garcia-Cairasco N. A complex systems view on the current hypotheses of epilepsy pharmacoresistance. Epilepsia Open 2022; 7 Suppl 1:S8-S22. [PMID: 35253410 PMCID: PMC9340300 DOI: 10.1002/epi4.12588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/11/2022] Open
Abstract
Drug-resistant epilepsy remains to this day as a highly prevalent condition affecting around one-third of patients with epilepsy, despite all the research and the development of several new antiseizure medications (ASMs) over the last decades. Epilepsies are multifactorial complex diseases, commonly associated with psychiatric, neurological, and somatic comorbidities. Thus, to solve the puzzling problem of pharmacoresistance, the diagnosis and modeling of epilepsy and comorbidities need to change toward a complex system approach. In this review, we have summarized the sequence of events for the definition of epilepsies and comorbidities, the search for mechanisms, and the major hypotheses of pharmacoresistance, drawing attention to some of the many converging aspects between the proposed mechanisms, their supporting evidence, and comorbidities-related alterations. The use of systems biology applied to epileptology may lead to the discovery of new targets and the development of new ASMs, as may advance our understanding of the epilepsies and their comorbidities, providing much deeper insight on multidrug pharmacoresistance.
Collapse
Affiliation(s)
- Gabriel Servilha-Menezes
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| | - Norberto Garcia-Cairasco
- Department of Physiology, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil.,Department of Neurosciences and Behavioral Sciences, Ribeirão Preto Medical School, University of São Paulo (FMRP-SP), Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Bernabei JM, Sinha N, Arnold TC, Conrad E, Ong I, Pattnaik AR, Stein JM, Shinohara RT, Lucas TH, Bassett DS, Davis KA, Litt B. Normative intracranial EEG maps epileptogenic tissues in focal epilepsy. Brain 2022; 145:1949-1961. [PMID: 35640886 PMCID: PMC9630716 DOI: 10.1093/brain/awab480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 11/14/2021] [Accepted: 11/26/2021] [Indexed: 07/25/2023] Open
Abstract
Planning surgery for patients with medically refractory epilepsy often requires recording seizures using intracranial EEG. Quantitative measures derived from interictal intracranial EEG yield potentially appealing biomarkers to guide these surgical procedures; however, their utility is limited by the sparsity of electrode implantation as well as the normal confounds of spatiotemporally varying neural activity and connectivity. We propose that comparing intracranial EEG recordings to a normative atlas of intracranial EEG activity and connectivity can reliably map abnormal regions, identify targets for invasive treatment and increase our understanding of human epilepsy. Merging data from the Penn Epilepsy Center and a public database from the Montreal Neurological Institute, we aggregated interictal intracranial EEG retrospectively across 166 subjects comprising >5000 channels. For each channel, we calculated the normalized spectral power and coherence in each canonical frequency band. We constructed an intracranial EEG atlas by mapping the distribution of each feature across the brain and tested the atlas against data from novel patients by generating a z-score for each channel. We demonstrate that for seizure onset zones within the mesial temporal lobe, measures of connectivity abnormality provide greater distinguishing value than univariate measures of abnormal neural activity. We also find that patients with a longer diagnosis of epilepsy have greater abnormalities in connectivity. By integrating measures of both single-channel activity and inter-regional functional connectivity, we find a better accuracy in predicting the seizure onset zones versus normal brain (area under the curve = 0.77) compared with either group of features alone. We propose that aggregating normative intracranial EEG data across epilepsy centres into a normative atlas provides a rigorous, quantitative method to map epileptic networks and guide invasive therapy. We publicly share our data, infrastructure and methods, and propose an international framework for leveraging big data in surgical planning for refractory epilepsy.
