1
|
Barzon G, Artime O, Suweis S, Domenico MD. Unraveling the mesoscale organization induced by network-driven processes. Proc Natl Acad Sci U S A 2024; 121:e2317608121. [PMID: 38968099 PMCID: PMC11252804 DOI: 10.1073/pnas.2317608121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/21/2024] [Indexed: 07/07/2024] Open
Abstract
Complex systems are characterized by emergent patterns created by the nontrivial interplay between dynamical processes and the networks of interactions on which these processes unfold. Topological or dynamical descriptors alone are not enough to fully embrace this interplay in all its complexity, and many times one has to resort to dynamics-specific approaches that limit a comprehension of general principles. To address this challenge, we employ a metric-that we name Jacobian distance-which captures the spatiotemporal spreading of perturbations, enabling us to uncover the latent geometry inherent in network-driven processes. We compute the Jacobian distance for a broad set of nonlinear dynamical models on synthetic and real-world networks of high interest for applications from biological to ecological and social contexts. We show, analytically and computationally, that the process-driven latent geometry of a complex network is sensitive to both the specific features of the dynamics and the topological properties of the network. This translates into potential mismatches between the functional and the topological mesoscale organization, which we explain by means of the spectrum of the Jacobian matrix. Finally, we demonstrate that the Jacobian distance offers a clear advantage with respect to traditional methods when studying human brain networks. In particular, we show that it outperforms classical network communication models in explaining functional communities from structural data, therefore highlighting its potential in linking structure and function in the brain.
Collapse
Affiliation(s)
- Giacomo Barzon
- Padova Neuroscience Center, University of Padua, Padova35131, Italy
- Complex Human Behaviour Lab, Fondazione Bruno Kessler, Povo38123, Italy
| | - Oriol Artime
- Departament de Física de la Matèria Condensada, Universitat de Barcelona, Barcelona08028, Spain
- Institute of Complex Systems, Universitat de Barcelona, Barcelona08028, Spain
- Universitat de les Illes Balears, Palma07122, Spain
| | - Samir Suweis
- Padova Neuroscience Center, University of Padua, Padova35131, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova35131, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
| | - Manlio De Domenico
- Padova Neuroscience Center, University of Padua, Padova35131, Italy
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Padova35131, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Padova, Padova35131, Italy
- Padua Center for Network Medicine, University of Padova, Padova35131, Italy
| |
Collapse
|
2
|
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci 2023; 24:557-574. [PMID: 37438433 DOI: 10.1038/s41583-023-00718-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Cognitive Science, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
3
|
Zdorovtsova N, Jones J, Akarca D, Benhamou E, The Calm Team, Astle DE. Exploring neural heterogeneity in inattention and hyperactivity. Cortex 2023; 164:90-111. [PMID: 37207412 DOI: 10.1016/j.cortex.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Inattention and hyperactivity are cardinal symptoms of Attention Deficit Hyperactivity Disorder (ADHD). These characteristics have also been observed across a range of other neurodevelopmental conditions, such as autism and dyspraxia, suggesting that they might best be studied across diagnostic categories. Here, we evaluated the associations between inattention and hyperactivity behaviours and features of the structural brain network (connectome) in a large transdiagnostic sample of children (Centre for Attention, Learning, and Memory; n = 383). In our sample, we found that a single latent factor explains 77.6% of variance in scores across multiple questionnaires measuring inattention and hyperactivity. Partial Least-Squares (PLS) regression revealed that variability in this latent factor could not be explained by a linear component representing nodewise properties of connectomes. We then investigated the type and extent of neural heterogeneity in a subset of our sample with clinically-elevated levels of inattention and hyperactivity. Multidimensional scaling combined with k-means clustering revealed two neural subtypes in children with elevated levels of inattention and hyperactivity (n = 232), differentiated primarily by nodal communicability-a measure which demarcates the extent to which neural signals propagate through specific brain regions. These different clusters had similar behavioural profiles, which included high levels of inattention and hyperactivity. However, one of the clusters scored higher on multiple cognitive assessment measures of executive function. We conclude that inattention and hyperactivity are so common in children with neurodevelopmental difficulties because they emerge through multiple different trajectories of brain development. In our own data, we can identify two of these possible trajectories, which are reflected by measures of structural brain network topology and cognition.
Collapse
Affiliation(s)
- Natalia Zdorovtsova
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Jonathan Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elia Benhamou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - The Calm Team
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111:1391-1401.e5. [PMID: 36889313 DOI: 10.1016/j.neuron.2023.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Maciej Jedynak
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Olivier David
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Sina Mansour
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
5
|
Liu Y, Feng H, Fu H, Wu Y, Nie B, Wang T. Altered functional connectivity and topology structures in default mode network induced by inflammatory exposure in aged rat: A resting-state functional magnetic resonance imaging study. Front Aging Neurosci 2022; 14:1013478. [DOI: 10.3389/fnagi.2022.1013478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/10/2022] [Indexed: 11/19/2022] Open
Abstract
Inflammatory stress in anesthesia management and surgical process has been reported to induce long-term cognitive dysfunction in vulnerable aged brain, while few studies focused on the network mechanism. The default mode network (DMN) plays a significant role in spontaneous cognitive function. Changes in topology structure and functional connectivity (FC) of DMN in vulnerable aged brain following inflammatory stress-induced long-term cognitive dysfunction are rarely studied. Eighty-eight aged male rats received intraperitoneal injection of lipopolysaccharide (LPS) as treatment or equal amount of normal saline (NS) as control. Morris Water Maze (MWM) was performed to assess short- (<7 days) and long-term (>30 days) learning and spatial working memory. Enzyme-linked immunosorbent assay (ELISA) was used to measure systemic and hippocampus inflammatory cytokines. Real-time polymerase chain reaction (RT-PCR) was used to measure the changes in gene level. Resting-state functional magnetic resonance imaging (rs-fMRI) was used to exam brain function prior to MWM on days 3, 7, and 31 after LPS exposure. Graph theory analysis was used to analyze FC and topology structures in aged rat DMN. Aged rats treated with LPS showed short- and long-term impairment in learning and spatial working memory in MWM test. Graph theory analysis showed temporary DMN intrinsic connectivity increased on day 3 followed with subsequent DMN intrinsic connectivity significantly altered on day 7 and day 31 in LPS-exposed rats as compared with controls. Short- and long-term alterations were observed in FC, while alterations in topology structures were only observed on day 3. Rats with inflammatory stress exposure may cause short- and long-term alterations in intrinsic connectivity in aged rat’s DMN while the changes in topology structures only lasted for 3 days. Inflammatory stress has prolonged effects on FC, but not topology structures in venerable aged brain.
