1
|
Sancetta BM, Matarrese MAG, Ricci L, Lanzone J, Lippa G, Nesta M, Zappasodi F, Brunetti M, Di Lazzaro V, Tombini M, Assenza G. Altered neural avalanche spreading in people with drug-resistant epilepsy ✰. Neuroimage 2025; 311:121188. [PMID: 40185425 DOI: 10.1016/j.neuroimage.2025.121188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 04/01/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE To characterize a peculiar "EEG endophenotype" of drug-resistant epilepsy (DRE) through the graph theory characterization of avalanche spatiotemporal spreading properties. METHODS We performed avalanche analysis and computed avalanche transition matrices (ATMs) on 19-channel scalp EEG of 120 people with epilepsy (60 DRE and 60 non-DRE) who assumed two anti-seizure medications, comparing such results with a group of 40 healthy subjects (HS). Network topologies of ATMs were characterized through graph theory metrics. We performed an analysis of variance to compare aperiodic metrics between HS, DRE and non-DRE. Logistic regression was performed to test and compare the ability of graph theory metrics on ATM and clinical features to correctly discriminate the PwE group according to the clinical outcome (DRE or non-DRE). RESULTS DRE exhibited a peculiar altered avalanche spreading as proved by the higher mean betweenness centrality, the longer characteristic path length and the lower small-world index (more regular and less plastic network topology) of ATMs than non-DRE and HS (p-values from <0.001 to 0.05). Graph metrics on ATMs significantly improved the yield of detecting DRE and contributed the most to the model accuracy (0.83) than clinical features. Resting-state EEG activity of HS and PwE did not deviate from the characteristics of a system operating at criticality. CONCLUSIONS ATMs detect alterations of resting-state networks peculiar to the DRE condition. SIGNIFICANCE These findings could open new scenarios for the future identification of promising biomarkers of DRE through scalp EEG.
Collapse
Affiliation(s)
- B M Sancetta
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy.
| | - M A G Matarrese
- Research Unit of Intelligent Technologies for Health and Wellbeing, Department of Engineering, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy
| | - L Ricci
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy
| | - J Lanzone
- Neurophysiology Service and Neurology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina, 60, Milan 20132, Italy
| | - G Lippa
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy
| | - M Nesta
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy
| | - F Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi 'G. d'Annunzio' di Chieti-Pescara, Via dei Vestini, Chieti 66100, Italy; Institute for Advanced Biomedical Technologies, Università degli Studi 'G. d'Annunzio' di Chieti-Pescara,Via dei Vestini, Chieti 66100, Italy; Behavioral Imaging and Neural Dynamics center, Università degli Studi 'G. d'Annunzio' di Chieti-Pescara, Via dei Vestini, Chieti 66100, Italy
| | - M Brunetti
- Department of Neuroscience, Imaging and Clinical Sciences, Università degli Studi 'G. d'Annunzio' di Chieti-Pescara, Via dei Vestini, Chieti 66100, Italy; Institute for Advanced Biomedical Technologies, Università degli Studi 'G. d'Annunzio' di Chieti-Pescara,Via dei Vestini, Chieti 66100, Italy
| | - V Di Lazzaro
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy
| | - M Tombini
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy
| | - G Assenza
- Research Unit of Neurology, Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo 21, Rome 00128, Italy; Operative Research Unit of Neurology, Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo, 200, Roma 00128, Italy
| |
Collapse
|
2
|
Lapo K, Ichinaga SM, Kutz JN. A method for unsupervised learning of coherent spatiotemporal patterns in multiscale data. Proc Natl Acad Sci U S A 2025; 122:e2415786122. [PMID: 39951505 PMCID: PMC11848389 DOI: 10.1073/pnas.2415786122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/22/2024] [Indexed: 02/16/2025] Open
Abstract
The unsupervised and principled diagnosis of multiscale data is a fundamental obstacle in modern scientific problems from, for instance, weather and climate prediction, neurology, epidemiology, and turbulence. Multiscale data are characterized by a combination of processes acting along multiple dimensions simultaneously, spatiotemporal scales across orders of magnitude, nonstationarity, and/or invariances such as translation and rotation. Existing methods are not well-suited to multiscale data, usually requiring supervised strategies such as human intervention, extensive tuning, or selection of ideal time periods. We present the multiresolution coherent spatio-temporal scale separation (mrCOSTS), a hierarchical and automated algorithm for the diagnosis of coherent patterns or modes in multiscale data. mrCOSTS is a variant of dynamic mode decomposition which decomposes data into bands of spatial patterns with shared time dynamics, thereby providing a robust method for analyzing multiscale data. It requires no training but instead takes advantage of the hierarchical nature of multiscale systems. We demonstrate mrCOSTS using complex multiscale datasets that are canonically difficult to analyze: 1) climate patterns of sea surface temperature, 2) electrophysiological observations of neural signals of the motor cortex, and 3) horizontal wind in the mountain boundary layer. With mrCOSTS, we trivially retrieve complex dynamics that were previously difficult to resolve while additionally extracting hitherto unknown patterns of activity embedded in the dynamics, allowing for advancing the understanding of these fields of study. This method is an important advancement for addressing the multiscale data which characterize many of the grand challenges in science and engineering.
