1
|
Liu H, Xia Y, Hua L, Sun H, Yan R, Yao Z, Qin J. Brain network communication in remission: a comparative study of bipolar and unipolar depression. J Psychiatr Res 2025; 186:1-8. [PMID: 40203489 DOI: 10.1016/j.jpsychires.2025.03.057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/04/2025] [Accepted: 03/30/2025] [Indexed: 04/11/2025]
Abstract
Distinguishing between unipolar depression (UD) and bipolar disorder (BD) during periods of remission presents a significant clinical challenge. To mitigate the potential confounding effects of depressive episodes, our study compares the white matter networks of individuals with UD and BD in remission, aiming to explore the differentiation between these two affective disorders. Our cohort included 69 individuals with remitted UD, 55 with remitted BD, and 78 healthy controls (HC). We employed diffusion tensor imaging (DTI) to assess the white matter (WM) network. Additionally, we utilized a comprehensive set of connectome and five communication models to characterize the alterations within the whole-brain WM network. Compared to HC, both UD and BD patients showed reduced connectivity in the frontal orbital region, with BD patients exhibiting a more pronounced decrease. BD patients demonstrated superior navigation ability and higher shortest path metric values in key brain region connections compared to UD. Conversely, UD patients showed greater diffusion efficiency in certain brain regions. Communicability and search information analyses revealed distinct patterns of connectivity between the two patient groups, with potential implications for emotion regulation and information processing. Our findings highlight distinct brain connectivity patterns in BD and UD during remission, suggesting that these patterns could serve as neuroimaging biomarkers for differentiating between the two disorders. The study provides insights into the enduring effects of mood disorders on brain connectivity and has potential clinical implications for diagnosis and treatment.
Collapse
Affiliation(s)
- Haiyan Liu
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Sun
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Rui Yan
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Jiaolong Qin
- The Key Laboratory of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China.
| |
Collapse
|
2
|
Wang S, Qin JL, Yang LL, Ji YY, Huang HX, Gao XS, Zhou ZM, Guo ZR, Wu Y, Tian L, Ni HJ, Zhou ZH. Structural network communication differences in drug-naive depressed adolescents with non-suicidal self-injury and suicide attempts. World J Psychiatry 2025; 15:102706. [DOI: 10.5498/wjp.v15.i5.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/26/2025] [Accepted: 02/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Depression, non-suicidal self-injury (NSSI), and suicide attempts (SA) often co-occur during adolescence and are associated with long-term adverse health outcomes. Unfortunately, neural mechanisms underlying self-injury and SA are poorly understood in depressed adolescents but likely relate to the structural abnormalities in brain regions.
AIM To investigate structural network communication within large-scale brain networks in adolescents with depression.
METHODS We constructed five distinct network communication models to evaluate structural network efficiency at the whole-brain level in adolescents with depression. Diffusion magnetic resonance imaging data were acquired from 32 healthy controls and 85 depressed adolescents, including 17 depressed adolescents without SA or NSSI (major depressive disorder group), 27 depressed adolescents with NSSI but no SA (NSSI group), and 41 depressed adolescents with SA and NSSI (NSSI + SA group).
RESULTS Significant differences in structural network communication were observed across the four groups, involving spatially widespread brain regions, particularly encompassing cortico-cortical connections (e.g., dorsal posterior cingulate gyrus and the right ventral posterior cingulate gyrus; connections based on precentral gyrus) and cortico-subcortical circuits (e.g., the nucleus accumbens-frontal circuit). In addition, we examined whether compromised communication efficiency was linked to clinical symptoms in the depressed adolescents. We observed significant correlations between network communication efficiencies and clinical scale scores derived from depressed adolescents with NSSI and SA.
CONCLUSION This study provides evidence of structural network communication differences in depressed adolescents with NSSI and SA, highlighting impaired neuroanatomical communication efficiency as a potential contributor to their symptoms. These findings offer new insights into the pathophysiological mechanisms underlying the comorbidity of NSSI and SA in adolescent depression.
Collapse
Affiliation(s)
- Shuai Wang
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
- Department of Clinical Psychology, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Jiao-Long Qin
- Key Lab of Intelligent Perception and Systems for High-Dimensional Information of Ministry of Education, School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, Jiangsu Province, China
| | - Lian-Lian Yang
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Ying-Ying Ji
- Department of Rehabilitation Medicine, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Hai-Xia Huang
- Department of Medical Imaging, Huadong Sanatorium, Wuxi 214000, Jiangsu Province, China
| | - Xiao-Shan Gao
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
| | - Zi-Mo Zhou
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Zhen-Ru Guo
- School of Medicine, Jiangnan University, Wuxi 214000, Jiangsu Province, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210000, Jiangsu Province, China
| | - Lin Tian
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| | - Huang-Jing Ni
- School of Computer Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210000, Jiangsu Province, China
| | - Zhen-He Zhou
- School of Wuxi Medicine, Nanjing Medical University, Wuxi 214000, Jiangsu Province, China
- Department of Psychiatry, The Affiliated Mental Health Center of Jiangnan University, Wuxi Central Rehabilitation Hospital, Wuxi 214000, Jiangsu Province, China
| |
Collapse
|
3
|
Fakhar K, Hadaeghi F, Seguin C, Dixit S, Messé A, Zamora-López G, Misic B, Hilgetag CC. A general framework for characterizing optimal communication in brain networks. eLife 2025; 13:RP101780. [PMID: 40244650 PMCID: PMC12005722 DOI: 10.7554/elife.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
Efficient communication in brain networks is foundational for cognitive function and behavior. However, how communication efficiency is defined depends on the assumed model of signaling dynamics, e.g., shortest path signaling, random walker navigation, broadcasting, and diffusive processes. Thus, a general and model-agnostic framework for characterizing optimal neural communication is needed. We address this challenge by assigning communication efficiency through a virtual multi-site lesioning regime combined with game theory, applied to large-scale models of human brain dynamics. Our framework quantifies the exact influence each node exerts over every other, generating optimal influence maps given the underlying model of neural dynamics. These descriptions reveal how communication patterns unfold if regions are set to maximize their influence over one another. Comparing these maps with a variety of brain communication models showed that optimal communication closely resembles a broadcasting regime in which regions leverage multiple parallel channels for information dissemination. Moreover, we found that the brain's most influential regions are its rich-club, exploiting their topological vantage point by broadcasting across numerous pathways that enhance their reach even if the underlying connections are weak. Altogether, our work provides a rigorous and versatile framework for characterizing optimal brain communication, and uncovers the most influential brain regions, and the topological features underlying their influence.
Collapse
Affiliation(s)
- Kayson Fakhar
- MRC Cognition and Brain Sciences Unit, University of CambridgeCambridgeUnited Kingdom
- Institute of Computational Neuroscience, University Medical Center Eppendorf-Hamburg, Hamburg University, Hamburg Center of NeuroscienceHamburgGermany
| | - Fatemeh Hadaeghi
- Institute of Computational Neuroscience, University Medical Center Eppendorf-Hamburg, Hamburg University, Hamburg Center of NeuroscienceHamburgGermany
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana UniversityBloomingtonUnited States
| | - Shrey Dixit
- Institute of Computational Neuroscience, University Medical Center Eppendorf-Hamburg, Hamburg University, Hamburg Center of NeuroscienceHamburgGermany
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- International Max Planck Research School on Cognitive NeuroimagingBarcelonaSpain
| | - Arnaud Messé
- Institute of Computational Neuroscience, University Medical Center Eppendorf-Hamburg, Hamburg University, Hamburg Center of NeuroscienceHamburgGermany
| | - Gorka Zamora-López
- Center for Brain and Cognition, Pompeu Fabra UniversityBarcelonaSpain
- Department of Information and Communication Technologies, Pompeu Fabra UniversityBarcelonaSpain
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill UniversityMontréalCanada
| | - Claus C Hilgetag
- Institute of Computational Neuroscience, University Medical Center Eppendorf-Hamburg, Hamburg University, Hamburg Center of NeuroscienceHamburgGermany
- Department of Health Sciences, Boston UniversityBostonUnited States
| |
Collapse
|
4
|
Tozlu C, Ong D, Piccirillo C, Schwartz H, Jaywant A, Nguyen T, Jamison K, Gauthier S, Kuceyeski A. Predicting cognition using estimated structural and functional connectivity networks and artificial intelligence in multiple sclerosis. RESEARCH SQUARE 2025:rs.3.rs-6214708. [PMID: 40235474 PMCID: PMC11998775 DOI: 10.21203/rs.3.rs-6214708/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Our prior work demonstrated that estimated structural and functional connectomes (eSC and eFC) generated using multiple sclerosis (MS) lesion masks and artificial intelligence (AI) models can predict disability as effectively as SC and FC derived from diffusion and functional MRI in MS. The goal of this study was to assess the ability of eSC and eFC in predicting baseline and 4-year follow-up cognition in MS patients. The Network Modification tool was performed to estimate SC from the clinical MRI-derived lesion masks. The eSC was then used as an input to Krakencoder, an encoder-decoder model, to estimate FC. The highest accuracy was obtained when predicting the follow-up Symbol Digit Modalities Test (SDMT) using regional eSC or eFC with a median Spearman's correlation of 0.58 for eSC and 0.56 for eFC, which is higher or similar to other studies that predicted cognition in healthy and diseased cohorts. Decreased eSC and eFC in the cerebellum and increased eFC in the default mode network were associated with lower follow-up SDMT scores. Our findings demonstrate that eSC and eFC derived from clinically acquired MRI and AI models can effectively predict cognition. The use of lesion-based estimates of connectome disruptions may potentially improve cognition-related individualized treatment planning.
Collapse
|
5
|
Lu Y, Wang L, Murai T, Wu J, Liang D, Zhang Z. Detection of structural-functional coupling abnormalities using multimodal brain networks in Alzheimer's disease: A comparison of three computational models. Neuroimage Clin 2025; 46:103764. [PMID: 40101672 PMCID: PMC11960660 DOI: 10.1016/j.nicl.2025.103764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/02/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by the disconnection of white matter fibers and disrupted functional connectivity of gray matter; however, the pathological mechanisms linking structural and functional changes remain unclear. This study aimed to explore the interaction between the structural and functional brain network in AD using advanced structural-functional coupling (S-F coupling) models to assess whether these changes correlate with cognitive function, Aβ deposition levels, and gene expression. In this study, we utilized multimodal magnetic resonance imaging data from 41 individuals with AD, 112 individuals with mild cognitive impairment, and 102 healthy controls to explore these mechanisms. We applied different computational models to examine the changes in the S-F coupling associated with AD. Our results showed that the communication and graph harmonic models demonstrated greater heterogeneity and were more sensitive than the statistical models in detecting AD-related pathological changes. In addition, S-F coupling increases with AD progression at the global, subnetwork, and regional node levels, especially in the medial prefrontal and anterior cingulate cortices. The S-F coupling of these regions also partially mediated cognitive decline and Aβ deposition. Furthermore, gene enrichment analysis revealed that changes in S-F coupling were strongly associated with the regulation of cellular catabolic processes. This study advances our understanding of the interaction between structural and functional connectivity and highlights the importance of S-F coupling in elucidating the neural mechanisms underlying cognitive decline in AD.
