1
|
Lucas HD, Daugherty AM, McAuley E, Kramer AF, Cohen NJ. Dynamic interactions between memory and viewing behaviors: Insights from dyadic modeling of eye movements. J Exp Psychol Hum Percept Perform 2023; 49:786-801. [PMID: 37166935 PMCID: PMC10621599 DOI: 10.1037/xhp0001123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Humans use eye movements to build visual memories. We investigated how the contributions of specific viewing behaviors to memory formation evolve over individual study epochs. We used dyadic modeling to explain performance on a spatial reconstruction task based on interactions among two gaze measures: (a) the entropy of the scanpath and (b) the frequency of item-to-item gaze transitions. To measure these interactions, our hypothesized model included causal pathways by which early-trial viewing behaviors impacted subsequent memory via downstream effects on later viewing. We found that lower scanpath entropy throughout the trial predicted better memory performance. By contrast, the effect of item-to-item transition frequency changed from negative to positive as the trial progressed. The model also revealed multiple pathways by which early-trial viewing dynamically altered late-trial viewing, thereby impacting memory indirectly. Finally, individual differences in scores on an independent measure of memory ability were found to predict viewing effectiveness, and viewing behaviors partially mediated the relation between memory ability and reconstruction accuracy. In a second experiment, the model showed a good fit for an independent dataset. These results highlight the dynamic nature of memory formation and suggest that the order in which eye movements occur can critically determine their effectiveness. (PsycInfo Database Record (c) 2023 APA, all rights reserved).
Collapse
Affiliation(s)
- Heather D. Lucas
- Department of Psychology, Louisiana State University, Baton Rouge, LA, 70803, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ana M. Daugherty
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI, 48202, USA
| | - Edward McAuley
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Arthur F. Kramer
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, 02115, USA
| | - Neal J. Cohen
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, 61820, USA
| |
Collapse
|
2
|
"Look at the future": Maintained fixation impoverishes future thinking. Conscious Cogn 2022; 105:103398. [PMID: 36037730 DOI: 10.1016/j.concog.2022.103398] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/24/2022] [Accepted: 08/09/2022] [Indexed: 01/27/2023]
Abstract
We evaluated the relationship between eye movements and future thinking. More specifically, we evaluated whether maintained fixation could influence cognitive characteristics of future thinking. We invited participants to imagine future events in two conditions: while freely exploring a white wall and while fixating a cross on the wall. Results demonstrated fewer and longer fixations, as well as fewer and shorter saccades during maintained fixation condition than in the free gaze condition. Shorter total amplitude of saccades was also observed during the maintained fixation condition than during the free-gaze condition. Regarding the cognitive characteristics of future thinking, fewer spatiotemporal details and less visual imagery, slower retrieval time, and shorter descriptions were observed for future thinking during maintained fixation than during free-gaze condition. These results demonstrate that maintaining fixation results in an effortful construction of future scenarios. We suggest that maintained fixation limits the cognitive resources that are required for future thinking.
Collapse
|
3
|
Unrestricted eye movements strengthen effective connectivity from hippocampal to oculomotor regions during scene construction. Neuroimage 2022; 260:119497. [PMID: 35870699 DOI: 10.1016/j.neuroimage.2022.119497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 07/01/2022] [Accepted: 07/19/2022] [Indexed: 11/22/2022] Open
Abstract
Scene construction is a key component of memory recall, navigation, and future imagining, and relies on the medial temporal lobes (MTL). A parallel body of work suggests that eye movements may enable the imagination and construction of scenes, even in the absence of external visual input. There are vast structural and functional connections between regions of the MTL and those of the oculomotor system. However, the directionality of connections between the MTL and oculomotor control regions, and how it relates to scene construction, has not been studied directly in human neuroimaging. In the current study, we used dynamic causal modeling (DCM) to interrogate effective connectivity between the MTL and oculomotor regions using a scene construction task in which participants' eye movements were either restricted (fixed-viewing) or unrestricted (free-viewing). By omitting external visual input, and by contrasting free- versus fixed- viewing, the directionality of neural connectivity during scene construction could be determined. As opposed to when eye movements were restricted, allowing free-viewing during construction of scenes strengthened top-down connections from the MTL to the frontal eye fields, and to lower-level cortical visual processing regions, suppressed bottom-up connections along the visual stream, and enhanced vividness of the constructed scenes. Taken together, these findings provide novel, non-invasive evidence for the underlying, directional, connectivity between the MTL memory system and oculomotor system associated with constructing vivid mental representations of scenes.