Collapse
Affiliation(s)
- Karl Lapo
- Department of Atmospheric and Cryospheric Sciences, University of Innsbruck, Innsbruck6020, Austria
| | - Sara M. Ichinaga
- Department of Applied Mathematics, University of Washington, Seattle, WA98195
| | - J. Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA98195
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA98195
| |
Collapse
|
3
|
Jedynak M, Troisi Lopez E, Romano A, Jirsa V, David O, Sorrentino P. Intermodal Consistency of Whole-Brain Connectivity and Signal Propagation Delays. Hum Brain Mapp 2025; 46:e70093. [PMID: 39917852 PMCID: PMC11803410 DOI: 10.1002/hbm.70093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 09/28/2024] [Accepted: 11/19/2024] [Indexed: 02/11/2025] Open
Abstract
Measuring propagation of perturbations across the human brain and their transmission delays is critical for network neuroscience, but it is a challenging problem that still requires advancement. Here, we compare results from a recently introduced, noninvasive technique of functional delays estimation from source-reconstructed electro/magnetoencephalography, to the corresponding findings from a large dataset of cortico-cortical evoked potentials estimated from intracerebral stimulations of patients suffering from pharmaco-resistant epilepsies. The two methods yield significantly similar probabilistic connectivity maps and signal propagation delays, in both cases characterized with Pearson correlations greater than 0.5 (when grouping by stimulated parcel is applied for delays). This similarity suggests a correspondence between the mechanisms underpinning the propagation of spontaneously generated scale-free perturbations (i.e., neuronal avalanches observed in resting state activity studied using magnetoencephalography) and the spreading of cortico-cortical evoked potentials. This manuscript provides evidence for the accuracy of the estimate of functional delays obtained noninvasively from reconstructed sources. Conversely, our findings show that estimates obtained from externally induced perturbations in patients capture physiological activities in healthy subjects. In conclusion, this manuscript constitutes a mutual validation between two modalities, broadening their scope of applicability and interpretation. Importantly, the capability to measure delays noninvasively (as per MEG) paves the way for the inclusion of functional delays in personalized large-scale brain models as well as in diagnostic and prognostic algorithms.