Collapse
Affiliation(s)
- John M Bernabei
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Nishant Sinha
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - T Campbell Arnold
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Erin Conrad
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Ian Ong
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Akash R Pattnaik
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Statistics in Imaging and Visualization Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Santa Fe Institute, Santa Fe, NM 87501, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia PA 19104, USA
- Department of Neurology, Penn Epilepsy Center, Hospital of the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
18
|
Zhang J, Bauman R, Shafiabadi N, Gurski N, Fernandez-BacaVaca G, Sahoo SS. Characterizing Brain Network Dynamics using Persistent Homology in Patients with Refractory Epilepsy. AMIA ... ANNUAL SYMPOSIUM PROCEEDINGS. AMIA SYMPOSIUM 2022; 2021:1244-1253. [PMID: 35308966 PMCID: PMC8861704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Epilepsy is a common serious neurological disorder that affects more than 65 million persons worldwide and it is characterized by repeated seizures that lead to higher mortality and disabilities with corresponding negative impact on the quality of life of patients. Network science methods that represent brain regions as nodes and the interactions between brain regions as edges have been extensively used in characterizing network changes in neurological disorders. However, the limited ability of graph network models to represent high dimensional brain interactions are being increasingly realized in the computational neuroscience community. In particular, recent advances in algebraic topology research have led to the development of a large number of applications in brain network studies using topological structures. In this paper, we build on a fundamental construct of cliques, which are all-to-all connected nodes with a k-clique in a graph G (V, E), where V is set of nodes and E is set of edges, consisting of k-nodes to characterize the brain network dynamics in epilepsy patients using topological structures. Cliques represent brain regions that are coupled for similar functions or engage in information exchange; therefore, cliques are suitable structures to characterize the dynamics of brain dynamics in neurological disorders. We propose to detect and use clique structures during well-defined clinical events, such as epileptic seizures, to combine non-linear correlation measures in a matrix with identification of geometric structures underlying brain connectivity networks to identify discriminating features that can be used for clinical decision making in epilepsy neurological disorder.
Collapse
Affiliation(s)
- Jianzhe Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Roland Bauman
- Department of Mathematics, Case Western Reserve University, Cleveland, OH, USA
| | - Nassim Shafiabadi
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Nick Gurski
- Department of Mathematics, Case Western Reserve University, Cleveland, OH, USA
| | | | - Satya S Sahoo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| |
Collapse
|
19
|
Gunnarsdottir KM, Gonzalez-Martinez J, Wing S, Sarma SV. Sources and Sinks in Interictal iEEG Networks: An iEEG Marker of the Epileptogenic Zone. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6558-6561. [PMID: 34892611 DOI: 10.1109/embc46164.2021.9630035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Around 30% of epilepsy patients have seizures that cannot be controlled with medication. The most effective treatments for medically resistant epilepsy are interventions that surgically remove the epileptogenic zone (EZ), the regions of the brain that initiate seizure activity. A precise identification of the EZ is essential for surgical success but unfortunately, current success rates range from 20-80%. Localization of the EZ requires visual inspection of intracranial EEG (iEEG) recordings during seizure events. The need for seizure occurrence makes the process both costly and time-consuming and in the end, less than 1% of the data captured is used to assist in EZ localization. In this study, we aim to leverage interictal (between seizures) data to localize the EZ. We develop and test the source-sink index as an interictal iEEG marker by identifying two groups of network nodes from a patient's interictal iEEG network: those that inhibit a set of their neighboring nodes ("sources") and the inhibited nodes themselves ("sinks"). Specifically, we i) estimate patient-specific dynamical network models from interictal iEEG data and ii) compute a source-sink index for every network node (iEEG channel) to identify pathological nodes that correspond to the EZ. Our results suggest that in patients with successful surgical outcomes, the source-sink index clearly separates the clinically identified EZ (CA-EZ) channels from other channels whereas in patients with failed outcomes CA-EZ channels cannot be distinguished from the rest of the network.