Collapse
|
4
|
Mazloum-Farzaghi N, Shing N, Mendoza L, Barense MD, Ryan JD, Olsen RK. The impact of aging and repetition on eye movements and recognition memory. AGING, NEUROPSYCHOLOGY, AND COGNITION 2022; 30:402-428. [PMID: 35189778 DOI: 10.1080/13825585.2022.2039587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The modulation of gaze fixations on neural activity in the hippocampus, a region critical for memory, has been shown to be weaker in older adults compared to younger adults. However, as such research has relied on indirect measures of memory, it remains unclear whether the relationship between visual exploration and direct measures of memory is similarly disrupted in aging. The current study tested older and younger adults on a face memory eye-tracking task previously used by our group that showed that recognition memory for faces presented across variable, but not fixed, viewpoints relies on a hippocampal-dependent binding function. Here, we examined how aging influences eye movement measures that reveal the amount (cumulative sampling) and extent (distribution of gaze fixations) of visual exploration. We also examined how aging influences direct (subsequent conscious recognition) and indirect (eye movement repetition effect) expressions of memory. No age differences were found in direct recognition regardless of facial viewpoint. However, the eye movement measures revealed key group differences. Compared to younger adults, older adults exhibited more cumulative sampling, a different distribution of fixations, and a larger repetition effect. Moreover, there was a positive relationship between cumulative sampling and direct recognition in younger adults, but not older adults. Neither age group showed a relationship between the repetition effect and direct recognition. Thus, despite similar direct recognition, age-related differences were observed in visual exploration and in an indirect eye-movement memory measure, suggesting that the two groups may acquire, retain, and use different facial information to guide recognition.
Collapse
Affiliation(s)
- Negar Mazloum-Farzaghi
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Nathanael Shing
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Leanne Mendoza
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Morgan D. Barense
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Jennifer D. Ryan
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| | - Rosanna K. Olsen
- Department of Psychology, University of Toronto, Toronto, ON, Canada
- The Rotman Research Institute, Baycrest Hospital, Toronto, ON, Canada
| |
Collapse
|
5
|
Kragel JE, Voss JL. Looking for the neural basis of memory. Trends Cogn Sci 2022; 26:53-65. [PMID: 34836769 PMCID: PMC8678329 DOI: 10.1016/j.tics.2021.10.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 10/14/2021] [Accepted: 10/15/2021] [Indexed: 01/03/2023]
Abstract
Memory neuroscientists often measure neural activity during task trials designed to recruit specific memory processes. Behavior is championed as crucial for deciphering brain-memory linkages but is impoverished in typical experiments that rely on summary judgments. We criticize this approach as being blind to the multiple cognitive, neural, and behavioral processes that occur rapidly within a trial to support memory. Instead, time-resolved behaviors such as eye movements occur at the speed of cognition and neural activity. We highlight successes using eye-movement tracking with in vivo electrophysiology to link rapid hippocampal oscillations to encoding and retrieval processes that interact over hundreds of milliseconds. This approach will improve research on the neural basis of memory because it pinpoints discrete moments of brain-behavior-cognition correspondence.
Collapse
Affiliation(s)
- James E Kragel
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA.
| | - Joel L Voss
- Department of Neurology, The University of Chicago, 5841 South Maryland Avenue, Chicago, IL 60637, USA
| |
Collapse
|
6
|
Wynn JS, Liu ZX, Ryan JD. Neural Correlates of Subsequent Memory-Related Gaze Reinstatement. J Cogn Neurosci 2021; 34:1547-1562. [PMID: 34272959 DOI: 10.1162/jocn_a_01761] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Mounting evidence linking gaze reinstatement-the recapitulation of encoding-related gaze patterns during retrieval-to behavioral measures of memory suggests that eye movements play an important role in mnemonic processing. Yet, the nature of the gaze scanpath, including its informational content and neural correlates, has remained in question. In this study, we examined eye movement and neural data from a recognition memory task to further elucidate the behavioral and neural bases of functional gaze reinstatement. Consistent with previous work, gaze reinstatement during retrieval of freely viewed scene images was greater than chance and predictive of recognition memory performance. Gaze reinstatement was also associated with viewing of informationally salient image regions at encoding, suggesting that scanpaths may encode and contain high-level scene content. At the brain level, gaze reinstatement was predicted by encoding-related activity in the occipital pole and BG, neural regions associated with visual processing and oculomotor control. Finally, cross-voxel brain pattern similarity analysis revealed overlapping subsequent memory and subsequent gaze reinstatement modulation effects in the parahippocampal place area and hippocampus, in addition to the occipital pole and BG. Together, these findings suggest that encoding-related activity in brain regions associated with scene processing, oculomotor control, and memory supports the formation, and subsequent recapitulation, of functional scanpaths. More broadly, these findings lend support to scanpath theory's assertion that eye movements both encode, and are themselves embedded in, mnemonic representations.