Collapse
Affiliation(s)
- Maciej Jedynak
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems of National Research CouncilPozzuoliItaly
| | - Antonella Romano
- Department of Motor Sciences and WellnessUniversity of Naples “Parthenope”NaplesItaly
| | - Viktor Jirsa
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
| | - Olivier David
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
- Department of NeurosurgeryFondation Lenval Pediatric HospitalNiceFrance
| | - Pierpaolo Sorrentino
- Aix Marseille University, INSERM, INS, Institut de Neurosciences des SystèmesMarseilleFrance
- Department of Biomedical SciencesUniversity of SassariSassariItaly
| |
Collapse
|
4
|
Lopez ET, Corsi MC, Danieli A, Antoniazzi L, Angiolelli M, Bonanni P, Sorrentino P, Duma GM. Dynamic reconfiguration of aperiodic brain activity supports cognitive functioning in epilepsy: A neural fingerprint identification. iScience 2025; 28:111497. [PMID: 39758818 PMCID: PMC11699349 DOI: 10.1016/j.isci.2024.111497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/18/2024] [Accepted: 11/26/2024] [Indexed: 01/07/2025] Open
Abstract
Temporal lobe epilepsy (TLE) is characterized by alterations of brain dynamic on a large-scale associated with altered cognitive functioning. Here, we aimed at analyzing dynamic reconfiguration of brain activity, using the neural fingerprint approach, to delineate subject-specific characteristics and their cognitive correlates in TLE. We collected 10 min of resting-state scalp-electroencephalography (EEG, 128 channels), free from epileptiform activity, from 68 TLE patients and 34 controls. The functional network was defined by the spatiotemporal spreading, across cortical regions, of aperiodic bursts of signals' amplitude (neuronal avalanches), encapsulated into the avalanche transition matrix (ATM). The fingerprint analysis of the ATMs revealed more stereotyped patterns in patients with respect to controls, with the greatest stereotypy in bilateral TLE. Finally, indices extracted from individual patterns of brain dynamics correlated with the memory impairment in unilateral TLE. This study helped understand how dynamic brain activity in TLE is shaped and provided patient-specific indices useful for personalized medicine.
Collapse
Affiliation(s)
- Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, National Research Council, 80078 Pozzuoli, Italy
| | - Marie-Constance Corsi
- Sorbonne Université, Institut Du Cerveau – Paris Brain Institute -ICM, CNRS, Inria, Inserm, AP-HP, Hopital de La Pitié Salpêtrière, 75013 Paris, France
| | - Alberto Danieli
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| | - Lisa Antoniazzi
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| | - Marianna Angiolelli
- Unit of Nonlinear Physics and Mathematical Models, Department of Engineering, Campus Bio-Medico University of Rome, 00128 Rome, Italy
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France
| | - Paolo Bonanni
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005 Marseille, France
- University of Sassari, Department of Biomedical Sciences, Viale San Pietro, 07100 Sassari, Italy
| | - Gian Marco Duma
- IRCCS E. Medea Scientific Institute, Epilepsy Unit, 31015 Conegliano (TV), Italy
| |
Collapse
|
5
|
Benozzo D, Baggio G, Baron G, Chiuso A, Zampieri S, Bertoldo A. Analyzing asymmetry in brain hierarchies with a linear state-space model of resting-state fMRI data. Netw Neurosci 2024; 8:965-988. [PMID: 39355437 PMCID: PMC11424037 DOI: 10.1162/netn_a_00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/02/2024] [Indexed: 10/03/2024] Open
Abstract
This study challenges the traditional focus on zero-lag statistics in resting-state functional magnetic resonance imaging (rsfMRI) research. Instead, it advocates for considering time-lag interactions to unveil the directionality and asymmetries of the brain hierarchy. Effective connectivity (EC), the state matrix in dynamical causal modeling (DCM), is a commonly used metric for studying dynamical properties and causal interactions within a linear state-space system description. Here, we focused on how time-lag statistics are incorporated within the framework of DCM resulting in an asymmetric EC matrix. Our approach involves decomposing the EC matrix, revealing a steady-state differential cross-covariance matrix that is responsible for modeling information flow and introducing time-irreversibility. Specifically, the system's dynamics, influenced by the off-diagonal part of the differential covariance, exhibit a curl steady-state flow component that breaks detailed balance and diverges the dynamics from equilibrium. Our empirical findings indicate that the EC matrix's outgoing strengths correlate with the flow described by the differential cross covariance, while incoming strengths are primarily driven by zero-lag covariance, emphasizing conditional independence over directionality.
