1
|
Rastelli C, Greco A, Finocchiaro C, Penazzi G, Braun C, De Pisapia N. Neural dynamics of semantic control underlying generative storytelling. Commun Biol 2025; 8:513. [PMID: 40155709 PMCID: PMC11953393 DOI: 10.1038/s42003-025-07913-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 03/10/2025] [Indexed: 04/01/2025] Open
Abstract
Storytelling has been pivotal for the transmission of knowledge across human history, yet the role of semantic control and its associated neural dynamics has been poorly investigated. Here, human participants generated stories that were either appropriate (ordinary), novel (random), or balanced (creative), while recording functional magnetic resonance imaging (fMRI). Deep language models confirmed participants adherence to task instructions. At the neural level, linguistic and visual areas exhibited neural synchrony across participants regardless of the semantic control level, with parietal and frontal regions being more synchronized during random ideation. Importantly, creative stories were differentiated by a multivariate pattern of neural activity in frontal and fronto-temporo-parietal cortices compared to ordinary and random stories. Crucially, similar brain regions were also encoding the features that distinguished the stories. Moreover, we found specific spatial frequency patterns underlying the modulation of semantic control during story generation, while functional coupling in default, salience, and control networks differentiated creative stories with their controls. Remarkably, the temporal irreversibility between visual and high-level areas was higher during creative ideation, suggesting the enhanced hierarchical structure of causal interactions as a neural signature of creative storytelling. Together, our findings highlight the neural mechanisms underlying the regulation of semantic exploration during narrative ideation.
Collapse
Affiliation(s)
- Clara Rastelli
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
- MEG Center, University of Tübingen, Tübingen, Germany.
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany.
| | - Antonino Greco
- MEG Center, University of Tübingen, Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Chiara Finocchiaro
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Gabriele Penazzi
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy
| | - Christoph Braun
- MEG Center, University of Tübingen, Tübingen, Germany
- Department of Neural Dynamics and Magnetoencephalography, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Nicola De Pisapia
- Department of Psychology and Cognitive Science, University of Trento, Rovereto, Italy.
| |
Collapse
|
2
|
Alberti F, Menardi A, Margulies DS, Vallesi A. Understanding the Link Between Functional Profiles and Intelligence Through Dimensionality Reduction and Graph Analysis. Hum Brain Mapp 2025; 46:e70149. [PMID: 39981715 PMCID: PMC11843225 DOI: 10.1002/hbm.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 11/27/2024] [Accepted: 01/17/2025] [Indexed: 02/22/2025] Open
Abstract
There is a growing interest in neuroscience for how individual-specific structural and functional features of the cortex relate to cognitive traits. This work builds on previous research which, by using classical high-dimensional approaches, has proven that the interindividual variability of functional connectivity (FC) profiles reflects differences in fluid intelligence. To provide an additional perspective into this relationship, the present study uses a recent framework for investigating cortical organization: functional gradients. This approach places local connectivity profiles within a common low-dimensional space whose axes are functionally interpretable dimensions. Specifically, this study uses a data-driven approach to model the association between FC variability and interindividual differences in intelligence. For one of these loci, in the right ventral-lateral prefrontal cortex (vlPFC), we describe an association between fluid intelligence and the relative functional distance of this area from sensory and high-cognition systems. Furthermore, the topological properties of this region indicate that, with decreasing functional affinity with high-cognition systems, vlPFC functional connections are more evenly distributed across all networks. Participating in multiple functional networks may reflect a better ability to coordinate sensory and high-order cognitive systems.