Collapse
Affiliation(s)
- Yinping Lu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Jinglong Wu
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dong Liang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhilin Zhang
- Research Center for Medical Artificial Intelligence, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
6
|
Razban RM, Banerjee A, Mujica-Parodi LR, Bahar I. The role of structural connectivity on brain function through a Markov model of signal transmission. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.11.10.622842. [PMID: 39990492 PMCID: PMC11844399 DOI: 10.1101/2024.11.10.622842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Structure determines function. However, this universal theme in biology has been surprisingly difficult to observe in human brain neuroimaging data. Here, we link structure to function by hypothesizing that brain signals propagate as a Markovian process on an underlying structure. We focus on a metric called commute time: the average number of steps for a random walker to go from region A to B and then back to A. Commute times based on white matter tracts from diffusion MRI exhibit an average ± standard deviation Spearman correlation of -0.26 ± 0.08 with functional MRI connectivity data across 434 UK Biobank individuals and -0.24 ± 0.06 across 400 HCP Young Adult brain scans. The correlation increases to -0.36 ± 0.14 and to -0.32 ± 0.12 when the principal contributions of both commute time and functional connectivity are compared for both datasets. The observed weak but robust correlations provide evidence of a relationship, albeit restricted, between neuronal connectivity and brain function. The correlations are stronger by 33% compared to broadly used communication measures such as search information and communicability. The difference further widens to a factor of 5 when commute times are correlated to the principal mode of functional connectivity from its eigenvalue decomposition. Overall, the study points to the utility of commute time to account for the role of polysynaptic (indirect) connectivity underlying brain function.
Collapse
Affiliation(s)
- Rostam M. Razban
- Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Anupam Banerjee
- Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Lilianne R. Mujica-Parodi
- Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| | - Ivet Bahar
- Laufer Center for Physical and Quantitative Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
- Departments of Biochemistry and Cell Biology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
7
|
Zalesky A, Sarwar T, Tian Y, Liu Y, Yeo BTT, Ramamohanarao K. Predicting an individual's functional connectivity from their structural connectome: Evaluation of evidence, recommendations, and future prospects. Netw Neurosci 2024; 8:1291-1309. [PMID: 39735518 PMCID: PMC11674402 DOI: 10.1162/netn_a_00400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/11/2024] [Indexed: 12/31/2024] Open
Abstract
Several recent studies have optimized deep neural networks to learn high-dimensional relationships linking structural and functional connectivity across the human connectome. However, the extent to which these models recapitulate individual-specific characteristics of resting-state functional brain networks remains unclear. A core concern relates to whether current individual predictions outperform simple benchmarks such as group averages and null conditions. Here, we consider two measures to statistically evaluate whether functional connectivity predictions capture individual effects. We revisit our previously published functional connectivity predictions for 1,000 healthy adults and provide multiple lines of evidence supporting that our predictions successfully capture subtle individual-specific variation in connectivity. While predicted individual effects are statistically significant and outperform several benchmarks, we find that effect sizes are small (i.e., 8%-11% improvement relative to group-average benchmarks). As such, initial expectations about individual prediction performance expressed by us and others may require moderation. We conclude that individual predictions can significantly outperform appropriate benchmark conditions and we provide several recommendations for future studies in this area. Future studies should statistically assess the individual prediction performance of their models using one of the measures and benchmarks provided here.
Collapse
Affiliation(s)
- Andrew Zalesky
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
- Department of Biomedical Engineering, The University of Melbourne, Victoria, Australia
| | - Tabinda Sarwar
- School of Computing Technologies, RMIT University, Victoria, Australia
| | - Ye Tian
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - Yuanzhe Liu
- Systems Lab, Department of Psychiatry, The University of Melbourne, Victoria, Australia
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, Center for Sleep & Cognition and N.1 Institute for Health, National University of Singapore, Singapore
| | | |
Collapse
|
8
|
Mecklenbrauck F, Sepulcre J, Fehring J, Schubotz RI. Decoding cortical chronotopy-Comparing the influence of different cortical organizational schemes. Neuroimage 2024; 303:120914. [PMID: 39491762 DOI: 10.1016/j.neuroimage.2024.120914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/22/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024] Open
Abstract
The brain's diverse intrinsic timescales enable us to perceive stimuli with varying temporal persistency. This study aimed to uncover the cortical organizational schemes underlying these variations, revealing the neural architecture for processing a wide range of sensory experiences. We collected resting-state fMRI, task-fMRI, and diffusion-weighted imaging data from 47 individuals. Based on this data, we extracted six organizational schemes: (1) the structural Rich Club (RC) architecture, shown to synchronize the connectome; (2) the structural Diverse Club architecture, as an alternative to the RC based on the network's module structure; (3) the functional uni-to-multimodal gradient, reflected in a wide range of structural and functional features; and (4) the spatial posterior/lateral-to-anterior/medial gradient, established for hierarchical levels of cognitive control. Also, we explored the effects of (5) structural graph theoretical measures of centrality and (6) cytoarchitectural differences. Using Bayesian model comparison, we contrasted the impact of these organizational schemes on (1) intrinsic resting-state timescales and (2) inter-subject correlation (ISC) from a task involving hierarchically nested digit sequences. As expected, resting-state timescales were slower in structural network hubs, hierarchically higher areas defined by the functional and spatial gradients, and thicker cortical regions. ISC analysis demonstrated hints for the engagement of higher cortical areas with more temporally persistent stimuli. Finally, the model comparison identified the uni-to-multimodal gradient as the best organizational scheme for explaining the chronotopy in both task and rest. Future research should explore the microarchitectural features that shape this gradient, elucidating how our brain adapts and evolves across different modes of processing.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| | - Jorge Sepulcre
- Department of Radiology and Biomedical Imaging, Yale PET Center, Yale School of Medicine, Yale University, New Haven, CT, USA.
| | - Jana Fehring
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany; Institute for Biomagnetism and Biosignal Analysis, Münster, Germany.
| | - Ricarda I Schubotz
- Department of Psychology, Biological Psychology, University of Münster, Germany; Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of Münster, Germany.
| |
Collapse
|
9
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. A network control theory pipeline for studying the dynamics of the structural connectome. Nat Protoc 2024; 19:3721-3749. [PMID: 39075309 PMCID: PMC12039364 DOI: 10.1038/s41596-024-01023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
10
|
Liu Y, Sundman MH, Ugonna C, Chen YCA, Green JM, Haaheim LG, Siu HM, Chou YH. Reproducible routes: reliably navigating the connectome to enrich personalized brain stimulation strategies. Front Hum Neurosci 2024; 18:1477049. [PMID: 39568548 PMCID: PMC11576443 DOI: 10.3389/fnhum.2024.1477049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/24/2024] [Indexed: 11/22/2024] Open
Abstract
Non-invasive brain stimulation (NIBS) technologies, such as repetitive transcranial magnetic stimulation (rTMS), offer significant therapeutic potential for a growing number of neuropsychiatric conditions. Concurrent with the expansion of this field is the swift evolution of rTMS methodologies, including approaches to optimize stimulation site planning. Traditional targeting methods, foundational to early successes in the field and still widely employed today, include using scalp-based heuristics or integrating structural MRI co-registration to align the transcranial magnetic stimulation (TMS) coil with anatomical landmarks. Recent evidence, however, supports refining and personalizing stimulation sites based on the target's structural and/or functional connectivity profile. These connectomic approaches harness the network-wide neuromodulatory effects of rTMS to reach deeper brain structures while also enabling a greater degree of personalization by accounting for heterogenous network topology. In this study, we acquired baseline multimodal magnetic resonance (MRI) at two time points to evaluate the reliability and reproducibility of distinct connectome-based strategies for stimulation site planning. Specifically, we compared the intra-individual difference between the optimal stimulation sites generated at each time point for (1) functional connectivity (FC) guided targets derived from resting-state functional MRI and (2) structural connectivity (SC) guided targets derived from diffusion tensor imaging. Our findings suggest superior reproducibility of SC-guided targets. We emphasize the necessity for further research to validate these findings across diverse patient populations, thereby advancing the personalization of rTMS treatments.
Collapse
Affiliation(s)
- Yilin Liu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Mark H Sundman
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Chidi Ugonna
- Department of Biomedical Engineering, University of Arizona, Tucson, AZ, United States
| | - Yu-Chin Allison Chen
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Jacob M Green
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lisbeth G Haaheim
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Hannah M Siu
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Ying-Hui Chou
- Brain Imaging and TMS Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
- Evelyn F. McKnight Brain Institute, Arizona Center on Aging, BIO5 Institute, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
11
|
Kim CY, Park Y, Namgung JY, Park Y, Park BY. The macroscale routing mechanism of structural brain connectivity related to body mass index. Hum Brain Mapp 2024; 45:e70019. [PMID: 39230183 PMCID: PMC11372826 DOI: 10.1002/hbm.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 09/05/2024] Open
Abstract
Understanding the brain's mechanisms in individuals with obesity is important for managing body weight. Prior neuroimaging studies extensively investigated alterations in brain structure and function related to body mass index (BMI). However, how the network communication among the large-scale brain networks differs across BMI is underinvestigated. This study used diffusion magnetic resonance imaging of 290 young adults to identify links between BMI and brain network mechanisms. Navigation efficiency, a measure of network routing, was calculated from the structural connectivity computed using diffusion tractography. The sensory and frontoparietal networks indicated positive associations between navigation efficiency and BMI. The neurotransmitter association analysis identified that serotonergic and dopaminergic receptors, as well as opioid and norepinephrine systems, were related to BMI-related alterations in navigation efficiency. The transcriptomic analysis found that genes associated with network routing across BMI overlapped with genes enriched in excitatory and inhibitory neurons, specifically, gene enrichments related to synaptic transmission and neuron projection. Our findings suggest a valuable insight into understanding BMI-related alterations in brain network routing mechanisms and the potential underlying cellular biology, which might be used as a foundation for BMI-based weight management.
Collapse
Affiliation(s)
- Chae Yeon Kim
- Department of Data Science, Inha University, Incheon, South Korea
| | - Yunseo Park
- Department of Data Science, Inha University, Incheon, South Korea
| | | | - Yeongjun Park
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Bo-Yong Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, South Korea
- Research Center for Small Businesses Ecosystem, Inha University, Incheon, South Korea
| |
Collapse
|
12
|
Fukushima M, Leibnitz K. Effects of packetization on communication dynamics in brain networks. Netw Neurosci 2024; 8:418-436. [PMID: 38952819 PMCID: PMC11142457 DOI: 10.1162/netn_a_00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Computational studies in network neuroscience build models of communication dynamics in the connectome that help us understand the structure-function relationships of the brain. In these models, the dynamics of cortical signal transmission in brain networks are approximated with simple propagation strategies such as random walks and shortest path routing. Furthermore, the signal transmission dynamics in brain networks can be associated with the switching architectures of engineered communication systems (e.g., message switching and packet switching). However, it has been unclear how propagation strategies and switching architectures are related in models of brain network communication. Here, we investigate the effects of the difference between packet switching and message switching (i.e., whether signals are packetized or not) on the transmission completion time of propagation strategies when simulating signal propagation in mammalian brain networks. The results show that packetization in the connectome with hubs increases the time of the random walk strategy and does not change that of the shortest path strategy, but decreases that of more plausible strategies for brain networks that balance between communication speed and information requirements. This finding suggests an advantage of packet-switched communication in the connectome and provides new insights into modeling the communication dynamics in brain networks.