Collapse
|
20
|
Wing S, Gunnarsdottir KM, Gonzalez-Martinez J, Sarma SV. Transfer Entropy between Intracranial EEG Nodes Highlights Network Dynamics that Cause and Stop Epileptic Seizures. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:6121-6125. [PMID: 34892513 DOI: 10.1109/embc46164.2021.9629793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transfer entropy (TE) is used to examine the connectivity between nodes and the roles of nodes in epileptic neural networks during rest, moments before seizure, during seizure, and moments after seizure. There is a set of nodes that dominate information flow to epileptogenic zone (EZ) nodes, regions that trigger seizure, and non-EZ nodes during rest. The TE from the dominant to the EZ nodes decreases shortly before a seizure event and reaches a minimum during seizure. During the seizure, the dominant nodes cease or only weakly interact with the EZ nodes. This supports the hypothesis that seizure occurs when some nodes stop inhibiting the EZ nodes. The TE from the dominant to the EZ nodes peaks immediately after seizure, suggesting that seizure may stop when the brain exerts the highest level of information flow/activation/communication to the EZ nodes. The information flow from the dominant to EZ nodes is different from that to non-EZ nodes. This TE dynamics entering and exiting seizures may identify more accurately the EZ nodes, which may improve surgical planning.
Collapse
|
21
|
Li A, Huynh C, Fitzgerald Z, Cajigas I, Brusko D, Jagid J, Claudio AO, Kanner AM, Hopp J, Chen S, Haagensen J, Johnson E, Anderson W, Crone N, Inati S, Zaghloul KA, Bulacio J, Gonzalez-Martinez J, Sarma SV. Neural fragility as an EEG marker of the seizure onset zone. Nat Neurosci 2021; 24:1465-1474. [PMID: 34354282 PMCID: PMC8547387 DOI: 10.1038/s41593-021-00901-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 06/30/2021] [Indexed: 02/07/2023]
Abstract
Over 15 million patients with epilepsy worldwide do not respond to drugs. Successful surgical treatment requires complete removal or disconnection of the seizure onset zone (SOZ), brain region(s) where seizures originate. Unfortunately, surgical success rates vary between 30 and 70% because no clinically validated biological marker of the SOZ exists. We develop and retrospectively validate a new electroencephalogram (EEG) marker-neural fragility-in a retrospective analysis of 91 patients by using neural fragility of the annotated SOZ as a metric to predict surgical outcomes. Fragility predicts 43 out of 47 surgical failures, with an overall prediction accuracy of 76% compared with the accuracy of clinicians at 48% (successful outcomes). In failed outcomes, we identify fragile regions that were untreated. When compared to 20 EEG features proposed as SOZ markers, fragility outperformed in predictive power and interpretability, which suggests neural fragility as an EEG biomarker of the SOZ.
Collapse
Affiliation(s)
- Adam Li
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA.
| | - Chester Huynh
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Iahn Cajigas
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Damian Brusko
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jonathan Jagid
- Department of Neurosurgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Angel O Claudio
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Andres M Kanner
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Jennifer Hopp
- Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Stephanie Chen
- Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | | | - Emily Johnson
- Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | - Nathan Crone
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
- Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Sara Inati
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Juan Bulacio
- Epilepsy Center, Cleveland Clinic, Cleveland, OH, USA
| | - Jorge Gonzalez-Martinez
- Neurosurgery and Epilepsy Center, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Sridevi V Sarma
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Institute for Computational Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
22
|
Extensions of Granger Causality Calculations on Brain Networks for Efficient and Accurate Seizure Focus Identification via iEEGs. Brain Sci 2021; 11:brainsci11091167. [PMID: 34573188 PMCID: PMC8471554 DOI: 10.3390/brainsci11091167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 08/25/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Current epilepsy surgery planning protocol determines the seizure onset zone (SOZ) through resource-intensive, invasive monitoring of ictal events. Recently, we have reported that Granger Causality (GC) maps produced from analysis of interictal iEEG recordings have potential in revealing SOZ. In this study, we investigate GC maps’ network connectivity patterns to determine possible clinical correlation with patients’ SOZ and resection zone (RZ). While building understanding of interictal network topography and its relationship to the RZ/SOZ, we identify algorithmic tools with potential applications in epilepsy surgery planning. These graph algorithms are retrospectively tested on data from 25 patients and compared to the neurologist-determined SOZ and surgical RZ, viewed as sources of truth. Centrality algorithms yielded statistically significant RZ rank order sums for 16 of 24 patients with RZ data, representing an improvement from prior algorithms. While SOZ results remained largely the same, this study validates the applicability of graph algorithms to RZ/SOZ detection, opening the door to further exploration of iEEG datasets. Furthermore, this study offers previously inaccessible insights into the relationship between interictal brain connectivity patterns and epileptic brain networks, utilizing the overall topology of the graphs as well as data on edge weights and quantity of edges contained in GC maps.