Collapse
Affiliation(s)
- Danilo Benozzo
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giacomo Baggio
- Information Engineering Department, University of Padova, Padova, Italy
| | - Giorgia Baron
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandro Chiuso
- Information Engineering Department, University of Padova, Padova, Italy
| | - Sandro Zampieri
- Information Engineering Department, University of Padova, Padova, Italy
| | - Alessandra Bertoldo
- Information Engineering Department, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| |
Collapse
|
6
|
Duma GM, Cuozzo S, Wilson L, Danieli A, Bonanni P, Pellegrino G. Excitation/Inhibition balance relates to cognitive function and gene expression in temporal lobe epilepsy: a high density EEG assessment with aperiodic exponent. Brain Commun 2024; 6:fcae231. [PMID: 39056027 PMCID: PMC11272395 DOI: 10.1093/braincomms/fcae231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/22/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Patients with epilepsy are characterized by a dysregulation of excitation/inhibition balance (E/I). The assessment of E/I may inform clinicians during the diagnosis and therapy management, even though it is rarely performed. An accessible measure of the E/I of the brain represents a clinically relevant feature. Here, we exploited the exponent of the aperiodic component of the power spectrum of the electroencephalography (EEG) signal, as a non-invasive and cost-effective proxy of the E/I balance. We recorded resting-state activity with high-density EEG from 67 patients with temporal lobe epilepsy and 35 controls. We extracted the exponent of the aperiodic fit of the power spectrum from source-reconstructed EEG and tested differences between patients with epilepsy and controls. Spearman's correlation was performed between the exponent and clinical variables (age of onset, epilepsy duration and neuropsychology) and cortical expression of epilepsy-related genes derived from the Allen Human Brain Atlas. Patients with temporal lobe epilepsy showed a significantly larger exponent, corresponding to inhibition-directed E/I balance, in bilateral frontal and temporal regions. Lower E/I in the left entorhinal and bilateral dorsolateral prefrontal cortices corresponded to a lower performance of short-term verbal memory. Limited to patients with temporal lobe epilepsy, we detected a significant correlation between the exponent and the cortical expression of GABRA1, GRIN2A, GABRD, GABRG2, KCNA2 and PDYN genes. EEG aperiodic exponent maps the E/I balance non-invasively in patients with epilepsy and reveals a close relationship between altered E/I patterns, cognition and genetics.
Collapse
Affiliation(s)
- Gian Marco Duma
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Simone Cuozzo
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Luc Wilson
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alberto Danieli
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Paolo Bonanni
- Scientific Institute IRCCS E.Medea, Epilepsy and Clinical Neurophysiology Unit, 31015, Conegliano, Italy
| | - Giovanni Pellegrino
- Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| |
Collapse
|
7
|
Soleimani N, Iraji A, van Erp TGM, Belger A, Calhoun VD. A method for estimating dynamic functional network connectivity gradients (dFNG) from ICA captures smooth inter-network modulation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583731. [PMID: 38559041 PMCID: PMC10979844 DOI: 10.1101/2024.03.06.583731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Dynamic functional network connectivity (dFNC) analysis is a widely used approach for studying brain function and offering insight into how brain networks evolve over time. Typically, dFNC studies utilized fixed spatial maps and evaluate transient changes in coupling among time courses estimated from independent component analysis (ICA). This manuscript presents a complementary approach that relaxes this assumption by spatially reordering the components dynamically at each timepoint to optimize for a smooth gradient in the FNC (i.e., a smooth gradient among ICA connectivity values). Several methods are presented to summarize dynamic FNC gradients (dFNGs) over time, starting with static FNC gradients (sFNGs), then exploring the reordering properties as well as the dynamics of the gradients themselves. We then apply this approach to a dataset of schizophrenia (SZ) patients and healthy controls (HC). Functional dysconnectivity between different brain regions has been reported in schizophrenia, yet the neural mechanisms behind it remain elusive. Using resting state fMRI and ICA on a dataset consisting of 151 schizophrenia patients and 160 age and gender-matched healthy controls, we extracted 53 intrinsic connectivity networks (ICNs) for each subject using a fully automated spatially constrained ICA approach. We develop several summaries of our functional network connectivity gradient analysis, both in a static sense, computed as the Pearson correlation coefficient between full time series, and a dynamic sense, computed using a sliding window approach followed by reordering based on the computed gradient, and evaluate group differences. Static connectivity analysis revealed significantly stronger connectivity between subcortical (SC), auditory (AUD) and visual (VIS) networks in patients, as well as hypoconnectivity in sensorimotor (SM) network relative to controls. sFNG analysis highlighted distinctive clustering patterns in patients and HCs along cognitive control (CC)/ default mode network (DMN), as well as SC/ AUD/ SM/ cerebellar (CB), and VIS gradients. Furthermore, we observed significant differences in the sFNGs between groups in SC and CB domains. dFNG analysis suggested that SZ patients spend significantly more time in a SC/ CB state based on the first gradient, while HCs favor the SM/DMN state. For the second gradient, however, patients exhibited significantly higher activity in CB domains, contrasting with HCs' DMN engagement. The gradient synchrony analysis conveyed more shifts between SM/ SC networks and transmodal CC/ DMN networks in patients. In addition, the dFNG coupling revealed distinct connectivity patterns between SC, SM and CB domains in SZ patients compared to HCs. To recap, our results advance our understanding of brain network modulation by examining smooth connectivity trajectories. This provides a more complete spatiotemporal summary of the data, contributing to the growing body of current literature regarding the functional dysconnectivity in schizophrenia patients. By employing dFNG, we highlight a new perspective to capture large scale fluctuations across the brain while maintaining the convenience of brain networks and low dimensional summary measures.
Collapse
Affiliation(s)
- Najme Soleimani
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, California, USA
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, Georgia, USA
| |
Collapse
|
8
|
Corsi MC, Troisi Lopez E, Sorrentino P, Cuozzo S, Danieli A, Bonanni P, Duma GM. Neuronal avalanches in temporal lobe epilepsy as a noninvasive diagnostic tool investigating large scale brain dynamics. Sci Rep 2024; 14:14039. [PMID: 38890363 PMCID: PMC11189588 DOI: 10.1038/s41598-024-64870-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024] Open
Abstract
The epilepsy diagnosis still represents a complex process, with misdiagnosis reaching 40%. We aimed at building an automatable workflow, helping the clinicians in the diagnosis of temporal lobe epilepsy (TLE). We hypothesized that neuronal avalanches (NA) represent a feature better encapsulating the rich brain dynamics compared to classically used functional connectivity measures (Imaginary Coherence; ImCoh). We analyzed large-scale activation bursts (NA) from source estimation of resting-state electroencephalography. Using a support vector machine, we reached a classification accuracy of TLE versus controls of 0.86 ± 0.08 (SD) and an area under the curve of 0.93 ± 0.07. The use of NA features increase by around 16% the accuracy of diagnosis prediction compared to ImCoh. Classification accuracy increased with larger signal duration, reaching a plateau at 5 min of recording. To summarize, NA represents an interpretable feature for an automated epilepsy identification, being related with intrinsic neuronal timescales of pathology-relevant regions.
Collapse
Affiliation(s)
- Marie-Constance Corsi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute -ICM, CNRS, Inria, Inserm, AP-HP, Hopital de la Pitié Salpêtrière, 75013, Paris, France.
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems of National Research Council, Pozzuoli, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, 13005, Marseille, France.
- Department of Biomedical Sciences, University of Sassari, Viale San Pietro, 07100, Sassari, Italy.