Collapse
Affiliation(s)
- Makoto Fukushima
- Graduate School of Advanced Science and Engineering, Hiroshima University, Hiroshima, Japan
| | - Kenji Leibnitz
- Center for Information and Neural Networks, National Institute of Information and Communications Technology, Osaka, Japan
- Graduate School of Information Science and Technology, Osaka University, Osaka, Japan
| |
Collapse
|
13
|
Fukushima M, Leibnitz K. Comparison of Message-Switched and Packet-Switched Communication Simulated on the Human Connectome. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039318 DOI: 10.1109/embc53108.2024.10782030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
There is a growing interest in modeling the communication dynamics in the network of structural brain connections (i.e., the connectome). Recently, communication simulated on the connectome has been compared between two model assumptions about whether abstract signal units, or messages, are divided into smaller packets (packet switching) or not (message switching) when transmitted between their source and destination nodes. However, previous analyses were limited to simulations on the nonhuman connectome and did not compare any edgewise communication metrics computed under the two modeling assumptions. Here, we simulate communication on the human connectome and confirm the previous finding that packetization in the connectome improves communication speed for physiologically plausible propagation strategies. We also find characteristic differences between message switching and packet switching in an edgewise metric, the association weights of node pairs in the connectome. This study using the human connectome data corroborates previous findings with the nonhuman data and provides new comparison results for message-switched and packet-switched communication on the connectome.
Collapse
|
14
|
Xue T, Zhang F, Zekelman LR, Zhang C, Chen Y, Cetin-Karayumak S, Pieper S, Wells WM, Rathi Y, Makris N, Cai W, O'Donnell LJ. TractoSCR: a novel supervised contrastive regression framework for prediction of neurocognitive measures using multi-site harmonized diffusion MRI tractography. Front Neurosci 2024; 18:1411797. [PMID: 38988766 PMCID: PMC11233814 DOI: 10.3389/fnins.2024.1411797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 06/10/2024] [Indexed: 07/12/2024] Open
Abstract
Neuroimaging-based prediction of neurocognitive measures is valuable for studying how the brain's structure relates to cognitive function. However, the accuracy of prediction using popular linear regression models is relatively low. We propose a novel deep regression method, namely TractoSCR, that allows full supervision for contrastive learning in regression tasks using diffusion MRI tractography. TractoSCR performs supervised contrastive learning by using the absolute difference between continuous regression labels (i.e., neurocognitive scores) to determine positive and negative pairs. We apply TractoSCR to analyze a large-scale dataset including multi-site harmonized diffusion MRI and neurocognitive data from 8,735 participants in the Adolescent Brain Cognitive Development (ABCD) Study. We extract white matter microstructural measures using a fine parcellation of white matter tractography into fiber clusters. Using these measures, we predict three scores related to domains of higher-order cognition (general cognitive ability, executive function, and learning/memory). To identify important fiber clusters for prediction of these neurocognitive scores, we propose a permutation feature importance method for high-dimensional data. We find that TractoSCR obtains significantly higher accuracy of neurocognitive score prediction compared to other state-of-the-art methods. We find that the most predictive fiber clusters are predominantly located within the superficial white matter and projection tracts, particularly the superficial frontal white matter and striato-frontal connections. Overall, our results demonstrate the utility of contrastive representation learning methods for regression, and in particular for improving neuroimaging-based prediction of higher-order cognitive abilities. Our code will be available at: https://github.com/SlicerDMRI/TractoSCR.
Collapse
Affiliation(s)
- Tengfei Xue
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
- School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, China
| | - Leo R. Zekelman
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Chaoyi Zhang
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Yuqian Chen
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | | | - Steve Pieper
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - William M. Wells
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Yogesh Rathi
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Nikos Makris
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Weidong Cai
- School of Computer Science, University of Sydney, Sydney, NSW, Australia
| | - Lauren J. O'Donnell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
15
|
Liang Q, Ma J, Chen X, Lin Q, Shu N, Dai Z, Lin Y. A Hybrid Routing Pattern in Human Brain Structural Network Revealed By Evolutionary Computation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1895-1909. [PMID: 38194401 DOI: 10.1109/tmi.2024.3351907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
The human brain functional connectivity network (FCN) is constrained and shaped by the communication processes in the structural connectivity network (SCN). The underlying communication mechanism thus becomes a critical issue for understanding the formation and organization of the FCN. A number of communication models supported by different routing strategies have been proposed, with shortest path (SP), random diffusion (DIF), and spatial navigation (NAV) as the most typical, respectively requiring network global knowledge, local knowledge, and both for path seeking. Yet these models all assumed every brain region to use one routing strategy uniformly, ignoring convergent evidence that supports the regional heterogeneity in both terms of biological substrates and functional roles. In this regard, the current study developed a hybrid communication model that allowed each brain region to choose a routing strategy from SP, DIF, and NAV independently. A genetic algorithm was designed to uncover the underlying region-wise hybrid routing strategy (namely HYB). The HYB was found to outperform the three typical routing strategies in predicting FCN and facilitating robust communication. Analyses on HYB further revealed that brain regions in lower-order functional modules inclined to route signals using global knowledge, while those in higher-order functional modules preferred DIF that requires only local knowledge. Compared to regions that used global knowledge for routing, regions using DIF had denser structural connections, participated in more functional modules, but played a less dominant role within modules. Together, our findings further evidenced that hybrid routing underpins efficient SCN communication and locally heterogeneous structure-function coupling.
Collapse
|
16
|
Popp JL, Thiele JA, Faskowitz J, Seguin C, Sporns O, Hilger K. Structural-functional brain network coupling predicts human cognitive ability. Neuroimage 2024; 290:120563. [PMID: 38492685 DOI: 10.1016/j.neuroimage.2024.120563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/14/2023] [Accepted: 03/01/2024] [Indexed: 03/18/2024] Open
Abstract
Individual differences in general cognitive ability (GCA) have a biological basis within the structure and function of the human brain. Network neuroscience investigations revealed neural correlates of GCA in structural as well as in functional brain networks. However, whether the relationship between structural and functional networks, the structural-functional brain network coupling (SC-FC coupling), is related to individual differences in GCA remains an open question. We used data from 1030 adults of the Human Connectome Project, derived structural connectivity from diffusion weighted imaging, functional connectivity from resting-state fMRI, and assessed GCA as a latent g-factor from 12 cognitive tasks. Two similarity measures and six communication measures were used to model possible functional interactions arising from structural brain networks. SC-FC coupling was estimated as the degree to which these measures align with the actual functional connectivity, providing insights into different neural communication strategies. At the whole-brain level, higher GCA was associated with higher SC-FC coupling, but only when considering path transitivity as neural communication strategy. Taking region-specific variations in the SC-FC coupling strategy into account and differentiating between positive and negative associations with GCA, allows for prediction of individual cognitive ability scores in a cross-validated prediction framework (correlation between predicted and observed scores: r = 0.25, p < .001). The same model also predicts GCA scores in a completely independent sample (N = 567, r = 0.19, p < .001). Our results propose structural-functional brain network coupling as a neurobiological correlate of GCA and suggest brain region-specific coupling strategies as neural basis of efficient information processing predictive of cognitive ability.
Collapse
Affiliation(s)
- Johanna L Popp
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| | - Jonas A Thiele
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, 1101 E. 10th St., Bloomington 47405-7007, IN, USA
| | - Kirsten Hilger
- Department of Psychology I, Würzburg University, Marcusstr. 9-11, Würzburg D 97070, Germany.
| |
Collapse
|
17
|
Gast H, Assaf Y. Weighting the structural connectome: Exploring its impact on network properties and predicting cognitive performance in the human brain. Netw Neurosci 2024; 8:119-137. [PMID: 38562285 PMCID: PMC10861171 DOI: 10.1162/netn_a_00342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
Brain function does not emerge from isolated activity, but rather from the interactions and exchanges between neural elements that form a network known as the connectome. The human connectome consists of structural and functional aspects. The structural connectome (SC) represents the anatomical connections, and the functional connectome represents the resulting dynamics that emerge from this arrangement of structures. As there are different ways of weighting these connections, it is important to consider how such different approaches impact study conclusions. Here, we propose that different weighted connectomes result in varied network properties, and while neither superior the other, selection might affect interpretation and conclusions in different study cases. We present three different weighting models, namely, number of streamlines (NOS), fractional anisotropy (FA), and axon diameter distribution (ADD), to demonstrate these differences. The later, is extracted using recently published AxSI method and is first compared to commonly used weighting methods. Moreover, we explore the functional relevance of each weighted SC, using the Human Connectome Project (HCP) database. By analyzing intelligence-related data, we develop a predictive model for cognitive performance based on graph properties and the National Institutes of Health (NIH) toolbox. Results demonstrate that the ADD SC, combined with a functional subnetwork model, outperforms other models in estimating cognitive performance.
Collapse
Affiliation(s)
- Hila Gast
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Strauss Center for Neuroimaging, Tel Aviv University, Tel Aviv, Israel
- School of Neurobiology, Biochemistry and Biophysics, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
18
|
Cash RFH, Zalesky A. Personalized and Circuit-Based Transcranial Magnetic Stimulation: Evidence, Controversies, and Opportunities. Biol Psychiatry 2024; 95:510-522. [PMID: 38040047 DOI: 10.1016/j.biopsych.2023.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
The development of neuroimaging methodologies to map brain connectivity has transformed our understanding of psychiatric disorders, the distributed effects of brain stimulation, and how transcranial magnetic stimulation can be best employed to target and ameliorate psychiatric symptoms. In parallel, neuroimaging research has revealed that higher-order brain regions such as the prefrontal cortex, which represent the most common therapeutic brain stimulation targets for psychiatric disorders, show some of the highest levels of interindividual variation in brain connectivity. These findings provide the rationale for personalized target site selection based on person-specific brain network architecture. Recent advances have made it possible to determine reproducible personalized targets with millimeter precision in clinically tractable acquisition times. These advances enable the potential advantages of spatially personalized transcranial magnetic stimulation targeting to be evaluated and translated to basic and clinical applications. In this review, we outline the motivation for target site personalization, preliminary support (mostly in depression), convergent evidence from other brain stimulation modalities, and generalizability beyond depression and the prefrontal cortex. We end by detailing methodological recommendations, controversies, and notable alternatives. Overall, while this research area appears highly promising, the value of personalized targeting remains unclear, and dedicated large prospective randomized clinical trials using validated methodology are critical.