Collapse
|
23
|
Garcia-Cairasco N, Podolsky-Gondim G, Tejada J. Searching for a paradigm shift in the research on the epilepsies and associated neuropsychiatric comorbidities. From ancient historical knowledge to the challenge of contemporary systems complexity and emergent functions. Epilepsy Behav 2021; 121:107930. [PMID: 33836959 DOI: 10.1016/j.yebeh.2021.107930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 10/21/2022]
Abstract
In this review, we will discuss in four scenarios our challenges to offer possible solutions for the puzzle associated with the epilepsies and neuropsychiatric comorbidities. We need to recognize that (1) since quite old times, human wisdom was linked to the plural (distinct global places/cultures) perception of the Universe we are in, with deep respect for earth and nature. Plural ancestral knowledge was added with the scientific methods; however, their joint efforts are the ideal scenario; (2) human behavior is not different than animal behavior, in essence the product of Darwinian natural selection; knowledge of animal and human behavior are complementary; (3) the expression of human behavior follows the same rules that complex systems with emergent properties, therefore, we can measure events in human, clinical, neurobiological situations with complexity systems' tools; (4) we can use the semiology of epilepsies and comorbidities, their neural substrates, and potential treatments (including experimental/computational modeling, neurosurgical interventions), as a source and collection of integrated big data to predict with them (e.g.: machine/deep learning) diagnosis/prognosis, individualized solutions (precision medicine), basic underlying mechanisms and molecular targets. Once the group of symptoms/signals (with a myriad of changing definitions and interpretations over time) and their specific sequences are determined, in epileptology research and clinical settings, the use of modern and contemporary techniques such as neuroanatomical maps, surface electroencephalogram and stereoelectroencephalography (SEEG) and imaging (MRI, BOLD, DTI, SPECT/PET), neuropsychological testing, among others, are auxiliary in the determination of the best electroclinical hypothesis, and help design a specific treatment, usually as the first attempt, with available pharmacological resources. On top of ancient knowledge, currently known and potentially new antiepileptic drugs, alternative treatments and mechanisms are usually produced as a consequence of the hard, multidisciplinary, and integrated studies of clinicians, surgeons, and basic scientists, all over the world. The existence of pharmacoresistant patients, calls for search of other solutions, being along the decades the surgeries the most common interventions, such as resective procedures (i.e., selective or standard lobectomy, lesionectomy), callosotomy, hemispherectomy and hemispherotomy, added by vagus nerve stimulation (VNS), deep brain stimulation (DBS), neuromodulation, and more recently focal minimal or noninvasive ablation. What is critical when we consider the pharmacoresistance aspect with the potential solution through surgery, is still the pursuit of localization-dependent regions (e.g.: epileptogenic zone (EZ)), in order to decide, no matter how sophisticated are the brain mapping tools (EEG and MRI), the size and location of the tissue to be removed. Mimicking the semiology and studying potential neural mechanisms and molecular targets - by means of experimental and computational modeling - are fundamental steps of the whole process. Concluding, with the conjunction of ancient knowledge, coupled to critical and creative contemporary, scientific (not dogmatic) clinical/surgical, and experimental/computational contributions, a better world and of improved quality of life can be offered to the people with epilepsy and neuropsychiatric comorbidities, who are still waiting (as well as the scientists) for a paradigm shift in epileptology, both in the Basic Science, Computational, Clinical, and Neurosurgical Arenas. This article is part of the Special Issue "NEWroscience 2018".