Collapse
Affiliation(s)
- Francesco Alberti
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Arianna Menardi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| | - Daniel S. Margulies
- Integrative Neuroscience and Cognition Center (UMR 8002)Centre National del la Recherche ScientifiqueParisFrance
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordUnited Kingdom
| | - Antonino Vallesi
- Department of NeuroscienceUniversity of PadovaPadovaItaly
- Padova Neurosciene CenterUniversity of PadovaPadovaItaly
| |
Collapse
|
3
|
Ben Messaoud R, Le Du V, Bousfiha C, Corsi MC, Gonzalez-Astudillo J, Kaufmann BC, Venot T, Couvy-Duchesne B, Migliaccio L, Rosso C, Bartolomeo P, Chavez M, De Vico Fallani F. Low-dimensional controllability of brain networks. PLoS Comput Biol 2025; 21:e1012691. [PMID: 39775065 PMCID: PMC11706394 DOI: 10.1371/journal.pcbi.1012691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
Identifying the driver nodes of a network has crucial implications in biological systems from unveiling causal interactions to informing effective intervention strategies. Despite recent advances in network control theory, results remain inaccurate as the number of drivers becomes too small compared to the network size, thus limiting the concrete usability in many real-life applications. To overcome this issue, we introduced a framework that integrates principles from spectral graph theory and output controllability to project the network state into a smaller topological space formed by the Laplacian network structure. Through extensive simulations on synthetic and real networks, we showed that a relatively low number of projected components can significantly improve the control accuracy. By introducing a new low-dimensional controllability metric we experimentally validated our method on N = 6134 human connectomes obtained from the UK-biobank cohort. Results revealed previously unappreciated influential brain regions, enabled to draw directed maps between differently specialized cerebral systems, and yielded new insights into hemispheric lateralization. Taken together, our results offered a theoretically grounded solution to deal with network controllability and provided insights into the causal interactions of the human brain.
Collapse
Affiliation(s)
- Remy Ben Messaoud
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Vincent Le Du
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Camile Bousfiha
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Marie-Constance Corsi
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Juliana Gonzalez-Astudillo
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Brigitte Charlotte Kaufmann
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Tristan Venot
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Baptiste Couvy-Duchesne
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Institute for Molecular Bioscience, University of Queensland, St Lucia, Australia
| | - Lara Migliaccio
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease, Centre of Excellence of Neurodegenerative Disease, Hôpital Pitié-Salpêtrière, Paris, France
| | - Charlotte Rosso
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
- Urgences Cérébro-Vasculaires, DMU Neurosciences, Hôpital Pitié-Salpêtrière, Paris, France
| | - Paolo Bartolomeo
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| | - Fabrizio De Vico Fallani
- Inria Paris, Paris, France
- Sorbonne Université, Paris Brain Institute, CNRS, Inserm, AP-HP, Hôpital de la Pitié-Salpêtrière, Paris, France
| |
Collapse
|
4
|
Wang S, Wang Y, Xu FH, Tian X, Fredericks CA, Shen L, Zhao Y, for the Alzheimer's Disease Neuroimaging Initiative. Sex-specific topological structure associated with dementia via latent space estimation. Alzheimers Dement 2024; 20:8387-8401. [PMID: 39530632 PMCID: PMC11667551 DOI: 10.1002/alz.14266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/13/2024] [Accepted: 08/26/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION We investigate sex-specific topological structures associated with typical Alzheimer's disease (AD) dementia using a novel state-of-the-art latent space estimation technique. METHODS This study applies a probabilistic approach for latent space estimation that extends current multiplex network modeling approaches and captures the higher-order dependence in functional connectomes by preserving transitivity and modularity structures. RESULTS We find sex differences in network topology with females showing more default mode network (DMN)-centered hyperactivity and males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that centrality plays an important role in dementia-related dysfunction with stronger association between connectivity changes and regional centrality in females than in males. DISCUSSION The study contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes. HIGHLIGHTS We find evidence supporting the active role network topology plays in neurodegeneration with an imbalance between the excitatory and inhibitory mechanisms that can lead to whole-brain destabilization in dementia patients. We find sex-based differences in network topology with females showing more default mode network (DMN)-centered hyperactivity, males showing more limbic system (LS)-centered hyperactivity, while both show DMN-centered hypoactivity. We find that brain region centrality plays an important role in dementia-related dysfunction with a stronger association between connectivity changes and regional centrality in females than in males. Females, compared to males, tend to exhibit stronger dementia-related changes in regions that are the central actors of the brain networks. Taken together, this research uniquely contributes to the current literature by providing a more comprehensive picture of dementia-related neurodegeneration linking centrality, network segregation, and DMN-centered changes in functional connectomes, and how these components of neurodegeneration differ between the sexes.