Collapse
Affiliation(s)
- Robin F H Cash
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia.
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre and Department of Biomedical Engineering, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Mecklenbrauck F, Gruber M, Siestrup S, Zahedi A, Grotegerd D, Mauritz M, Trempler I, Dannlowski U, Schubotz RI. The significance of structural rich club hubs for the processing of hierarchical stimuli. Hum Brain Mapp 2024; 45:e26543. [PMID: 38069537 PMCID: PMC10915744 DOI: 10.1002/hbm.26543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 10/17/2023] [Accepted: 11/09/2023] [Indexed: 03/07/2024] Open
Abstract
The brain's structural network follows a hierarchy that is described as rich club (RC) organization, with RC hubs forming the well-interconnected top of this hierarchy. In this study, we tested whether RC hubs are involved in the processing of hierarchically higher structures in stimulus sequences. Moreover, we explored the role of previously suggested cortical gradients along anterior-posterior and medial-lateral axes throughout the frontal cortex. To this end, we conducted a functional magnetic resonance imaging (fMRI) experiment and presented participants with blocks of digit sequences that were structured on different hierarchically nested levels. We additionally collected diffusion weighted imaging data of the same subjects to identify RC hubs. This classification then served as the basis for a region of interest analysis of the fMRI data. Moreover, we determined structural network centrality measures in areas that were found as activation clusters in the whole-brain fMRI analysis. Our findings support the previously found anterior and medial shift for processing hierarchically higher structures of stimuli. Additionally, we found that the processing of hierarchically higher structures of the stimulus structure engages RC hubs more than for lower levels. Areas involved in the functional processing of hierarchically higher structures were also more likely to be part of the structural RC and were furthermore more central to the structural network. In summary, our results highlight the potential role of the structural RC organization in shaping the cortical processing hierarchy.
Collapse
Affiliation(s)
- Falko Mecklenbrauck
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Marius Gruber
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Department for Psychiatry, Psychosomatic Medicine and PsychotherapyUniversity Hospital Frankfurt, Goethe UniversityFrankfurtGermany
| | - Sophie Siestrup
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Anoushiravan Zahedi
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Dominik Grotegerd
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Marco Mauritz
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
- Institute for Computational and Applied MathematicsUniversity of MünsterMünsterGermany
| | - Ima Trempler
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| | - Udo Dannlowski
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
- Institute for Translational PsychiatryUniversity of MünsterMünsterGermany
| | - Ricarda I. Schubotz
- Department of Psychology, Biological PsychologyUniversity of MünsterMünsterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral NeuroscienceUniversity of MünsterMünsterGermany
| |
Collapse
|
20
|
Puxeddu MG, Faskowitz J, Seguin C, Yovel Y, Assaf Y, Betzel R, Sporns O. Relation of connectome topology to brain volume across 103 mammalian species. PLoS Biol 2024; 22:e3002489. [PMID: 38315722 PMCID: PMC10868790 DOI: 10.1371/journal.pbio.3002489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/15/2024] [Accepted: 01/08/2024] [Indexed: 02/07/2024] Open
Abstract
The brain connectome is an embedded network of anatomically interconnected brain regions, and the study of its topological organization in mammals has become of paramount importance due to its role in scaffolding brain function and behavior. Unlike many other observable networks, brain connections incur material and energetic cost, and their length and density are volumetrically constrained by the skull. Thus, an open question is how differences in brain volume impact connectome topology. We address this issue using the MaMI database, a diverse set of mammalian connectomes reconstructed from 201 animals, covering 103 species and 12 taxonomy orders, whose brain size varies over more than 4 orders of magnitude. Our analyses focus on relationships between volume and modular organization. After having identified modules through a multiresolution approach, we observed how connectivity features relate to the modular structure and how these relations vary across brain volume. We found that as the brain volume increases, modules become more spatially compact and dense, comprising more costly connections. Furthermore, we investigated how spatial embedding shapes network communication, finding that as brain volume increases, nodes' distance progressively impacts communication efficiency. We identified modes of variation in network communication policies, as smaller and bigger brains show higher efficiency in routing- and diffusion-based signaling, respectively. Finally, bridging network modularity and communication, we found that in larger brains, modular structure imposes stronger constraints on network signaling. Altogether, our results show that brain volume is systematically related to mammalian connectome topology and that spatial embedding imposes tighter restrictions on larger brains.
Collapse
Affiliation(s)
- Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
| | - Yossi Yovel
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
| | - Richard Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, Indiana, United States of America
- Program in Neuroscience, Indiana University, Bloomington, Indiana, United States of America
- Program in Cognitive Science, Indiana University, Bloomington, Indiana, United States of America
| |
Collapse
|
21
|
Kumar PR, Jha RK, Katti A. Brain tissue segmentation in neurosurgery: a systematic analysis for quantitative tractography approaches. Acta Neurol Belg 2024; 124:1-15. [PMID: 36609837 DOI: 10.1007/s13760-023-02170-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 12/31/2022] [Indexed: 01/09/2023]
Abstract
Diffusion magnetic resonance imaging (dMRI) is a cutting-edge imaging method that provides a macro-scale in vivo map of the white matter pathways in the brain. The measurement of brain microstructure and the enhancement of tractography rely heavily on dMRI tissue segmentation. Anatomical MRI technique (e.g., T1- and T2-weighted imaging) is the most widely used method for segmentation in dMRI. In comparison to anatomical MRI, dMRI suffers from higher image distortions, lower image quality, and making inter-modality registration more difficult. The dMRI tractography study of brain connectivity has become a major part of the neuroimaging landscape in recent years. In this research, we provide a high-level overview of the methods used to segment several brain tissues types, including grey and white matter and cerebrospinal fluid, to enable quantitative studies of structural connectivity in the brain in health and illness. In the first part of our review, we discuss the three main phases in the quantitative analysis of tractography, which are correction, segmentation, and quantification. Methodological possibilities are described for each phase, along with their popularity and potential benefits and drawbacks. After that, we will look at research that used quantitative tractography approaches to examine the white and grey matter of the brain, with an emphasis on neurodevelopment, ageing, neurological illnesses, mental disorders, and neurosurgery as possible applications. Even though there have been substantial advancements in methodological technology and the spectrum of applications, there is still no consensus regarding the "optimal" approach in the quantitative analysis of tractography. As a result, researchers should tread carefully when interpreting the findings of quantitative analysis of tractography.
Collapse
Affiliation(s)
- Puranam Revanth Kumar
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, 501203, India.
| | - Rajesh Kumar Jha
- Department of Electronics and Communication Engineering, IcfaiTech (Faculty of Science and Technology), IFHE University, Hyderabad, 501203, India
| | - Amogh Katti
- Department of Computer Science and Engineering, Gitam School of Technology, GITAM University, Hyderabad, 502329, India
| |
Collapse
|
22
|
Imms P, Chowdhury NF, Chaudhari NN, Amgalan A, Poudel G, Caeyenberghs K, Irimia A. Prediction of cognitive outcome after mild traumatic brain injury from acute measures of communication within brain networks. Cortex 2024; 171:397-412. [PMID: 38103453 PMCID: PMC10922490 DOI: 10.1016/j.cortex.2023.10.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/19/2023]
Abstract
A considerable but ill-defined proportion of patients with mild traumatic brain injury (mTBI) experience persistent cognitive sequelae; the ability to identify such individuals early can help their neurorehabilitation. Here we tested the hypothesis that acute measures of efficient communication within brain networks are associated with patients' risk for unfavorable cognitive outcome six months after mTBI. Diffusion and T1-weighted magnetic resonance imaging, alongside cognitive measures, were obtained to map connectomes both one week and six months post injury in 113 adult patients with mTBI (71 males). For task-related brain networks, communication measures (characteristic path length, global efficiency, navigation efficiency) were moderately correlated with changes in cognition. Taking into account the covariance of age and sex, more unfavorable communication within networks were associated with worse outcomes within cognitive domains frequently impacted by mTBI (episodic and working memory, verbal fluency, inductive reasoning, and processing speed). Individuals with more unfavorable outcomes had significantly longer and less efficient pathways within networks supporting verbal fluency (all t > 2.786, p < .006), highlighting the vulnerability of language to mTBI. Participants in whom a task-related network was relatively inefficient one week post injury were up to eight times more likely to have unfavorable cognitive outcome pertaining to that task. Our findings suggest that communication measures within task-related networks identify mTBI patients who are unlikely to develop persistent cognitive deficits after mTBI. Our approach and findings can help to stratify mTBI patients according to their expected need for follow-up and/or neurorehabilitation.
Collapse
Affiliation(s)
- Phoebe Imms
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| | - Nahian F Chowdhury
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| | - Nikhil N Chaudhari
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA USA.
| | - Anar Amgalan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA.
| | - Govinda Poudel
- Mary Mackillop Institute for Health Research, Australian Catholic University, Melbourne, Australia.
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Melbourne Burwood Campus, Burwood, VIC, Australia.
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA USA; Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA USA; Department of Quantitative & Computational Biology, Dana and David Dornsife College of Arts & Sciences, University of Southern California, Los Angeles, CA USA.
| |
Collapse
|
23
|
Suárez LE, Mihalik A, Milisav F, Marshall K, Li M, Vértes PE, Lajoie G, Misic B. Connectome-based reservoir computing with the conn2res toolbox. Nat Commun 2024; 15:656. [PMID: 38253577 PMCID: PMC10803782 DOI: 10.1038/s41467-024-44900-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
The connection patterns of neural circuits form a complex network. How signaling in these circuits manifests as complex cognition and adaptive behaviour remains the central question in neuroscience. Concomitant advances in connectomics and artificial intelligence open fundamentally new opportunities to understand how connection patterns shape computational capacity in biological brain networks. Reservoir computing is a versatile paradigm that uses high-dimensional, nonlinear dynamical systems to perform computations and approximate cognitive functions. Here we present conn2res: an open-source Python toolbox for implementing biological neural networks as artificial neural networks. conn2res is modular, allowing arbitrary network architecture and dynamics to be imposed. The toolbox allows researchers to input connectomes reconstructed using multiple techniques, from tract tracing to noninvasive diffusion imaging, and to impose multiple dynamical systems, from spiking neurons to memristive dynamics. The versatility of the conn2res toolbox allows us to ask new questions at the confluence of neuroscience and artificial intelligence. By reconceptualizing function as computation, conn2res sets the stage for a more mechanistic understanding of structure-function relationships in brain networks.