Collapse
Affiliation(s)
- Norberto Garcia-Cairasco
- Laboratório de Neurofisiologia e Neuroetologia Experimental, Departmento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto. Brazil; Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Guilherme Podolsky-Gondim
- Departamento de Neurociências e Ciências do Comportamento, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil.
| | - Julian Tejada
- Departamento de Psicologia, Universidade Federal de Sergipe, Brazil.
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Epilepsy surgery is the therapy of choice for 30-40% of people with focal drug-resistant epilepsy. Currently only ∼60% of well selected patients become postsurgically seizure-free underlining the need for better tools to identify the epileptogenic zone. This article reviews the latest neurophysiological advances for EZ localization with emphasis on ictal EZ identification, interictal EZ markers, and noninvasive neurophysiological mapping procedures. RECENT FINDINGS We will review methods for computerized EZ assessment, summarize computational network approaches for outcome prediction and individualized surgical planning. We will discuss electrical stimulation as an option to reduce the time needed for presurgical work-up. We will summarize recent research regarding high-frequency oscillations, connectivity measures, and combinations of multiple markers using machine learning. This latter was shown to outperform single markers. The role of NREM sleep for best identification of the EZ interictally will be discussed. We will summarize recent large-scale studies using electrical or magnetic source imaging for clinical decision-making. SUMMARY New approaches based on technical advancements paired with artificial intelligence are on the horizon for better EZ identification. They are ultimately expected to result in a more efficient, less invasive, and less time-demanding presurgical investigation.
Collapse
|
25
|
Greene P, Li A, González-Martínez J, Sarma SV. Classification of Stereo-EEG Contacts in White Matter vs. Gray Matter Using Recorded Activity. Front Neurol 2021; 11:605696. [PMID: 33488500 PMCID: PMC7815703 DOI: 10.3389/fneur.2020.605696] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 12/04/2020] [Indexed: 11/23/2022] Open
Abstract
For epileptic patients requiring resective surgery, a modality called stereo-electroencephalography (SEEG) may be used to monitor the patient's brain signals to help identify epileptogenic regions that generate and propagate seizures. SEEG involves the insertion of multiple depth electrodes into the patient's brain, each with 10 or more recording contacts along its length. However, a significant fraction (≈ 30% or more) of the contacts typically reside in white matter or other areas of the brain which can not be epileptogenic themselves. Thus, an important step in the analysis of SEEG recordings is distinguishing between electrode contacts which reside in gray matter vs. those that do not. MRI images overlaid with CT scans are currently used for this task, but they take significant amounts of time to manually annotate, and even then it may be difficult to determine the status of some contacts. In this paper we present a fast, automated method for classifying contacts in gray vs. white matter based only on the recorded signal and relative contact depth. We observe that bipolar referenced contacts in white matter have less power in all frequencies below 150 Hz than contacts in gray matter, which we use in a Bayesian classifier to attain an average area under the receiver operating characteristic curve of 0.85 ± 0.079 (SD) across 29 patients. Because our method gives a probability for each contact rather than a hard labeling, and uses a feature of the recorded signal that has direct clinical relevance, it can be useful to supplement decision-making on difficult to classify contacts or as a rapid, first-pass filter when choosing subsets of contacts from which to save recordings.