| | - Simone Cuozzo
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy
| | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy
| | - Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Via Costa Alta 37, 31015, Conegliano, Treviso, Italy
| |
Collapse
|
9
|
Duma GM, Pellegrino G, Rabuffo G, Danieli A, Antoniazzi L, Vitale V, Scotto Opipari R, Bonanni P, Sorrentino P. Altered spread of waves of activities at large scale is influenced by cortical thickness organization in temporal lobe epilepsy: a magnetic resonance imaging-high-density electroencephalography study. Brain Commun 2023; 6:fcad348. [PMID: 38162897 PMCID: PMC10754317 DOI: 10.1093/braincomms/fcad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/11/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
Temporal lobe epilepsy is a brain network disorder characterized by alterations at both the structural and the functional levels. It remains unclear how structure and function are related and whether this has any clinical relevance. In the present work, we adopted a novel methodological approach investigating how network structural features influence the large-scale dynamics. The functional network was defined by the spatio-temporal spreading of aperiodic bursts of activations (neuronal avalanches), as observed utilizing high-density electroencephalography in patients with temporal lobe epilepsy. The structural network was modelled as the region-based thickness covariance. Loosely speaking, we quantified the similarity of the cortical thickness of any two brain regions, both across groups and at the individual level, the latter utilizing a novel approach to define the subject-wise structural covariance network. In order to compare the structural and functional networks (at the nodal level), we studied the correlation between the probability that a wave of activity would propagate from a source to a target region and the similarity of the source region thickness as compared with other target brain regions. Building on the recent evidence that large-waves of activities pathologically spread through the epileptogenic network in temporal lobe epilepsy, also during resting state, we hypothesize that the structural cortical organization might influence such altered spatio-temporal dynamics. We observed a stable cluster of structure-function correlation in the bilateral limbic areas across subjects, highlighting group-specific features for left, right and bilateral temporal epilepsy. The involvement of contralateral areas was observed in unilateral temporal lobe epilepsy. We showed that in temporal lobe epilepsy, alterations of structural and functional networks pair in the regions where seizures propagate and are linked to disease severity. In this study, we leveraged on a well-defined model of neurological disease and pushed forward personalization approaches potentially useful in clinical practice. Finally, the methods developed here could be exploited to investigate the relationship between structure-function networks at subject level in other neurological conditions.
Collapse
Affiliation(s)
- Gian Marco Duma
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Giovanni Pellegrino
- Epilepsy Program, Schulich School of Medicine and Dentistry, Western University, London N6A5C1, Canada
| | - Giovanni Rabuffo
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
| | - Alberto Danieli
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Lisa Antoniazzi
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Valerio Vitale
- Department of Neuroscience, Neuroradiology Unit, San Bortolo Hospital, Vicenza 36100, Italy
| | | | - Paolo Bonanni
- Epilepsy Unit, IRCCS E. Medea Scientific Institute, Conegliano 31015, Italy
| | - Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Université, Marseille 13005, France
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy
| |
Collapse
|
10
|
Romano A, Troisi Lopez E, Cipriano L, Liparoti M, Minino R, Polverino A, Cavaliere C, Aiello M, Granata C, Sorrentino G, Sorrentino P. Topological changes of fast large-scale brain dynamics in mild cognitive impairment predict early memory impairment: a resting-state, source reconstructed, magnetoencephalography study. Neurobiol Aging 2023; 132:36-46. [PMID: 37717553 DOI: 10.1016/j.neurobiolaging.2023.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 09/19/2023]
Abstract
Functional connectivity has been used as a framework to investigate widespread brain interactions underlying cognitive deficits in mild cognitive impairment (MCI). However, many functional connectivity metrics focus on the average of the periodic activities, disregarding the aperiodic bursts of activity (i.e., the neuronal avalanches) characterizing the large-scale dynamic activities of the brain. Here, we apply the recently described avalanche transition matrix framework to source-reconstructed magnetoencephalography signals in a cohort of 32 MCI patients and 32 healthy controls to describe the spatio-temporal features of neuronal avalanches and explore their topological properties. Our results showed that MCI patients showed a more centralized network (as assessed by higher values of the degree divergence and leaf fraction) as compared to healthy controls. Furthermore, we found that the degree divergence (in the theta band) was predictive of hippocampal memory impairment. These findings highlight the role of the changes of aperiodic bursts in clinical conditions and may contribute to a more thorough phenotypical assessment of patients.