Collapse
Affiliation(s)
- Laura E Suárez
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Mila, Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Agoston Mihalik
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Filip Milisav
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Kenji Marshall
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Mingze Li
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- Mila, Quebec Artificial Intelligence Institute, Montreal, QC, Canada
| | - Petra E Vértes
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Guillaume Lajoie
- Mila, Quebec Artificial Intelligence Institute, Montreal, QC, Canada
- Department of Mathematics and Statistics, Université de Montréal, Montreal, QC, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, Canada.
| |
Collapse
|
24
|
Griffa A, Mach M, Dedelley J, Gutierrez-Barragan D, Gozzi A, Allali G, Grandjean J, Van De Ville D, Amico E. Evidence for increased parallel information transmission in human brain networks compared to macaques and male mice. Nat Commun 2023; 14:8216. [PMID: 38081838 PMCID: PMC10713651 DOI: 10.1038/s41467-023-43971-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Brain communication, defined as information transmission through white-matter connections, is at the foundation of the brain's computational capacities that subtend almost all aspects of behavior: from sensory perception shared across mammalian species, to complex cognitive functions in humans. How did communication strategies in macroscale brain networks adapt across evolution to accomplish increasingly complex functions? By applying a graph- and information-theory approach to assess information-related pathways in male mouse, macaque and human brains, we show a brain communication gap between selective information transmission in non-human mammals, where brain regions share information through single polysynaptic pathways, and parallel information transmission in humans, where regions share information through multiple parallel pathways. In humans, parallel transmission acts as a major connector between unimodal and transmodal systems. The layout of information-related pathways is unique to individuals across different mammalian species, pointing at the individual-level specificity of information routing architecture. Our work provides evidence that different communication patterns are tied to the evolution of mammalian brain networks.
Collapse
Affiliation(s)
- Alessandra Griffa
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| | - Mathieu Mach
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Julien Dedelley
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
| | - Daniel Gutierrez-Barragan
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Alessandro Gozzi
- Functional Neuroimaging Laboratory, Center for Neuroscience and Cognitive systems, Istituto Italiano di Tecnologia, Rovereto, Italy
| | - Gilles Allali
- Leenaards Memory Center, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Joanes Grandjean
- Department of Medical Imaging, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, 6525 EN, Nijmegen, The Netherlands
| | - Dimitri Van De Ville
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Enrico Amico
- Medical Image Processing Laboratory, Neuro-X Institute, École Polytechnique Fédérale De Lausanne (EPFL), Geneva, Switzerland.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
25
|
Hong Y, Cornea E, Girault JB, Bagonis M, Foster M, Kim SH, Prieto JC, Chen H, Gao W, Styner MA, Gilmore JH. Structural and functional connectome relationships in early childhood. Dev Cogn Neurosci 2023; 64:101314. [PMID: 37898019 PMCID: PMC10630618 DOI: 10.1016/j.dcn.2023.101314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 09/27/2023] [Accepted: 10/12/2023] [Indexed: 10/30/2023] Open
Abstract
There is strong evidence that the functional connectome is highly related to the white matter connectome in older children and adults, though little is known about structure-function relationships in early childhood. We investigated the development of cortical structure-function coupling in children longitudinally scanned at 1, 2, 4, and 6 years of age (N = 360) and in a comparison sample of adults (N = 89). We also applied a novel graph convolutional neural network-based deep learning model with a new loss function to better capture inter-subject heterogeneity and predict an individual's functional connectivity from the corresponding structural connectivity. We found regional patterns of structure-function coupling in early childhood that were consistent with adult patterns. In addition, our deep learning model improved the prediction of individual functional connectivity from its structural counterpart compared to existing models.
Collapse
Affiliation(s)
- Yoonmi Hong
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America.
| | - Emil Cornea
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Jessica B Girault
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, United States of America
| | - Maria Bagonis
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Mark Foster
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Sun Hyung Kim
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Juan Carlos Prieto
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| | - Haitao Chen
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Wei Gao
- Biomedical Imaging Research Institute (BIRI), Department of Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, United States of America
| | - Martin A Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America; Department of Computer Science, University of North Carolina at Chapel Hill, United States of America
| | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States of America
| |
Collapse
|
26
|
Milisav F, Bazinet V, Iturria-Medina Y, Misic B. Resolving inter-regional communication capacity in the human connectome. Netw Neurosci 2023; 7:1051-1079. [PMID: 37781139 PMCID: PMC10473316 DOI: 10.1162/netn_a_00318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/03/2023] [Indexed: 10/03/2023] Open
Abstract
Applications of graph theory to the connectome have inspired several models of how neural signaling unfolds atop its structure. Analytic measures derived from these communication models have mainly been used to extract global characteristics of brain networks, obscuring potentially informative inter-regional relationships. Here we develop a simple standardization method to investigate polysynaptic communication pathways between pairs of cortical regions. This procedure allows us to determine which pairs of nodes are topologically closer and which are further than expected on the basis of their degree. We find that communication pathways delineate canonical functional systems. Relating nodal communication capacity to meta-analytic probabilistic patterns of functional specialization, we also show that areas that are most closely integrated within the network are associated with higher order cognitive functions. We find that these regions' proclivity towards functional integration could naturally arise from the brain's anatomical configuration through evenly distributed connections among multiple specialized communities. Throughout, we consider two increasingly constrained null models to disentangle the effects of the network's topology from those passively endowed by spatial embedding. Altogether, the present findings uncover relationships between polysynaptic communication pathways and the brain's functional organization across multiple topological levels of analysis and demonstrate that network integration facilitates cognitive integration.
Collapse
Affiliation(s)
- Filip Milisav
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Vincent Bazinet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Yasser Iturria-Medina
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
27
|
Seguin C, Sporns O, Zalesky A. Brain network communication: concepts, models and applications. Nat Rev Neurosci 2023; 24:557-574. [PMID: 37438433 DOI: 10.1038/s41583-023-00718-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/14/2023]
Abstract
Understanding communication and information processing in nervous systems is a central goal of neuroscience. Over the past two decades, advances in connectomics and network neuroscience have opened new avenues for investigating polysynaptic communication in complex brain networks. Recent work has brought into question the mainstay assumption that connectome signalling occurs exclusively via shortest paths, resulting in a sprawling constellation of alternative network communication models. This Review surveys the latest developments in models of brain network communication. We begin by drawing a conceptual link between the mathematics of graph theory and biological aspects of neural signalling such as transmission delays and metabolic cost. We organize key network communication models and measures into a taxonomy, aimed at helping researchers navigate the growing number of concepts and methods in the literature. The taxonomy highlights the pros, cons and interpretations of different conceptualizations of connectome signalling. We showcase the utility of network communication models as a flexible, interpretable and tractable framework to study brain function by reviewing prominent applications in basic, cognitive and clinical neurosciences. Finally, we provide recommendations to guide the future development, application and validation of network communication models.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia.
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
- Program in Neuroscience, Indiana University, Bloomington, IN, USA
- Program in Cognitive Science, Indiana University, Bloomington, IN, USA
- Indiana University Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
- Department of Biomedical Engineering, Melbourne School of Engineering, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
28
|
Hansen JY, Shafiei G, Voigt K, Liang EX, Cox SML, Leyton M, Jamadar SD, Misic B. Integrating multimodal and multiscale connectivity blueprints of the human cerebral cortex in health and disease. PLoS Biol 2023; 21:e3002314. [PMID: 37747886 PMCID: PMC10553842 DOI: 10.1371/journal.pbio.3002314] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/05/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The brain is composed of disparate neural populations that communicate and interact with one another. Although fiber bundles, similarities in molecular architecture, and synchronized neural activity all reflect how brain regions potentially interact with one another, a comprehensive study of how all these interregional relationships jointly reflect brain structure and function remains missing. Here, we systematically integrate 7 multimodal, multiscale types of interregional similarity ("connectivity modes") derived from gene expression, neurotransmitter receptor density, cellular morphology, glucose metabolism, haemodynamic activity, and electrophysiology in humans. We first show that for all connectivity modes, feature similarity decreases with distance and increases when regions are structurally connected. Next, we show that connectivity modes exhibit unique and diverse connection patterns, hub profiles, spatial gradients, and modular organization. Throughout, we observe a consistent primacy of molecular connectivity modes-namely correlated gene expression and receptor similarity-that map onto multiple phenomena, including the rich club and patterns of abnormal cortical thickness across 13 neurological, psychiatric, and neurodevelopmental disorders. Finally, to construct a single multimodal wiring map of the human cortex, we fuse all 7 connectivity modes and show that the fused network maps onto major organizational features of the cortex including structural connectivity, intrinsic functional networks, and cytoarchitectonic classes. Altogether, this work contributes to the integrative study of interregional relationships in the human cerebral cortex.
Collapse
Affiliation(s)
- Justine Y. Hansen
- Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Katharina Voigt
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Emma X. Liang
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | | | - Marco Leyton
- Montréal Neurological Institute, McGill University, Montréal, Canada
- Department of Psychiatry, McGill University, Montréal, Canada
| | - Sharna D. Jamadar
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Australia
- Monash Biomedical Imaging, Monash University, Clayton, Australia
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
29
|
Liu ZQ, Shafiei G, Baillet S, Misic B. Spatially heterogeneous structure-function coupling in haemodynamic and electromagnetic brain networks. Neuroimage 2023; 278:120276. [PMID: 37451374 DOI: 10.1016/j.neuroimage.2023.120276] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 07/04/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in connectomics. Here we quantify patterns of structure-function coupling across the neocortex, by comparing structural connectivity estimated using diffusion MRI with functional connectivity estimated using both neurophysiological (MEG-based) and haemodynamic (fMRI-based) recordings. We find that structure-function coupling is heterogeneous across brain regions and frequency bands. The link between structural and functional connectivity is generally stronger in multiple MEG frequency bands compared to resting state fMRI. Structure-function coupling is greater in slower and intermediate frequency bands compared to faster frequency bands. We also find that structure-function coupling systematically follows the archetypal sensorimotor-association hierarchy, as well as patterns of laminar differentiation, peaking in granular layer IV. Finally, structure-function coupling is better explained using structure-informed inter-regional communication metrics than using structural connectivity alone. Collectively, these results place neurophysiological and haemodynamic structure-function relationships in a common frame of reference and provide a starting point for a multi-modal understanding of structure-function coupling in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Golia Shafiei
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sylvain Baillet
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada.
| |
Collapse
|
30
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. Using network control theory to study the dynamics of the structural connectome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554519. [PMID: 37662395 PMCID: PMC10473719 DOI: 10.1101/2023.08.23.554519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains dynamics. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter dynamics in a desired way. We have extensively developed and validated the application of NCT to the human structural connectome. Through these efforts, we have studied (i) how different aspects of connectome topology affect neural dynamics, (ii) whether NCT outputs cohere with empirical data on brain function and stimulation, and (iii) how NCT outputs vary across development and correlate with behavior and mental health symptoms. In this protocol, we introduce a framework for applying NCT to structural connectomes following two main pathways. Our primary pathway focuses on computing the control energy associated with transitioning between specific neural activity states. Our second pathway focuses on computing average controllability, which indexes nodes' general capacity to control dynamics. We also provide recommendations for comparing NCT outputs against null network models. Finally, we support this protocol with a Python-based software package called network control theory for python (nctpy).