Collapse
Affiliation(s)
- Patrick Greene
- Neuromedical Control Systems Lab, Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Adam Li
- Neuromedical Control Systems Lab, Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | | | - Sridevi V. Sarma
- Neuromedical Control Systems Lab, Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
26
|
Demuru M, Zweiphenning W, van Blooijs D, Van Eijsden P, Leijten F, Zijlmans M, Kalitzin S. Validation of virtual resection on intraoperative interictal data acquired during epilepsy surgery. J Neural Eng 2020; 17. [PMID: 33086212 DOI: 10.1088/1741-2552/abc3a8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 10/21/2020] [Indexed: 11/11/2022]
Abstract
OBJECTIVE A 'Virtual resection' consists of computationally simulating the effect of an actual resection on the brain. We validated two functional connectivity based virtual resection methods with the actual connectivity measured using post-resection intraoperative recordings. METHODS A non-linear association index was applied to pre-resection recordings from 11 extra-temporal focal epilepsy patients. We computed two virtual resection strategies: first, a 'naive' one obtained by simply removing from the connectivity matrix the electrodes that were resected; second, a virtual resection with partialization accounting for the influence of resected electrodes on not-resected electrodes. We validated the virtual resections with two analysis: 1) We tested with a Kolmogorov-Smirnov test if the distributions of connectivity values after the virtual resections differed from the actual post-resection connectivity distribution; 2) we tested if the overall effect of the resection measured by contrasting pre-resection and post-resection connectivity values is detectable with the virtual resection approach using a Kolmogorv-Smirnov test. RESULTS The estimation of post-resection connectivity values did not succeed for both methods. In the second analysis, the naive method failed completely to detect the effect found between pre-resection and post-resection connectivity distributions, while the partialization method agreed with post-resection measurements in detecting a drop connectivity compared to pre-resection recordings. CONCLUSION Our findings suggest that the partialization technique is superior to the naive method in detecting the overall effect after the resection. SIGNIFICANCE We pointed out how a realistic validation based on actual post-resection recordings reveals that virtual resection methods are not yet mature to inform the clinical decision-making.
Collapse
Affiliation(s)
- Matteo Demuru
- Research, SEIN, Hoofddorp, Noord-Holland, NETHERLANDS
| | - Willemiek Zweiphenning
- Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, Utrecht, NETHERLANDS
| | - Dorien van Blooijs
- Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, Utrecht, NETHERLANDS
| | - Pieter Van Eijsden
- Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, Utrecht, NETHERLANDS
| | - Frans Leijten
- Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, Utrecht, NETHERLANDS
| | - Maeike Zijlmans
- Neurology and Neurosurgery, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, Utrecht, NETHERLANDS
| | | |
Collapse
|
27
|
Ehrens D, Li A, Aeed F, Schiller Y, Sarma SV. Network Fragility for Seizure Genesis in an Acute in vivo Model of Epilepsy. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3695-3698. [PMID: 33018803 DOI: 10.1109/embc44109.2020.9175959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Epilepsy affects over 50 million people worldwide and 30% of patients' seizures are medically refractory. The process of localizing and removing the epileptogenic zone is error-prone and ill-posed in part because we do not understand how epilepsy manifests. It has recently been proposed that the epileptic cortex is fragile in the sense that seizures manifest through small perturbations in the synaptic connections that render the entire cortical network unstable. If the fragility of the cortical network could be computed over a period in which seizure genesis occurs, then it might elucidate network mechanisms correlated to the epileptogenic zone. In this study, we used local field potentials (LFP) from neocortex by implementing an acute model of epilepsy in mice. These recordings were used to develop a dynamical network model that quantifies the fragility of the nodes from LFP epochs of baseline activity, preictal and ictal states. Fragility was quantified by the generation of a linear time-varying model to which we then applied a perturbation to determine the sensitivity of nodes in the network. Spatiotemporal fragility maps showed clear quantifiable changes in the epileptogenic network's properties throughout different states of seizure genesis. We quantified this difference over a baseline, preictal and ictal periods to show that network fragility is modulated in the manifestation of epilepsy.