Collapse
Affiliation(s)
| | | | - Jennifer D Ryan
- Rotman Research Institute at Baycrest Health Sciences.,University of Toronto
| |
Collapse
|
7
|
Conti F, Irish M. Harnessing Visual Imagery and Oculomotor Behaviour to Understand Prospection. Trends Cogn Sci 2021; 25:272-283. [PMID: 33618981 DOI: 10.1016/j.tics.2021.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/20/2022]
Abstract
Much of the rich internal world constructed by humans is derived from, and experienced through, visual mental imagery. Despite growing appreciation of visual exploration in guiding episodic memory processes, extant theories of prospection have yet to accommodate the precise role of visual mental imagery in the service of future-oriented thinking. We propose that the construction of future events relies on the assimilation of perceptual details originally experienced, and subsequently reinstantiated, predominantly in the visual domain. Individual differences in the capacity to summon discrete aspects of visual imagery can therefore account for the diversity of content generated by humans during future simulation. Our integrative framework provides a novel testbed to query alterations in future thinking in health and disease.
Collapse
Affiliation(s)
- Federica Conti
- Institut des Neurosciences de la Timone, Aix-Marseille University, 27 Boulevard Jean Moulin, 13005 Marseille, France; The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| | - Muireann Irish
- The University of Sydney, Brain and Mind Centre and School of Psychology, 94 Mallett Street, Camperdown, NSW 2050, Australia.
| |
Collapse
|
8
|
Liu ZX, Rosenbaum RS, Ryan JD. Restricting Visual Exploration Directly Impedes Neural Activity, Functional Connectivity, and Memory. Cereb Cortex Commun 2020; 1:tgaa054. [PMID: 33154992 PMCID: PMC7595095 DOI: 10.1093/texcom/tgaa054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/28/2020] [Accepted: 08/12/2020] [Indexed: 11/13/2022] Open
Abstract
We move our eyes to explore the visual world, extract information, and create memories. The number of gaze fixations-the stops that the eyes make-has been shown to correlate with activity in the hippocampus, a region critical for memory, and with later recognition memory. Here, we combined eyetracking with fMRI to provide direct evidence for the relationships between gaze fixations, neural activity, and memory during scene viewing. Compared to free viewing, fixating a single location reduced: 1) subsequent memory, 2) neural activity along the ventral visual stream into the hippocampus, 3) neural similarity between effects of subsequent memory and visual exploration, and 4) functional connectivity among the hippocampus, parahippocampal place area, and other cortical regions. Gaze fixations were uniquely related to hippocampal activity, even after controlling for neural effects due to subsequent memory. Therefore, this study provides key causal evidence supporting the notion that the oculomotor and memory systems are intrinsically related at both the behavioral and neural level. Individual gaze fixations may provide the basic unit of information on which memory binding processes operate.
Collapse
Affiliation(s)
- Zhong-Xu Liu
- Department of Behavioral Sciences, University of Michigan-Dearborn, Dearborn, Michigan 48128, USA
| | - R Shayna Rosenbaum
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| | - Jennifer D Ryan
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON M6A 2E1, Canada
| |
Collapse
|
9
|
Ryan JD, Shen K, Liu Z. The intersection between the oculomotor and hippocampal memory systems: empirical developments and clinical implications. Ann N Y Acad Sci 2020; 1464:115-141. [PMID: 31617589 PMCID: PMC7154681 DOI: 10.1111/nyas.14256] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 08/29/2019] [Accepted: 09/19/2019] [Indexed: 12/28/2022]
Abstract
Decades of cognitive neuroscience research has shown that where we look is intimately connected to what we remember. In this article, we review findings from human and nonhuman animals, using behavioral, neuropsychological, neuroimaging, and computational modeling methods, to show that the oculomotor and hippocampal memory systems interact in a reciprocal manner, on a moment-to-moment basis, mediated by a vast structural and functional network. Visual exploration serves to efficiently gather information from the environment for the purpose of creating new memories, updating existing memories, and reconstructing the rich, vivid details from memory. Conversely, memory increases the efficiency of visual exploration. We call for models of oculomotor control to consider the influence of the hippocampal memory system on the cognitive control of eye movements, and for models of hippocampal and broader medial temporal lobe function to consider the influence of the oculomotor system on the development and expression of memory. We describe eye movement-based applications for the detection of neurodegeneration and delivery of therapeutic interventions for mental health disorders for which the hippocampus is implicated and memory dysfunctions are at the forefront.
Collapse
Affiliation(s)
- Jennifer D. Ryan
- Rotman Research InstituteBaycrestTorontoOntarioCanada
- Department of PsychologyUniversity of TorontoTorontoOntarioCanada
- Department of PsychiatryUniversity of TorontoTorontoOntarioCanada
| | - Kelly Shen
- Rotman Research InstituteBaycrestTorontoOntarioCanada
| | - Zhong‐Xu Liu
- Department of Behavioral SciencesUniversity of Michigan‐DearbornDearbornMichigan
| |
Collapse
|