Collapse
Affiliation(s)
- Linden Parkes
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, Rutgers University, Piscataway, NJ 08854, USA
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY 14853, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
| | | | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA 92521, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, PA 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, PA 19104, USA
- Department of Physics and Astronomy, University of Pennsylvania, PA 19104, USA
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
31
|
Pope M, Seguin C, Varley TF, Faskowitz J, Sporns O. Co-evolving dynamics and topology in a coupled oscillator model of resting brain function. Neuroimage 2023; 277:120266. [PMID: 37414231 DOI: 10.1016/j.neuroimage.2023.120266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/24/2023] [Accepted: 07/04/2023] [Indexed: 07/08/2023] Open
Abstract
Dynamic models of ongoing BOLD fMRI brain dynamics and models of communication strategies have been two important approaches to understanding how brain network structure constrains function. However, dynamic models have yet to widely incorporate one of the most important insights from communication models: the brain may not use all of its connections in the same way or at the same time. Here we present a variation of a phase delayed Kuramoto coupled oscillator model that dynamically limits communication between nodes on each time step. An active subgraph of the empirically derived anatomical brain network is chosen in accordance with the local dynamic state on every time step, thus coupling dynamics and network structure in a novel way. We analyze this model with respect to its fit to empirical time-averaged functional connectivity, finding that, with the addition of only one parameter, it significantly outperforms standard Kuramoto models with phase delays. We also perform analyses on the novel time series of active edges it produces, demonstrating a slowly evolving topology moving through intermittent episodes of integration and segregation. We hope to demonstrate that the exploration of novel modeling mechanisms and the investigation of dynamics of networks in addition to dynamics on networks may advance our understanding of the relationship between brain structure and function.
Collapse
Affiliation(s)
- Maria Pope
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47405, United States.
| | - Caio Seguin
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Thomas F Varley
- School of Informatics, Computing & Engineering, Indiana University, Bloomington, IN 47405, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Network Science Institute, Indiana University, Bloomington, IN 47405, United States; Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
32
|
Zdorovtsova N, Jones J, Akarca D, Benhamou E, The Calm Team, Astle DE. Exploring neural heterogeneity in inattention and hyperactivity. Cortex 2023; 164:90-111. [PMID: 37207412 DOI: 10.1016/j.cortex.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 02/21/2023] [Accepted: 04/04/2023] [Indexed: 05/21/2023]
Abstract
Inattention and hyperactivity are cardinal symptoms of Attention Deficit Hyperactivity Disorder (ADHD). These characteristics have also been observed across a range of other neurodevelopmental conditions, such as autism and dyspraxia, suggesting that they might best be studied across diagnostic categories. Here, we evaluated the associations between inattention and hyperactivity behaviours and features of the structural brain network (connectome) in a large transdiagnostic sample of children (Centre for Attention, Learning, and Memory; n = 383). In our sample, we found that a single latent factor explains 77.6% of variance in scores across multiple questionnaires measuring inattention and hyperactivity. Partial Least-Squares (PLS) regression revealed that variability in this latent factor could not be explained by a linear component representing nodewise properties of connectomes. We then investigated the type and extent of neural heterogeneity in a subset of our sample with clinically-elevated levels of inattention and hyperactivity. Multidimensional scaling combined with k-means clustering revealed two neural subtypes in children with elevated levels of inattention and hyperactivity (n = 232), differentiated primarily by nodal communicability-a measure which demarcates the extent to which neural signals propagate through specific brain regions. These different clusters had similar behavioural profiles, which included high levels of inattention and hyperactivity. However, one of the clusters scored higher on multiple cognitive assessment measures of executive function. We conclude that inattention and hyperactivity are so common in children with neurodevelopmental difficulties because they emerge through multiple different trajectories of brain development. In our own data, we can identify two of these possible trajectories, which are reflected by measures of structural brain network topology and cognition.
Collapse
Affiliation(s)
- Natalia Zdorovtsova
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Jonathan Jones
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Danyal Akarca
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Elia Benhamou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - The Calm Team
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Duncan E Astle
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK; Department of Psychiatry, University of Cambridge, Cambridge, UK
| |
Collapse
|
33
|
Lawn T, Howard MA, Turkheimer F, Misic B, Deco G, Martins D, Dipasquale O. From neurotransmitters to networks: Transcending organisational hierarchies with molecular-informed functional imaging. Neurosci Biobehav Rev 2023; 150:105193. [PMID: 37086932 PMCID: PMC10390343 DOI: 10.1016/j.neubiorev.2023.105193] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 04/01/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
The human brain exhibits complex interactions across micro, meso-, and macro-scale organisational principles. Recent synergistic multi-modal approaches have begun to link micro-scale information to systems level dynamics, transcending organisational hierarchies and offering novel perspectives into the brain's function and dysfunction. Specifically, the distribution of micro-scale properties (such as receptor density or gene expression) can be mapped onto macro-scale measures from functional MRI to provide novel neurobiological insights. Methodological approaches to enrich functional imaging analyses with molecular information are rapidly evolving, with several streams of research having developed relatively independently, each offering unique potential to explore the trans-hierarchical functioning of the brain. Here, we address the three principal streams of research - spatial correlation, molecular-enriched network, and in-silico whole brain modelling analyses - to provide a critical overview of the different sources of molecular information, how this information can be utilised within analyses of fMRI data, the merits and pitfalls of each methodology, and, through the use of key examples, highlight their promise to shed new light on key domains of neuroscientific inquiry.
Collapse
Affiliation(s)
- Timothy Lawn
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Matthew A Howard
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Bratislav Misic
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Québec, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Ramon Trias Fargas 25-27, Barcelona 08005, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, Australia
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
34
|
Dhamala E, Yeo BTT, Holmes AJ. One Size Does Not Fit All: Methodological Considerations for Brain-Based Predictive Modeling in Psychiatry. Biol Psychiatry 2023; 93:717-728. [PMID: 36577634 DOI: 10.1016/j.biopsych.2022.09.024] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 09/07/2022] [Accepted: 09/23/2022] [Indexed: 12/30/2022]
Abstract
Psychiatric illnesses are heterogeneous in nature. No illness manifests in the same way across individuals, and no two patients with a shared diagnosis exhibit identical symptom profiles. Over the last several decades, group-level analyses of in vivo neuroimaging data have led to fundamental advances in our understanding of the neurobiology of psychiatric illnesses. More recently, access to computational resources and large, publicly available datasets alongside the rise of predictive modeling and precision medicine approaches have facilitated the study of psychiatric illnesses at an individual level. Data-driven machine learning analyses can be applied to identify disease-relevant biological subtypes, predict individual symptom profiles, and recommend personalized therapeutic interventions. However, when developing these predictive models, methodological choices must be carefully considered to ensure accurate, robust, and interpretable results. Choices pertaining to algorithms, neuroimaging modalities and states, data transformation, phenotypes, parcellations, sample sizes, and populations we are specifically studying can influence model performance. Here, we review applications of neuroimaging-based machine learning models to study psychiatric illnesses and discuss the effects of different methodological choices on model performance. An understanding of these effects is crucial for the proper implementation of predictive models in psychiatry and will facilitate more accurate diagnoses, prognoses, and therapeutics.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut.
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme, National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, Connecticut; Kavli Institute for Neuroscience, Yale University, New Haven, Connecticut; Department of Psychiatry, Yale University, New Haven, Connecticut; Wu Tsai Institute, Yale University, New Haven, Connecticut.
| |
Collapse
|
35
|
Zorlu N, Bayrakçı A, Karakılıç M, Zalesky A, Seguin C, Tian Y, Gülyüksel F, Yalınçetin B, Oral E, Gelal F, Bora E. Abnormal Structural Network Communication Reflects Cognitive Deficits in Schizophrenia. Brain Topogr 2023; 36:294-304. [PMID: 36971857 DOI: 10.1007/s10548-023-00954-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/04/2023] [Indexed: 03/28/2023]
Abstract
Schizophrenia has long been thought to be a disconnection syndrome and several previous studies have reported widespread abnormalities in white matter tracts in individuals with schizophrenia. Furthermore, reductions in structural connectivity may also impair communication between anatomically unconnected pairs of brain regions, potentially impacting global signal traffic in the brain. Therefore, we used different communication models to examine direct and indirect structural connections (polysynaptic) communication in large-scale brain networks in schizophrenia. Diffusion-weighted magnetic resonance imaging scans were acquired from 62 patients diagnosed with schizophrenia and 35 controls. In this study, we used five network communication models including, shortest paths, navigation, diffusion, search information and communicability to examine polysynaptic communication in large-scale brain networks in schizophrenia. We showed less efficient communication between spatially widespread brain regions particulary encompassing cortico-subcortical basal ganglia network in schizophrenia group relative to controls. Then, we also examined whether reduced communication efficiency was related to clinical symptoms in schizophrenia group. Among different measures of communication efficiency, only navigation efficiency was associated with global cognitive impairment across multiple cognitive domains including verbal learning, processing speed, executive functions and working memory, in individuals with schizophrenia. We did not find any association between communication efficiency measures and positive or negative symptoms within the schizophrenia group. Our findings are important for improving our mechanistic understanding of neurobiological process underlying cognitive symptoms in schizophrenia.
Collapse
|
36
|
Seguin C, Jedynak M, David O, Mansour S, Sporns O, Zalesky A. Communication dynamics in the human connectome shape the cortex-wide propagation of direct electrical stimulation. Neuron 2023; 111:1391-1401.e5. [PMID: 36889313 DOI: 10.1016/j.neuron.2023.01.027] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/28/2022] [Accepted: 01/30/2023] [Indexed: 03/09/2023]
Abstract
Communication between gray matter regions underpins all facets of brain function. We study inter-areal communication in the human brain using intracranial EEG recordings, acquired following 29,055 single-pulse direct electrical stimulations in a total of 550 individuals across 20 medical centers (average of 87 ± 37 electrode contacts per subject). We found that network communication models-computed on structural connectivity inferred from diffusion MRI-can explain the causal propagation of focal stimuli, measured at millisecond timescales. Building on this finding, we show that a parsimonious statistical model comprising structural, functional, and spatial factors can accurately and robustly predict cortex-wide effects of brain stimulation (R2=46% in data from held-out medical centers). Our work contributes toward the biological validation of concepts in network neuroscience and provides insight into how connectome topology shapes polysynaptic inter-areal signaling. We anticipate that our findings will have implications for research on neural communication and the design of brain stimulation paradigms.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA.
| | - Maciej Jedynak
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Olivier David
- Aix-Marseille Université, Institut National de la Santé et de la Recherche Médicale, Institut de Neurosciences des Systèmes (INS) UMR1106, Marseille 13005, France
| | - Sina Mansour
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA; Cognitive Science Program, Indiana University, Bloomington, IN, USA; Program in Neuroscience, Indiana University, Bloomington, IN, USA; Network Science Institute, Indiana University, Bloomington, IN, USA
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
37
|
Cutts SA, Faskowitz J, Betzel RF, Sporns O. Uncovering individual differences in fine-scale dynamics of functional connectivity. Cereb Cortex 2023; 33:2375-2394. [PMID: 35690591 DOI: 10.1093/cercor/bhac214] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 01/01/2023] Open
Abstract
Functional connectivity (FC) profiles contain subject-specific features that are conserved across time and have potential to capture brain-behavior relationships. Most prior work has focused on spatial features (nodes and systems) of these FC fingerprints, computed over entire imaging sessions. We propose a method for temporally filtering FC, which allows selecting specific moments in time while also maintaining the spatial pattern of node-based activity. To this end, we leverage a recently proposed decomposition of FC into edge time series (eTS). We systematically analyze functional magnetic resonance imaging frames to define features that enhance identifiability across multiple fingerprinting metrics, similarity metrics, and data sets. Results show that these metrics characteristically vary with eTS cofluctuation amplitude, similarity of frames within a run, transition velocity, and expression of functional systems. We further show that data-driven optimization of features that maximize fingerprinting metrics isolates multiple spatial patterns of system expression at specific moments in time. Selecting just 10% of the data can yield stronger fingerprints than are obtained from the full data set. Our findings support the idea that FC fingerprints are differentially expressed across time and suggest that multiple distinct fingerprints can be identified when spatial and temporal characteristics are considered simultaneously.