Collapse
|
28
|
Shah P, Bernabei JM, Kini LG, Ashourvan A, Boccanfuso J, Archer R, Oechsel K, Das SR, Stein JM, Lucas TH, Bassett DS, Davis KA, Litt B. High interictal connectivity within the resection zone is associated with favorable post-surgical outcomes in focal epilepsy patients. NEUROIMAGE-CLINICAL 2019; 23:101908. [PMID: 31491812 PMCID: PMC6617333 DOI: 10.1016/j.nicl.2019.101908] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/13/2019] [Accepted: 06/17/2019] [Indexed: 01/21/2023]
Abstract
Patients with drug-resistant focal epilepsy are often candidates for invasive surgical therapies. In these patients, it is necessary to accurately localize seizure generators to ensure seizure freedom following intervention. While intracranial electroencephalography (iEEG) is the gold standard for mapping networks for surgery, this approach requires inducing and recording seizures, which may cause patient morbidity. The goal of this study is to evaluate the utility of mapping interictal (non-seizure) iEEG networks to identify targets for surgical treatment. We analyze interictal iEEG recordings and neuroimaging from 27 focal epilepsy patients treated via surgical resection. We generate interictal functional networks by calculating pairwise correlation of iEEG signals across different frequency bands. Using image coregistration and segmentation, we identify electrodes falling within surgically resected tissue (i.e. the resection zone), and compute node-level and edge-level synchrony in relation to the resection zone. We further associate these metrics with post-surgical outcomes. Greater overlap between resected electrodes and highly synchronous electrodes is associated with favorable post-surgical outcomes. Additionally, good-outcome patients have significantly higher connectivity localized within the resection zone compared to those with poorer postoperative seizure control. This finding persists following normalization by a spatially-constrained null model. This study suggests that spatially-informed interictal network synchrony measures can distinguish between good and poor post-surgical outcomes. By capturing clinically-relevant information during interictal periods, our method may ultimately reduce the need for prolonged invasive implants and provide insights into the pathophysiology of an epileptic brain. We discuss next steps for translating these findings into a prospectively useful clinical tool. We analyze interictal iEEG recordings and neuroimaging from epilepsy patients We find that high interictal strength selectivity is associated with better outcomes This effect appears to be driven largely by connectivity within the resection zone Interictal recordings can guide identification of seizure-generating networks
Collapse
Affiliation(s)
- Preya Shah
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - John M Bernabei
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lohith G Kini
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arian Ashourvan
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jacqueline Boccanfuso
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ryan Archer
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Oechsel
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sandhitsu R Das
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joel M Stein
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy H Lucas
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danielle S Bassett
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Electrical & Systems Engineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Physics & Astronomy, College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn A Davis
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brian Litt
- Department of Bioengineering, School of Engineering & Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
29
|
Ren S, Gliske SV, Brang D, Stacey WC. Redaction of false high frequency oscillations due to muscle artifact improves specificity to epileptic tissue. Clin Neurophysiol 2019; 130:976-985. [PMID: 31003116 DOI: 10.1016/j.clinph.2019.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 03/04/2019] [Accepted: 03/16/2019] [Indexed: 11/17/2022]
Abstract
OBJECTIVE High Frequency Oscillations (HFOs) are a promising biomarker of epilepsy. HFOs are typically acquired on intracranial electrodes, but contamination from muscle artifacts is still problematic in HFO analysis. This paper evaluates the effect of myogenic artifacts on intracranial HFO detection and how to remove them. METHODS Intracranial EEG was recorded in 31 patients. HFOs were detected for the entire recording using an automated algorithm. When available, simultaneous scalp EEG was used to identify periods of muscle artifact. Those markings were used to train an automated scalp EMG detector and an intracranial EMG detector. Specificity to epileptic tissue was evaluated by comparison with seizure onset zone and resected volume in patients with good outcome. RESULTS EMG artifacts are frequent and produce large numbers of false HFOs, especially in the anterior temporal lobe. The scalp and intracranial EMG detectors both had high accuracy. Removing false HFOs improved specificity to epileptic tissue. CONCLUSIONS Evaluation of HFOs requires accounting for the effect of muscle artifact. We present two tools that effectively mitigate the effect of muscle artifact on HFOs. SIGNIFICANCE Removing muscle artifacts improves the specificity of HFOs to epileptic tissue. Future HFO work should account for this effect, especially when using automated algorithms or when scalp electrodes are not present.