Collapse
Affiliation(s)
- Selena Wang
- Department of Biostatistics and Health Data ScienceIndiana University School of MedicineIndianapolisIndianaUSA
| | - Yiting Wang
- Department of StatisticsUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Frederick H. Xu
- Department of BioengineeringUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Xinyuan Tian
- Department of NeurologyYale School of MedicineYale UniversityNew HavenConnecticutUSA
| | - Carolyn A. Fredericks
- Department of Biostatistics, Epidemiology and InformaticsUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Li Shen
- Department of BiostatisticsYale School of Public HealthNew HavenConnecticutUSA
| | - Yize Zhao
- Department of NeurologyYale School of MedicineYale UniversityNew HavenConnecticutUSA
| | | |
Collapse
|
5
|
Blanco R, Preti MG, Koba C, Ville DVD, Crimi A. Comparing structure-function relationships in brain networks using EEG and fNIRS. Sci Rep 2024; 14:28976. [PMID: 39578593 PMCID: PMC11584861 DOI: 10.1038/s41598-024-79817-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 11/12/2024] [Indexed: 11/24/2024] Open
Abstract
Identifying relationships between structural and functional networks is crucial for understanding the large-scale organization of the human brain. The potential contribution of emerging techniques like functional near-infrared spectroscopy to investigate the structure-functional relationship has yet to be explored. In our study, using simultaneous Electroencephalography (EEG) and Functional near-infrared spectroscopy (fNIRS) recordings from 18 subjects, we characterize global and local structure-function coupling using source-reconstructed EEG and fNIRS signals in both resting state and motor imagery tasks, as this relationship during task periods remains underexplored. Employing the mathematical framework of graph signal processing, we investigate how this relationship varies across electrical and hemodynamic networks and different brain states. Results show that fNIRS structure-function coupling resembles slower-frequency EEG coupling at rest, with variations across brain states and oscillations. Locally, the relationship is heterogeneous, with greater coupling in the sensory cortex and increased decoupling in the association cortex, following the unimodal to transmodal gradient. Discrepancies between EEG and fNIRS are noted, particularly in the frontoparietal network. Cross-band representations of neural activity revealed lower correspondence between electrical and hemodynamic activity in the transmodal cortex, irrespective of brain state while showing specificity for the somatomotor network during a motor imagery task. Overall, these findings initiate a multimodal comprehension of structure-function relationship and brain organization when using affordable functional brain imaging.
Collapse
Affiliation(s)
- Rosmary Blanco
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland.