Collapse
Affiliation(s)
- Sarah A Cutts
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States.,Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.,Network Science Institute, Indiana University, Bloomington, IN 47408, United States.,Cognitive Science Program, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
38
|
Faskowitz J, Puxeddu MG, van den Heuvel MP, Mišić B, Yovel Y, Assaf Y, Betzel RF, Sporns O. Connectome topology of mammalian brains and its relationship to taxonomy and phylogeny. Front Neurosci 2023; 16:1044372. [PMID: 36711139 PMCID: PMC9874302 DOI: 10.3389/fnins.2022.1044372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/12/2022] [Indexed: 01/12/2023] Open
Abstract
Network models of anatomical connections allow for the extraction of quantitative features describing brain organization, and their comparison across brains from different species. Such comparisons can inform our understanding of between-species differences in brain architecture and can be compared to existing taxonomies and phylogenies. Here we performed a quantitative comparative analysis using the MaMI database (Tel Aviv University), a collection of brain networks reconstructed from ex vivo diffusion MRI spanning 125 species and 12 taxonomic orders or superorders. We used a broad range of metrics to measure between-mammal distances and compare these estimates to the separation of species as derived from taxonomy and phylogeny. We found that within-taxonomy order network distances are significantly closer than between-taxonomy network distances, and this relation holds for several measures of network distance. Furthermore, to estimate the evolutionary divergence between species, we obtained phylogenetic distances across 10,000 plausible phylogenetic trees. The anatomical network distances were rank-correlated with phylogenetic distances 10,000 times, creating a distribution of coefficients that demonstrate significantly positive correlations between network and phylogenetic distances. Collectively, these analyses demonstrate species-level organization across scales and informational sources: we relate brain networks distances, derived from MRI, with evolutionary distances, derived from genotyping data.
Collapse
Affiliation(s)
- Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| | - Maria Grazia Puxeddu
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
| | - Martijn P. van den Heuvel
- Department of Complex Trait Genetics, Center for Neurogenomics and Cognitive Research, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bratislav Mišić
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Yossi Yovel
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Yaniv Assaf
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Cognitive Science, Indiana University Bloomington, Bloomington, IN, United States
- Indiana University Network Science Institute, Indiana University Bloomington, Bloomington, IN, United States
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, United States
- Program in Neuroscience, Indiana University Bloomington, Bloomington, IN, United States
- Program in Cognitive Science, Indiana University Bloomington, Bloomington, IN, United States
- Indiana University Network Science Institute, Indiana University Bloomington, Bloomington, IN, United States
| |
Collapse
|
39
|
Comparing models of information transfer in the structural brain network and their relationship to functional connectivity: diffusion versus shortest path routing. Brain Struct Funct 2023; 228:651-662. [PMID: 36723674 PMCID: PMC9944050 DOI: 10.1007/s00429-023-02613-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 01/16/2023] [Indexed: 02/02/2023]
Abstract
The relationship between structural and functional connectivity in the human brain is a core question in network neuroscience, and a topic of paramount importance to our ability to meaningfully describe and predict functional outcomes. Graph theory has been used to produce measures based on the structural connectivity network that are related to functional connectivity. These measures are commonly based on either the shortest path routing model or the diffusion model, which carry distinct assumptions about how information is transferred through the network. Unlike shortest path routing, which assumes the most efficient path is always known, the diffusion model makes no such assumption, and lets information diffuse in parallel based on the number of connections to other regions. Past research has also developed hybrid measures that use concepts from both models, which have better predicted functional connectivity from structural connectivity than the shortest path length alone. We examined the extent to which each of these models can account for the structure-function relationship of interest using graph theory measures that are exclusively based on each model. This analysis was performed on multiple parcellations of the Human Connectome Project using multiple approaches, which all converged on the same finding. We found that the diffusion model accounts for much more variance in functional connectivity than the shortest path routing model, suggesting that the diffusion model is better suited to describing the structure-function relationship in the human brain at the macroscale.
Collapse
|
40
|
Imms P, Clemente A, Deutscher E, Radwan AM, Akhlaghi H, Beech P, Wilson PH, Irimia A, Poudel G, Domínguez Duque JF, Caeyenberghs K. Exploring personalized structural connectomics for moderate to severe traumatic brain injury. Netw Neurosci 2023; 7:160-183. [PMID: 37334004 PMCID: PMC10270710 DOI: 10.1162/netn_a_00277] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/06/2022] [Indexed: 10/03/2023] Open
Abstract
Graph theoretical analysis of the structural connectome has been employed successfully to characterize brain network alterations in patients with traumatic brain injury (TBI). However, heterogeneity in neuropathology is a well-known issue in the TBI population, such that group comparisons of patients against controls are confounded by within-group variability. Recently, novel single-subject profiling approaches have been developed to capture inter-patient heterogeneity. We present a personalized connectomics approach that examines structural brain alterations in five chronic patients with moderate to severe TBI who underwent anatomical and diffusion magnetic resonance imaging. We generated individualized profiles of lesion characteristics and network measures (including personalized graph metric GraphMe plots, and nodal and edge-based brain network alterations) and compared them against healthy reference cases (N = 12) to assess brain damage qualitatively and quantitatively at the individual level. Our findings revealed alterations of brain networks with high variability between patients. With validation and comparison to stratified, normative healthy control comparison cohorts, this approach could be used by clinicians to formulate a neuroscience-guided integrative rehabilitation program for TBI patients, and for designing personalized rehabilitation protocols based on their unique lesion load and connectome.
Collapse
Affiliation(s)
- Phoebe Imms
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Adam Clemente
- Healthy Brain and Mind Research Centre, School of Behavioural, Health, and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Evelyn Deutscher
- Cognitive Neuroscience Unit, School of Psychology, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Ahmed M. Radwan
- KU Leuven, Department of Imaging and Pathology, Translational MRI, Leuven, Belgium
| | - Hamed Akhlaghi
- Emergency Department, St. Vincent’s Hospital (Melbourne), Faculty of Health, Deakin University, Melbourne, Victoria, Australia
| | - Paul Beech
- Department of Radiology and Nuclear Medicine, The Alfred Hospital, Melbourne, Victoria, Australia
| | - Peter H. Wilson
- Healthy Brain and Mind Research Centre, School of Behavioural, Health, and Human Sciences, Faculty of Health Sciences, Australian Catholic University, Fitzroy, Victoria, Australia
| | - Andrei Irimia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
- Corwin D. Denney Research Center, Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, Dana and David Dornsife College of Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Govinda Poudel
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Juan F. Domínguez Duque
- Cognitive Neuroscience Unit, School of Psychology, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Faculty of Health, Deakin University, Burwood, Victoria, Australia
| |
Collapse
|
41
|
Liu ZQ, Betzel RF, Misic B. Benchmarking functional connectivity by the structure and geometry of the human brain. Netw Neurosci 2022; 6:937-949. [PMID: 36875010 PMCID: PMC9976650 DOI: 10.1162/netn_a_00236] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/18/2022] [Indexed: 11/04/2022] Open
Abstract
The brain's structural connectivity supports the propagation of electrical impulses, manifesting as patterns of coactivation, termed functional connectivity. Functional connectivity emerges from the underlying sparse structural connections, particularly through polysynaptic communication. As a result, functional connections between brain regions without direct structural links are numerous, but their organization is not completely understood. Here we investigate the organization of functional connections without direct structural links. We develop a simple, data-driven method to benchmark functional connections with respect to their underlying structural and geometric embedding. We then use this method to reweigh and reexpress functional connectivity. We find evidence of unexpectedly strong functional connectivity among distal brain regions and within the default mode network. We also find unexpectedly strong functional connectivity at the apex of the unimodal-transmodal hierarchy. Our results suggest that both phenomena-functional modules and functional hierarchies-emerge from functional interactions that transcend the underlying structure and geometry. These findings also potentially explain recent reports that structural and functional connectivity gradually diverge in transmodal cortex. Collectively, we show how structural connectivity and geometry can be used as a natural frame of reference with which to study functional connectivity patterns in the brain.
Collapse
Affiliation(s)
- Zhen-Qi Liu
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| | - Richard F. Betzel
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Bratislav Misic
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, Canada
| |
Collapse
|
42
|
Wajnerman Paz A. The global neuronal workspace as a broadcasting network. Netw Neurosci 2022; 6:1186-1204. [PMID: 38800460 PMCID: PMC11117084 DOI: 10.1162/netn_a_00261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 06/13/2022] [Indexed: 05/29/2024] Open
Abstract
A new strategy for moving forward in the characterization of the global neuronal workspace (GNW) is proposed. According to Dehaene, Changeux, and colleagues (Dehaene, 2014, pp. 304, 312; Dehaene & Changeux, 2004, 2005), broadcasting is the main function of the GNW. However, the dynamic network properties described by recent graph theoretic GNW models are consistent with many large-scale communication processes that are different from broadcasting. We propose to apply a different graph theoretic approach, originally developed for optimizing information dissemination in communication networks, which can be used to identify the pattern of frequency and phase-specific directed functional connections that the GNW would exhibit only if it were a broadcasting network.