Collapse
Affiliation(s)
- Antonella Romano
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Emahnuel Troisi Lopez
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Lorenzo Cipriano
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Marianna Liparoti
- Department of Developmental and Social Psychology, University of Rome "La Sapienza", Rome, Italy
| | - Roberta Minino
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy
| | - Arianna Polverino
- Institute of Diagnosis and Treatment, Hermitage Capodimonte, Naples, Italy
| | - Carlo Cavaliere
- IRCCS SYNLAB-SDN, Naples Via Emanuele Gianturco, Naples, Italy
| | - Marco Aiello
- IRCCS SYNLAB-SDN, Naples Via Emanuele Gianturco, Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy
| | - Giuseppe Sorrentino
- Department of Motor and Wellness Sciences, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Treatment, Hermitage Capodimonte, Naples, Italy; Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy.
| | - Pierpaolo Sorrentino
- Institute of Applied Sciences and Intelligent Systems, National Research Council, Pozzuoli, Italy; Institut de Neurosciences des Systèmes, Inserm, INS, Aix-Marseille University, Marseille, France
| |
Collapse
|
11
|
Betzel RF, Faskowitz J, Sporns O. Living on the edge: network neuroscience beyond nodes. Trends Cogn Sci 2023; 27:1068-1084. [PMID: 37716895 PMCID: PMC10592364 DOI: 10.1016/j.tics.2023.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/14/2023] [Accepted: 08/10/2023] [Indexed: 09/18/2023]
Abstract
Network neuroscience has emphasized the connectional properties of neural elements - cells, populations, and regions. This has come at the expense of the anatomical and functional connections that link these elements to one another. A new perspective - namely one that emphasizes 'edges' - may prove fruitful in addressing outstanding questions in network neuroscience. We highlight one recently proposed 'edge-centric' method and review its current applications, merits, and limitations. We also seek to establish conceptual and mathematical links between this method and previously proposed approaches in the network science and neuroimaging literature. We conclude by presenting several avenues for future work to extend and refine existing edge-centric analysis.
Collapse
Affiliation(s)
- Richard F Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA.
| | - Joshua Faskowitz
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, USA; Cognitive Science Program, Indiana University, Bloomington, IN 47405, USA; Program in Neuroscience, Indiana University, Bloomington, IN 47405, USA; Network Science Institute, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
12
|
Sorrentino P, Lopez ET, Romano A, Granata C, Corsi MC, Sorrentino G, Jirsa V. Brain fingerprint is based on the aperiodic, scale-free, neuronal activity. Neuroimage 2023:120260. [PMID: 37392807 DOI: 10.1016/j.neuroimage.2023.120260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 06/13/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023] Open
Abstract
Subject differentiation bears the possibility to individualize brain analyses. However, the nature of the processes generating subject-specific features remains unknown. Most of the current literature uses techniques that assume stationarity (e.g., Pearson's correlation), which might fail to capture the non-linear nature of brain activity. We hypothesize that non-linear perturbations (defined as neuronal avalanches in the context of critical dynamics) spread across the brain and carry subject-specific information, contributing the most to differentiability. To test this hypothesis, we compute the avalanche transition matrix (ATM) from source-reconstructed magnetoencephalographic data, as to characterize subject-specific fast dynamics. We perform differentiability analysis based on the ATMs, and compare the performance to that obtained using Pearson's correlation (which assumes stationarity). We demonstrate that selecting the moments and places where neuronal avalanches spread improves differentiation (P < 0.0001, permutation testing), despite the fact that most of the data (i.e., the linear part) are discarded. Our results show that the non-linear part of the brain signals carries most of the subject-specific information, thereby clarifying the nature of the processes that underlie individual differentiation. Borrowing from statistical mechanics, we provide a principled way to link emergent large-scale personalized activations to non-observable, microscopic processes.
Collapse
Affiliation(s)
- Pierpaolo Sorrentino
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France; Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy.
| | - Emahnuel Troisi Lopez
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Antonella Romano
- Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy
| | - Carmine Granata
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy
| | - Marie Constance Corsi
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, CNRS, Inria, Inserm, AP-HP, Hôpital de la Pitié Salpêtrière, F-75013, Paris, France
| | - Giuseppe Sorrentino
- Institute of Applied Sciences and Intelligent Systems, CNR, Naples, Italy; Department of Motor Sciences and Wellness, University of Naples "Parthenope", Naples, Italy; Institute of Diagnosis and Treatment Hermitage Capodimonte, Naples, Italy
| | - Viktor Jirsa
- Institut de Neurosciences des Systèmes, Aix-Marseille Universitè, Marseille, France
| |
Collapse
|