| | - Maria Giulia Preti
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Cemal Koba
- Computer Vision lab, Sano Center for Computational Medicine, Krakow, Poland
| | - Dimitri Van De Ville
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Alessandro Crimi
- Computer Science faculty, AGH University of Science and Technology, Krakow, Poland
| |
Collapse
|
6
|
Fotiadis P, Parkes L, Davis KA, Satterthwaite TD, Shinohara RT, Bassett DS. Structure-function coupling in macroscale human brain networks. Nat Rev Neurosci 2024; 25:688-704. [PMID: 39103609 DOI: 10.1038/s41583-024-00846-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 08/07/2024]
Abstract
Precisely how the anatomical structure of the brain gives rise to a repertoire of complex functions remains incompletely understood. A promising manifestation of this mapping from structure to function is the dependency of the functional activity of a brain region on the underlying white matter architecture. Here, we review the literature examining the macroscale coupling between structural and functional connectivity, and we establish how this structure-function coupling (SFC) can provide more information about the underlying workings of the brain than either feature alone. We begin by defining SFC and describing the computational methods used to quantify it. We then review empirical studies that examine the heterogeneous expression of SFC across different brain regions, among individuals, in the context of the cognitive task being performed, and over time, as well as its role in fostering flexible cognition. Last, we investigate how the coupling between structure and function is affected in neurological and psychiatric conditions, and we report how aberrant SFC is associated with disease duration and disease-specific cognitive impairment. By elucidating how the dynamic relationship between the structure and function of the brain is altered in the presence of neurological and psychiatric conditions, we aim to not only further our understanding of their aetiology but also establish SFC as a new and sensitive marker of disease symptomatology and cognitive performance. Overall, this Review collates the current knowledge regarding the regional interdependency between the macroscale structure and function of the human brain in both neurotypical and neuroatypical individuals.
Collapse
Affiliation(s)
- Panagiotis Fotiadis
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Anaesthesiology, University of Michigan, Ann Arbor, MI, USA.
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Kathryn A Davis
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing & Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA.
- Santa Fe Institute, Santa Fe, NM, USA.
| |
Collapse
|
7
|
Sipes BS, Nagarajan SS, Raj A. Integrative, segregative, and degenerate harmonics of the structural connectome. Commun Biol 2024; 7:986. [PMID: 39143303 PMCID: PMC11324790 DOI: 10.1038/s42003-024-06669-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
Unifying integration and segregation in the brain has been a fundamental puzzle in neuroscience ever since the conception of the "binding problem." Here, we introduce a framework that places integration and segregation within a continuum based on a fundamental property of the brain-its structural connectivity graph Laplacian harmonics and a new feature we term the gap-spectrum. This framework organizes harmonics into three regimes-integrative, segregative, and degenerate-that together account for various group-level properties. Integrative and segregative harmonics occupy the ends of the continuum, and they share properties such as reproducibility across individuals, stability to perturbation, and involve "bottom-up" sensory networks. Degenerate harmonics are in the middle of the continuum, and they are subject-specific, flexible, and involve "top-down" networks. The proposed framework accommodates inter-subject variation, sensitivity to changes, and structure-function coupling in ways that offer promising avenues for studying cognition and consciousness in the brain.
Collapse
Affiliation(s)
- Benjamin S Sipes
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA.
| | - Srikantan S Nagarajan
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA, USA
| |
Collapse
|
8
|
Luppi AI, Rosas FE, Mediano PAM, Demertzi A, Menon DK, Stamatakis EA. Unravelling consciousness and brain function through the lens of time, space, and information. Trends Neurosci 2024; 47:551-568. [PMID: 38824075 DOI: 10.1016/j.tins.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/29/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Disentangling how cognitive functions emerge from the interplay of brain dynamics and network architecture is among the major challenges that neuroscientists face. Pharmacological and pathological perturbations of consciousness provide a lens to investigate these complex challenges. Here, we review how recent advances about consciousness and the brain's functional organisation have been driven by a common denominator: decomposing brain function into fundamental constituents of time, space, and information. Whereas unconsciousness increases structure-function coupling across scales, psychedelics may decouple brain function from structure. Convergent effects also emerge: anaesthetics, psychedelics, and disorders of consciousness can exhibit similar reconfigurations of the brain's unimodal-transmodal functional axis. Decomposition approaches reveal the potential to translate discoveries across species, with computational modelling providing a path towards mechanistic integration.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Montreal Neurological Institute, McGill University, Montreal, QC, Canada; St John's College, University of Cambridge, Cambridge, UK; Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