Collapse
Affiliation(s)
- Abel Wajnerman Paz
- Department of Philosophy, Universidad Alberto Hurtado, Santiago, Chile
- Neuroethics Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
43
|
Srivastava P, Fotiadis P, Parkes L, Bassett DS. The expanding horizons of network neuroscience: From description to prediction and control. Neuroimage 2022; 258:119250. [PMID: 35659996 PMCID: PMC11164099 DOI: 10.1016/j.neuroimage.2022.119250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior. But since its inception, the field has not remained static in its methodological composition. Instead, it has grown to use increasingly advanced graph-theoretic tools and to bring in several other disciplinary perspectives-including machine learning and systems engineering-that have proven complementary. In doing so, the problem space amenable to the discipline has expanded markedly. In this review, we discuss three distinct flavors of investigation in state-of-the-art network neuroscience: (i) descriptive network neuroscience, (ii) predictive network neuroscience, and (iii) a perturbative network neuroscience that draws on recent advances in network control theory. In considering each area, we provide a brief summary of the approaches, discuss the nature of the insights obtained, and highlight future directions.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Panagiotis Fotiadis
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Santa Fe Institute, Santa Fe NM 87501, USA.
| |
Collapse
|
44
|
Taylor NL, D'Souza A, Munn BR, Lv J, Zaborszky L, Müller EJ, Wainstein G, Calamante F, Shine JM. Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage 2022; 260:119455. [PMID: 35809888 PMCID: PMC10114918 DOI: 10.1016/j.neuroimage.2022.119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Complex cognitive abilities are thought to arise from the ability of the brain to adaptively reconfigure its internal network structure as a function of task demands. Recent work has suggested that this inherent flexibility may in part be conferred by the widespread projections of the ascending arousal systems. While the different components of the ascending arousal system are often studied in isolation, there are anatomical connections between neuromodulatory hubs that we hypothesise are crucial for mediating key features of adaptive network dynamics, such as the balance between integration and segregation. To test this hypothesis, we estimated the strength of structural connectivity between key hubs of the noradrenergic and cholinergic arousal systems (the locus coeruleus [LC] and nucleus basalis of Meynert [nbM], respectively). We then asked whether the strength of structural LC and nbM inter-connectivity was related to individual differences in the emergent, dynamical signatures of functional integration measured from resting state fMRI data, such as network and attractor topography. We observed a significant positive relationship between the strength of white-matter connections between the LC and nbM and the extent of network-level integration following BOLD signal peaks in LC relative to nbM activity. In addition, individuals with denser white-matter streamlines interconnecting neuromodulatory hubs also demonstrated a heightened ability to shift to novel brain states. These results suggest that individuals with stronger structural connectivity between the noradrenergic and cholinergic systems have a greater capacity to mediate the flexible network dynamics required to support complex, adaptive behaviour. Furthermore, our results highlight the underlying static features of the neuromodulatory hubs can impose some constraints on the dynamic features of the brain.
Collapse
Affiliation(s)
- N L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - A D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney School of Medicine, Central Clinical School, The University of Sydney, Australia
| | - B R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - J Lv
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - L Zaborszky
- School of Arts and Sciences, Rutgers University, New Jersey, USA
| | - E J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - G Wainstein
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - F Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia; Sydney Imaging, The University of Sydney, Sydney, Australia
| | - J M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
45
|
Tian Y, Sun P. Percolation may explain efficiency, robustness, and economy of the brain. Netw Neurosci 2022; 6:765-790. [PMID: 36605416 PMCID: PMC9810365 DOI: 10.1162/netn_a_00246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/11/2022] [Indexed: 01/09/2023] Open
Abstract
The brain consists of billions of neurons connected by ultra-dense synapses, showing remarkable efficiency, robust flexibility, and economy in information processing. It is generally believed that these advantageous properties are rooted in brain connectivity; however, direct evidence remains absent owing to technical limitations or theoretical vacancy. This research explores the origins of these properties in the largest yet brain connectome of the fruit fly. We reveal that functional connectivity formation in the brain can be explained by a percolation process controlled by synaptic excitation-inhibition (E/I) balance. By increasing the E/I balance gradually, we discover the emergence of these properties as byproducts of percolation transition when the E/I balance arrives at 3:7. As the E/I balance keeps increase, an optimal E/I balance 1:1 is unveiled to ensure these three properties simultaneously, consistent with previous in vitro experimental predictions. Once the E/I balance reaches over 3:2, an intrinsic limitation of these properties determined by static (anatomical) brain connectivity can be observed. Our work demonstrates that percolation, a universal characterization of critical phenomena and phase transitions, may serve as a window toward understanding the emergence of various brain properties.
Collapse
Affiliation(s)
- Yang Tian
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China,Laboratory of Advanced Computing and Storage, Central Research Institute, 2012 Laboratories, Huawei Technologies Co. Ltd., Beijing, China,* Corresponding Author: ;
| | - Pei Sun
- Department of Psychology and Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China,* Corresponding Author: ;
| |
Collapse
|
46
|
Sun L, Liang X, Duan D, Liu J, Chen Y, Wang X, Liao X, Xia M, Zhao T, He Y. Structural insight into the individual variability architecture of the functional brain connectome. Neuroimage 2022; 259:119387. [PMID: 35752416 DOI: 10.1016/j.neuroimage.2022.119387] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/15/2022] Open
Abstract
Human cognition and behaviors depend upon the brain's functional connectomes, which vary remarkably across individuals. However, whether and how the functional connectome individual variability architecture is structurally constrained remains largely unknown. Using tractography- and morphometry-based network models, we observed the spatial convergence of structural and functional connectome individual variability, with higher variability in heteromodal association regions and lower variability in primary regions. We demonstrated that functional variability is significantly predicted by a unifying structural variability pattern and that this prediction follows a primary-to-heteromodal hierarchical axis, with higher accuracy in primary regions and lower accuracy in heteromodal regions. We further decomposed group-level connectome variability patterns into individual unique contributions and uncovered the structural-functional correspondence that is associated with individual cognitive traits. These results advance our understanding of the structural basis of individual functional variability and suggest the importance of integrating multimodal connectome signatures for individual differences in cognition and behaviors.
Collapse
Affiliation(s)
- Lianglong Sun
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xinyuan Liang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Dingna Duan
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Jin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Yuhan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xindi Wang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Xuhong Liao
- School of Systems Science, Beijing Normal University, Beijing 100875, China
| | - Mingrui Xia
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China.
| | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; Chinese Institute for Brain Research, Beijing, 102206, China.
| |
Collapse
|
47
|
Liu ZQ, Vázquez-Rodríguez B, Spreng RN, Bernhardt BC, Betzel RF, Misic B. Time-resolved structure-function coupling in brain networks. Commun Biol 2022; 5:532. [PMID: 35654886 PMCID: PMC9163085 DOI: 10.1038/s42003-022-03466-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 05/09/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between structural and functional connectivity in the brain is a key question in systems neuroscience. Modern accounts assume a single global structure-function relationship that persists over time. Here we study structure-function coupling from a dynamic perspective, and show that it is regionally heterogeneous. We use a temporal unwrapping procedure to identify moment-to-moment co-fluctuations in neural activity, and reconstruct time-resolved structure-function coupling patterns. We find that patterns of dynamic structure-function coupling are region-specific. We observe stable coupling in unimodal and transmodal cortex, and dynamic coupling in intermediate regions, particularly in insular cortex (salience network) and frontal eye fields (dorsal attention network). Finally, we show that the variability of a region’s structure-function coupling is related to the distribution of its connection lengths. Collectively, our findings provide a way to study structure-function relationships from a dynamic perspective. Temporal unwrapping analysis of diffusion weighted MRI connectivity and functional MRI scans reveals that the coupling between structure and function in the human brain is regionally heterogeneous and provides a framework to evaluate these relationships from a dynamic perspective.
Collapse
|
48
|
A Riemannian approach to predicting brain function from the structural connectome. Neuroimage 2022; 257:119299. [PMID: 35636736 DOI: 10.1016/j.neuroimage.2022.119299] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/29/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Ongoing brain function is largely determined by the underlying wiring of the brain, but the specific rules governing this relationship remain unknown. Emerging literature has suggested that functional interactions between brain regions emerge from the structural connections through mono- as well as polysynaptic mechanisms. Here, we propose a novel approach based on diffusion maps and Riemannian optimization to emulate this dynamic mechanism in the form of random walks on the structural connectome and predict functional interactions as a weighted combination of these random walks. Our proposed approach was evaluated in two different cohorts of healthy adults (Human Connectome Project, HCP; Microstructure-Informed Connectomics, MICs). Our approach outperformed existing approaches and showed that performance plateaus approximately around the third random walk. At macroscale, we found that the largest number of walks was required in nodes of the default mode and frontoparietal networks, underscoring an increasing relevance of polysynaptic communication mechanisms in transmodal cortical networks compared to primary and unimodal systems.
Collapse
|
49
|
Seguin C, Mansour L S, Sporns O, Zalesky A, Calamante F. Network communication models narrow the gap between the modular organization of structural and functional brain networks. Neuroimage 2022; 257:119323. [PMID: 35605765 DOI: 10.1016/j.neuroimage.2022.119323] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/25/2022] [Accepted: 05/17/2022] [Indexed: 11/28/2022] Open
Abstract
Structural and functional brain networks are modular. Canonical functional systems, such as the default mode network, are well-known modules of the human brain and have been implicated in a large number of cognitive, behavioral and clinical processes. However, modules delineated in structural brain networks inferred from tractography generally do not recapitulate canonical functional systems. Neuroimaging evidence suggests that functional connectivity between regions in the same systems is not always underpinned by anatomical connections. As such, direct structural connectivity alone would be insufficient to characterize the functional modular organization of the brain. Here, we demonstrate that augmenting structural brain networks with models of indirect (polysynaptic) communication unveils a modular network architecture that more closely resembles the brain's established functional systems. We find that diffusion models of polysynaptic connectivity, particularly communicability, narrow the gap between the modular organization of structural and functional brain networks by 20-60%, whereas routing models based on single efficient paths do not improve mesoscopic structure-function correspondence. This suggests that functional modules emerge from the constraints imposed by local network structure that facilitates diffusive neural communication. Our work establishes the importance of modeling polysynaptic communication to understand the structural basis of functional systems.
Collapse
Affiliation(s)
- Caio Seguin
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States.
| | - Sina Mansour L
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, United States; Cognitive Science Program, Indiana University, Bloomington, IN, United States; Program in Neuroscience, Indiana University, Bloomington, IN, United States; Network Science Institute, Indiana University, Bloomington, IN, United States
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne and Melbourne Health, Melbourne, VIC, Australia; Department of Biomedical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Fernando Calamante
- The University of Sydney, School of Biomedical Engineering, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia; Sydney Imaging, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
50
|
Krendl AC, Betzel RF. Social cognitive network neuroscience. Soc Cogn Affect Neurosci 2022; 17:510-529. [PMID: 35352125 PMCID: PMC9071476 DOI: 10.1093/scan/nsac020] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/27/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Over the past three decades, research from the field of social neuroscience has identified a constellation of brain regions that relate to social cognition. Although these studies have provided important insights into the specific neural regions underlying social behavior, they may overlook the broader neural context in which those regions and the interactions between them are embedded. Network neuroscience is an emerging discipline that focuses on modeling and analyzing brain networks-collections of interacting neural elements. Because human cognition requires integrating information across multiple brain regions and systems, we argue that a novel social cognitive network neuroscience approach-which leverages methods from the field of network neuroscience and graph theory-can advance our understanding of how brain systems give rise to social behavior. This review provides an overview of the field of network neuroscience, discusses studies that have leveraged this approach to advance social neuroscience research, highlights the potential contributions of social cognitive network neuroscience to understanding social behavior and provides suggested tools and resources for conducting network neuroscience research.
Collapse
Affiliation(s)
- Anne C Krendl
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| | - Richard F Betzel
- Department of Psychological & Brain Sciences, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|