Collapse
Affiliation(s)
- Sijin Ren
- Department of Neurology, University of Michigan, USA.
| | - Stephen V Gliske
- Department of Neurology, University of Michigan, USA; Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, USA.
| | - David Brang
- Department of Psychology, University of Michigan, USA.
| | - William C Stacey
- Department of Neurology, University of Michigan, USA; Department of Biomedical Engineering, Biointerfaces Institute, University of Michigan, USA.
| |
Collapse
|
30
|
Li A, Chennuri B, Subramanian S, Yaffe R, Gliske S, Stacey W, Norton R, Jordan A, Zaghloul KA, Inati SK, Agrawal S, Haagensen JJ, Hopp J, Atallah C, Johnson E, Crone N, Anderson WS, Fitzgerald Z, Bulacio J, Gale JT, Sarma SV, Gonzalez-Martinez J. Using network analysis to localize the epileptogenic zone from invasive EEG recordings in intractable focal epilepsy. Netw Neurosci 2018; 2:218-240. [PMID: 30215034 PMCID: PMC6130438 DOI: 10.1162/netn_a_00043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 01/09/2018] [Indexed: 01/22/2023] Open
Abstract
Treatment of medically intractable focal epilepsy (MIFE) by surgical resection of the epileptogenic zone (EZ) is often effective provided the EZ can be reliably identified. Even with the use of invasive recordings, the clinical differentiation between the EZ and normal brain areas can be quite challenging, mainly in patients without MRI detectable lesions. Consequently, despite relatively large brain regions being removed, surgical success rates barely reach 60–65%. Such variable and unfavorable outcomes associated with high morbidity rates are often caused by imprecise and/or inaccurate EZ localization. We developed a localization algorithm that uses network-based data analytics to process invasive EEG recordings. This network algorithm analyzes the centrality signatures of every contact electrode within the recording network and characterizes contacts into susceptible EZ based on the centrality trends over time. The algorithm was tested in a retrospective study that included 42 patients from four epilepsy centers. Our algorithm had higher agreement with EZ regions identified by clinicians for patients with successful surgical outcomes and less agreement for patients with failed outcomes. These findings suggest that network analytics and a network systems perspective of epilepsy may be useful in assisting clinicians in more accurately localizing the EZ. Epilepsy is a disease that results in abnormal firing patterns in parts of the brain that comprise the epileptogenic network, known as the epileptogenic zone (EZ). Current methods to localize the EZ for surgical treatment often require observations of hundreds of thousands of EEG data points measured from many electrodes implanted in a patient’s brain. In this paper, we used network science to show that EZ regions may exhibit specific network signatures before, during, and after seizure events. Our algorithm computes the likelihood of each electrode being in the EZ and tends to agree more with clinicians during successful resections and less during failed surgeries. These results suggest that a networked analysis approach to EZ localization may be valuable in a clinical setting.
Collapse
Affiliation(s)
- Adam Li
- Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Bhaskar Chennuri
- Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Sandya Subramanian
- Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Robert Yaffe
- Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | | | | | | - Austin Jordan
- Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Sara K Inati
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | - Shubhi Agrawal
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA
| | | | - Jennifer Hopp
- Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Chalita Atallah
- Neurology, University of Maryland Medical Center, Baltimore, MD, USA
| | - Emily Johnson
- Neurology, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Nathan Crone
- Neurosurgery, Johns Hopkins Hospital, Baltimore, MD, USA
| | | | | | - Juan Bulacio
- Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - John T Gale
- Neurosurgery, Cleveland Clinic, Cleveland, OH, USA
| | - Sridevi V Sarma
- Institute for Computational Medicine, Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | | |
Collapse
|
31
|
Abstract
Connectomics is an integral part of network neuroscience. The field has undergone rapid expansion over recent years and increasingly involves a blend of experimental and computational approaches to brain connectivity. This Focus Feature on “New Trends in Connectomics” aims to track the progress of the field and its many applications across different neurobiological systems and species.
Collapse
Affiliation(s)
- Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Danielle S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|