| | - Fernando E Rosas
- Center for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Department of Informatics, University of Sussex, Brighton, UK; Center for Psychedelic Research, Imperial College London, London, UK
| | | | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-Cyclotron Research Center In Vivo Imaging, University of Liège, Liège 4000, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Liège 4000, Belgium; National Fund for Scientific Research (FNRS), Brussels 1000, Belgium
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK; Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
9
|
Luppi AI, Liu ZQ, Milisav F, Bazinet V, Hansen J, Misic B. From abstract networks to biological realities. Phys Life Rev 2024; 49:12-14. [PMID: 38471192 DOI: 10.1016/j.plrev.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Affiliation(s)
- Andrea I Luppi
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Filip Milisav
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Vincent Bazinet
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Justine Hansen
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Bratislav Misic
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| |
Collapse
|
10
|
Luppi AI, Gellersen HM, Liu ZQ, Peattie ARD, Manktelow AE, Adapa R, Owen AM, Naci L, Menon DK, Dimitriadis SI, Stamatakis EA. Systematic evaluation of fMRI data-processing pipelines for consistent functional connectomics. Nat Commun 2024; 15:4745. [PMID: 38834553 PMCID: PMC11150439 DOI: 10.1038/s41467-024-48781-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 05/10/2024] [Indexed: 06/06/2024] Open
Abstract
Functional interactions between brain regions can be viewed as a network, enabling neuroscientists to investigate brain function through network science. Here, we systematically evaluate 768 data-processing pipelines for network reconstruction from resting-state functional MRI, evaluating the effect of brain parcellation, connectivity definition, and global signal regression. Our criteria seek pipelines that minimise motion confounds and spurious test-retest discrepancies of network topology, while being sensitive to both inter-subject differences and experimental effects of interest. We reveal vast and systematic variability across pipelines' suitability for functional connectomics. Inappropriate choice of data-processing pipeline can produce results that are not only misleading, but systematically so, with the majority of pipelines failing at least one criterion. However, a set of optimal pipelines consistently satisfy all criteria across different datasets, spanning minutes, weeks, and months. We provide a full breakdown of each pipeline's performance across criteria and datasets, to inform future best practices in functional connectomics.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, University of Cambridge, Cambridge, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- St John's College, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, Canada.
| | - Helena M Gellersen
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Zhen-Qi Liu
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander R D Peattie
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Anne E Manktelow
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Ram Adapa
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- Department of Psychology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - David K Menon
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Spain
- Institut de Neurociències, University of Barcelona, Barcelona, Spain
- Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff, Wales, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Neuroscience and Mental Health Research Institute, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, College of Biomedical and Life Sciences, Cardiff University, Cardiff, Wales, UK
- Integrative Neuroimaging Lab, Thessaloniki, Greece
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Vohryzek J, Luppi AI, Atasoy S, Deco G, Carhart-Harris RL, Timmermann C, Kringelbach ML. Time-resolved coupling between connectome harmonics and subjective experience under the psychedelic DMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596410. [PMID: 38853985 PMCID: PMC11160714 DOI: 10.1101/2024.05.30.596410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Exploring the intricate relationship between brain's structure and function, and how this affects subjective experience is a fundamental pursuit in neuroscience. Psychedelic substances offer a unique insight into the influences of specific neurotransmitter systems on perception, cognition and consciousness. Specifically, their impact on brain function propagates across the structural connectome - a network of white matter pathways linking different regions. To comprehensively grasp the effects of psychedelic compounds on brain function, we used a theoretically rigorous framework known as connectome harmonic decomposition. This framework provides a robust method to characterize how brain function intricately depends on the organized network structure of the human connectome. We show that the connectome harmonic repertoire under DMT is reshaped in line with other reported psychedelic compounds - psilocybin, LSD and ketamine. Furthermore, we show that the repertoire entropy of connectome harmonics increases under DMT, as with those other psychedelics. Importantly, we demonstrate for the first time that measures of energy spectrum difference and repertoire entropy of connectome harmonics indexes the intensity of subjective experience of the participants in a time-resolved manner reflecting close coupling between connectome harmonics and subjective experience.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Andrea I. Luppi