Collapse
|
6
|
Bi XA, Zhou W, Luo S, Mao Y, Hu X, Zeng B, Xu L. Feature aggregation graph convolutional network based on imaging genetic data for diagnosis and pathogeny identification of Alzheimer's disease. Brief Bioinform 2022; 23:6572662. [PMID: 35453149 DOI: 10.1093/bib/bbac137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/15/2022] [Accepted: 03/23/2022] [Indexed: 12/30/2022] Open
Abstract
The roles of brain regions activities and gene expressions in the development of Alzheimer's disease (AD) remain unclear. Existing imaging genetic studies usually has the problem of inefficiency and inadequate fusion of data. This study proposes a novel deep learning method to efficiently capture the development pattern of AD. First, we model the interaction between brain regions and genes as node-to-node feature aggregation in a brain region-gene network. Second, we propose a feature aggregation graph convolutional network (FAGCN) to transmit and update the node feature. Compared with the trivial graph convolutional procedure, we replace the input from the adjacency matrix with a weight matrix based on correlation analysis and consider common neighbor similarity to discover broader associations of nodes. Finally, we use a full-gradient saliency graph mechanism to score and extract the pathogenetic brain regions and risk genes. According to the results, FAGCN achieved the best performance among both traditional and cutting-edge methods and extracted AD-related brain regions and genes, providing theoretical and methodological support for the research of related diseases.
Collapse
Affiliation(s)
- Xia-An Bi
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, and the College of Information Science and Engineering in Hunan Normal University, P.R. China
| | - Wenyan Zhou
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Sheng Luo
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Yuhua Mao
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Xi Hu
- College of Information Science and Engineering, Hunan Normal University, Changsha, China
| | - Bin Zeng
- Hunan Youdao Information Technology Co., Ltd, P.R. China
| | - Luyun Xu
- College of Business in Hunan Normal University, P.R. China
| |
Collapse
|
7
|
Benigni B, Ghavasieh A, Corso A, d’Andrea V, De Domenico M. Persistence of information flow: A multiscale characterization of human brain. Netw Neurosci 2021; 5:831-850. [PMID: 34746629 PMCID: PMC8567833 DOI: 10.1162/netn_a_00203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Information exchange in the human brain is crucial for vital tasks and to drive diseases. Neuroimaging techniques allow for the indirect measurement of information flows among brain areas and, consequently, for reconstructing connectomes analyzed through the lens of network science. However, standard analyses usually focus on a small set of network indicators and their joint probability distribution. Here, we propose an information-theoretic approach for the analysis of synthetic brain networks (based on generative models) and empirical brain networks, and to assess connectome's information capacity at different stages of dementia. Remarkably, our framework accounts for the whole network state, overcoming limitations due to limited sets of descriptors, and is used to probe human connectomes at different scales. We find that the spectral entropy of empirical data lies between two generative models, indicating an interpolation between modular and geometry-driven structural features. In fact, we show that the mesoscale is suitable for characterizing the differences between brain networks and their generative models. Finally, from the analysis of connectomes obtained from healthy and unhealthy subjects, we demonstrate that significant differences between healthy individuals and the ones affected by Alzheimer's disease arise at the microscale (max. posterior probability smaller than 1%) and at the mesoscale (max. posterior probability smaller than 10%).
Collapse
Affiliation(s)
- Barbara Benigni
- Department of Information Engineering and Computer Science, University of Trento, Trento, Italy
- CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy
| | - Arsham Ghavasieh
- CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy
- Department of Physics, University of Trento, Trento, Italy
| | - Alessandra Corso
- CoMuNe Lab, Fondazione Bruno Kessler, Trento, Italy
- Department of Mathematics, University of Trento, Trento, Italy
| | | | | |
Collapse
|
8
|
Abstract
Communication models describe the flow of signals among nodes of a network. In neural systems, communication models are increasingly applied to investigate network dynamics across the whole brain, with the ultimate aim to understand how signal flow gives rise to brain function. Communication models range from diffusion-like processes to those related to infectious disease transmission and those inspired by engineered communication systems like the internet. This Focus Feature brings together novel investigations of a diverse range of mechanisms and strategies that could shape communication in mammal whole-brain networks.
Collapse
Affiliation(s)
- Daniel Graham
- Department of Psychology, Hobart and William Smith Colleges, Geneva, NY, USA
| | | | - Bratislav Mišić
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Quebec, Canada
| |
Collapse
|