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- St John’s College, University of Cambridge, Cambridge, United Kingdom
- Division of Information Engineering, University of Cambridge, Cambridge, United Kingdom
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Robin L. Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
- Departments of Neurology and Psychiatry, University of California San Francisco, San Francisco, USA
| | - Christopher Timmermann
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, United Kingdom
| | - Morten L. Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| |
Collapse
|
12
|
Xia J, Liu C, Li J, Meng Y, Yang S, Chen H, Liao W. Decomposing cortical activity through neuronal tracing connectome-eigenmodes in marmosets. Nat Commun 2024; 15:2289. [PMID: 38480767 PMCID: PMC10937940 DOI: 10.1038/s41467-024-46651-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/06/2024] [Indexed: 03/17/2024] Open
Abstract
Deciphering the complex relationship between neuroanatomical connections and functional activity in primate brains remains a daunting task, especially regarding the influence of monosynaptic connectivity on cortical activity. Here, we investigate the anatomical-functional relationship and decompose the neuronal-tracing connectome of marmoset brains into a series of eigenmodes using graph signal processing. These cellular connectome eigenmodes effectively constrain the cortical activity derived from resting-state functional MRI, and uncover a patterned cellular-functional decoupling. This pattern reveals a spatial gradient from coupled dorsal-posterior to decoupled ventral-anterior cortices, and recapitulates micro-structural profiles and macro-scale hierarchical cortical organization. Notably, these marmoset-derived eigenmodes may facilitate the inference of spontaneous cortical activity and functional connectivity of homologous areas in humans, highlighting the potential generalizing of the connectomic constraints across species. Collectively, our findings illuminate how neuronal-tracing connectome eigenmodes constrain cortical activity and improve our understanding of the brain's anatomical-functional relationship.
Collapse
Affiliation(s)
- Jie Xia
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Cirong Liu
- Institute of Neuroscience, CAS Key Laboratory of Primate Neurobiology, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, P.R. China
| | - Jiao Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Yao Meng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Siqi Yang
- School of Cybersecurity, Chengdu University of Information Technology, Chengdu, 610225, P.R. China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| | - Wei Liao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
- MOE Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China.
| |
Collapse
|
13
|
Luppi AI, Uhrig L, Tasserie J, Signorelli CM, Stamatakis EA, Destexhe A, Jarraya B, Cofre R. Local orchestration of distributed functional patterns supporting loss and restoration of consciousness in the primate brain. Nat Commun 2024; 15:2171. [PMID: 38462641 PMCID: PMC10925605 DOI: 10.1038/s41467-024-46382-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
A central challenge of neuroscience is to elucidate how brain function supports consciousness. Here, we combine the specificity of focal deep brain stimulation with fMRI coverage of the entire cortex, in awake and anaesthetised non-human primates. During propofol, sevoflurane, or ketamine anaesthesia, and subsequent restoration of responsiveness by electrical stimulation of the central thalamus, we investigate how loss of consciousness impacts distributed patterns of structure-function organisation across scales. We report that distributed brain activity under anaesthesia is increasingly constrained by brain structure across scales, coinciding with anaesthetic-induced collapse of multiple dimensions of hierarchical cortical organisation. These distributed signatures are observed across different anaesthetics, and they are reversed by electrical stimulation of the central thalamus, coinciding with recovery of behavioural markers of arousal. No such effects were observed upon stimulating the ventral lateral thalamus, demonstrating specificity. Overall, we identify consistent distributed signatures of consciousness that are orchestrated by specific thalamic nuclei.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université de Paris Cité, Paris, France
| | - Jordy Tasserie
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Center for Brain Circuit Therapeutics, Department of Neurology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Camilo M Signorelli
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Laboratory of Neurophysiology and Movement Biomechanics, Université Libre de Bruxelles, 1070, Brussels, Belgium
- Department of Computer Science, University of Oxford, Oxford, 7 Parks Rd, Oxford, OX1 3QG, UK
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Alain Destexhe
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Saclay, NeuroSpin Center, 91191, Gif-sur-Yvette, France
- Department of Neurology, Hopital Foch, 92150, Suresnes, France
| | - Rodrigo Cofre
- Institute of Neuroscience (NeuroPSI), Paris-Saclay University, Centre National de la Recherche Scientifique (CNRS), Gif-sur-Yvette, France.
| |
Collapse
|
14
|
Peraza JA, Salo T, Riedel MC, Bottenhorn KL, Poline JB, Dockès J, Kent JD, Bartley JE, Flannery JS, Hill-Bowen LD, Lobo RP, Poudel R, Ray KL, Robinson JL, Laird RW, Sutherland MT, de la Vega A, Laird AR. Methods for decoding cortical gradients of functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.01.551505. [PMID: 37577598 PMCID: PMC10418206 DOI: 10.1101/2023.08.01.551505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Macroscale gradients have emerged as a central principle for understanding functional brain organization. Previous studies have demonstrated that a principal gradient of connectivity in the human brain exists, with unimodal primary sensorimotor regions situated at one end and transmodal regions associated with the default mode network and representative of abstract functioning at the other. The functional significance and interpretation of macroscale gradients remains a central topic of discussion in the neuroimaging community, with some studies demonstrating that gradients may be described using meta-analytic functional decoding techniques. However, additional methodological development is necessary to fully leverage available meta-analytic methods and resources and quantitatively evaluate their relative performance. Here, we conducted a comprehensive series of analyses to investigate and improve the framework of data-driven, meta-analytic methods, thereby establishing a principled approach for gradient segmentation and functional decoding. We found that a two-segment solution determined by a k-means segmentation approach and an LDA-based meta-analysis combined with the NeuroQuery database was the optimal combination of methods for decoding functional connectivity gradients. Finally, we proposed a method for decoding additional components of the gradient decomposition. The current work aims to provide recommendations on best practices and flexible methods for gradient-based functional decoding of fMRI data.
Collapse
Affiliation(s)
- Julio A. Peraza
- Department of Physics, Florida International University, Miami, FL, USA
| | - Taylor Salo
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Katherine L. Bottenhorn
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA, USA
| | - Jean-Baptiste Poline
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jérôme Dockès
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - James D. Kent
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Jessica S. Flannery
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | | | | | - Ranjita Poudel
- Department of Health Outcomes and Behavior, Moffitt Cancer Center, Tampa, FL, USA
| | - Kimberly L. Ray
- Department of Psychology, University of Texas at Austin, Austin, TX, USA
| | | | - Robert W. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | | | | | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| |
Collapse
|
15
|
Luppi AI, Vohryzek J, Kringelbach ML, Mediano PAM, Craig MM, Adapa R, Carhart-Harris RL, Roseman L, Pappas I, Peattie ARD, Manktelow AE, Sahakian BJ, Finoia P, Williams GB, Allanson J, Pickard JD, Menon DK, Atasoy S, Stamatakis EA. Distributed harmonic patterns of structure-function dependence orchestrate human consciousness. Commun Biol 2023; 6:117. [PMID: 36709401 PMCID: PMC9884288 DOI: 10.1038/s42003-023-04474-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2023] [Indexed: 01/29/2023] Open
Abstract
A central question in neuroscience is how consciousness arises from the dynamic interplay of brain structure and function. Here we decompose functional MRI signals from pathological and pharmacologically-induced perturbations of consciousness into distributed patterns of structure-function dependence across scales: the harmonic modes of the human structural connectome. We show that structure-function coupling is a generalisable indicator of consciousness that is under bi-directional neuromodulatory control. We find increased structure-function coupling across scales during loss of consciousness, whether due to anaesthesia or brain injury, capable of discriminating between behaviourally indistinguishable sub-categories of brain-injured patients, tracking the presence of covert consciousness. The opposite harmonic signature characterises the altered state induced by LSD or ketamine, reflecting psychedelic-induced decoupling of brain function from structure and correlating with physiological and subjective scores. Overall, connectome harmonic decomposition reveals how neuromodulation and the network architecture of the human connectome jointly shape consciousness and distributed functional activation across scales.
Collapse
Affiliation(s)
- Andrea I Luppi
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK.
- Leverhulme Centre for the Future of Intelligence, University of Cambridge, Cambridge, CB2 1SB, UK.
| | - Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, 08005, Spain
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Pedro A M Mediano
- Department of Psychology, University of Cambridge, Cambridge, CB2 3EB, UK
- Department of Computing, Imperial College London, London, W12 0NN, UK
| | - Michael M Craig
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Ram Adapa
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Robin L Carhart-Harris
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
- Psychedelics Division - Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Leor Roseman
- Center for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, W12 0NN, UK
| | - Ioannis Pappas
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Alexander R D Peattie
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Anne E Manktelow
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Barbara J Sahakian
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Psychiatry, MRC/Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - Paola Finoia
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Guy B Williams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Judith Allanson
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurosciences, Cambridge University Hospitals NHS Foundation, Addenbrooke's Hospital, Cambridge, CB2 0QQ, UK
| | - John D Pickard
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, CB2 0QQ, UK
- Division of Neurosurgery, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - David K Menon
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Selen Atasoy
- Department of Psychiatry, University of Oxford, Oxford, OX3 7JX, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Division of Anaesthesia, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
16
|
Robinson PA. Discrete spectral eigenmode-resonance network of brain dynamics and connectivity. Phys Rev E 2021; 104:034411. [PMID: 34654199 DOI: 10.1103/physreve.104.034411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 09/02/2021] [Indexed: 12/27/2022]
Abstract
The problem of finding a compact natural representation of brain dynamics and connectivity is addressed using an expansion in terms of physical spatial eigenmodes and their frequency resonances. It is demonstrated that this discrete expansion via the system transfer function enables linear and nonlinear dynamics to be analyzed in compact form in terms of natural dynamic "atoms," each of which is a frequency resonance of an eigenmode. Because these modal resonances are determined by the system dynamics, not the investigator, they are privileged over widely used phenomenological patterns, and obviate the need for artificial discretizations and thresholding in coordinate space. It is shown that modal resonances participate as nodes of a discrete spectral network, are noninteracting in the linear regime, but are linked nonlinearly by wave-wave coalescence and decay processes. The modal resonance formulation is shown to be capable of speeding numerical calculations of strongly nonlinear interactions. Recent work in brain dynamics, especially based on neural field theory (NFT) approaches, allows eigenmodes and their resonances to be estimated from data without assuming a specific brain model. This means that dynamic equations can be inferred using system identification methods from control theory, rather than being assumed, and resonances can be interpreted as control-systems data filters. The results link brain activity and connectivity with control-systems functions such as prediction and attention via gain control and can also be linked to specific NFT predictions if desired, thereby providing a convenient bridge between physiologically based theories and experiment. Amplitudes of modes and resonances can also be tracked to provide a more direct and temporally localized representation of the dynamics than correlations and covariances, which are widely used in the field. By synthesizing many different lines of research, this work provides a way to link quantitative electrophysiological and imaging measurements, connectivity, brain dynamics, and function. This underlines the need to move between coordinate and spectral representations as required. Moreover, standard theoretical-physics approaches and mathematical methods can be used in place of ad hoc statistical measures such as those based on graph theory of artificially discretized and decimated networks, which are highly prone to selection effects and artifacts.
Collapse
Affiliation(s)
- P A Robinson
- School of Physics, University of Sydney, New South Wales 2006, Australia and Center for Integrative Brain Function, University of Sydney, New South Wales 2006, Australia
| |
Collapse
|