1
|
Skwira A, Szewczyk A, Barros J, Laranjeira M, Monteiro FJ, Sądej R, Prokopowicz M. Biocompatible antibiotic-loaded mesoporous silica/bioglass/collagen-based scaffolds as bone drug delivery systems. Int J Pharm 2023; 645:123408. [PMID: 37703959 DOI: 10.1016/j.ijpharm.2023.123408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/28/2023] [Accepted: 09/10/2023] [Indexed: 09/15/2023]
Abstract
Local delivery of antibiotics has gained increasing interest in the treatment of osteomyelitis due to its effectiveness and safety. Since the regeneration of bone tissue at the site of infection is as important as bacterial eradication, implantable drug delivery systems should not only release the drugs in a proper manner but also exert the osseointegration capability. Herein, we present an implantable drug delivery system in a scaffold form with a unique set of features for local treatment of osteomyelitis. For the first time, collagen type I, ciprofloxacin-loaded mesoporous silica, and bioglass were combined to obtain scaffolds using the molding method. Drug-loaded mesoporous silica was blended with polydimethylsiloxane to prolong the drug release, whereas bioglass served as a remineralization agent. Collagen-silica scaffolds were evaluated in terms of physicochemical properties, drug release rate, mineralization potential, osteoblast response in vitro, antimicrobial activity, and biological properties using an in vivo preclinical model - chick embryo chorioallantoic membrane (CAM). The desirable multifunctionality of the proposed collagen-silica scaffolds was confirmed. They released the ciprofloxacin for 80 days, prevented biofilm development, and induced hydroxyapatite formation. Moreover, the resulting macroporous structure of the scaffolds promoted osteoblast attachment, infiltration, and proliferation. Collagen-silica scaffolds were also biocompatible and effectively integrated with CAM.
Collapse
Affiliation(s)
- Adrianna Skwira
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland; Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Adrian Szewczyk
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| | - Joana Barros
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; FEUP-Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal.
| | - Marta Laranjeira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal.
| | - Fernando Jorge Monteiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; Porto Comprehensive Cancer Center Raquel Seruca (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; FEUP-Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e de Materiais, Universidade do Porto, Rua Dr. Roberto Frias, s/n 4200-465, Porto, Portugal.
| | - Rafał Sądej
- Department of Molecular Enzymology and Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland.
| | - Magdalena Prokopowicz
- Department of Physical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
2
|
Manuel RP, Tania GG, Rafael SP, Antonio PE, José BM, Asteria LÁ, Pablo CB, Alejandro LP, Pablo ÁN, Benjamín MB. In Vitro Development of a New Sponge-Based Delivery System for Intracanal Antimicrobial Administration in Endodontic Treatment. J Clin Med 2021; 10:jcm10122725. [PMID: 34205509 PMCID: PMC8233951 DOI: 10.3390/jcm10122725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/17/2021] [Accepted: 06/17/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to evaluate the in vitro performance of collagen-based sponges as a drug delivery system for intracanal antimicrobial administration. Four groups of loaded collagen-based sponges (A, 0.3% w/v amoxicillin trihydrate: potassium clavulanate (4:1); B, 0.03% w/v chlorhexidine gluconate [CHX]; C, 0.3% w/v amoxicillin trihydrate: potassium clavulanate (4:1) and 0.03% w/v CHX; D, 1% w/v amoxicillin trihydrate: potassium clavulanate (4:1) and 0.03% w/v CHX) were designed. Release kinetics were tested in vitro on cultures in Petri dishes, and the effect on bacterial biofilms was studied ex vivo on 114 extracted human single-rooted teeth. Biofilm formation was tested by scanning electron microscopy (SEM). Collagen sponges containing amoxicillin and chlorhexidine showed a time-sustained antimicrobial effect in vitro and were also able to destroy mature biofilms ex vivo. This datum was validated by means of SEM-based study of E. faecalis and S. aureus biofilms.
Collapse
Affiliation(s)
- Ruíz-Piñón Manuel
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| | - Gancedo-Gancedo Tania
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
- Correspondence:
| | - Seoane-Prado Rafael
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| | - Pérez-Estévez Antonio
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| | - Blanco-Méndez José
- Faculty of Pharmacy, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain;
- Faculty of Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Luzardo-Álvarez Asteria
- Faculty of Sciences, University of Santiago de Compostela, 27002 Lugo, Spain;
- Paraquasil Group, University Clinical Hospital, Health Research Institute of Santiago de Compostela (IDIS), 15706 Santiago de Compostela, Spain
| | - Castelo-Baz Pablo
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| | - Lorenzo-Pouso Alejandro
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| | - Álvarez-Novoa Pablo
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| | - Martín-Biedma Benjamín
- Faculty of Medicine and Odontology, University of Santiago de Compostela, 15705 Santiago de Compostela, Spain; (R.-P.M.); (S.-P.R.); (P.-E.A.); (C.-B.P.); (L.-P.A.); (Á.-N.P.); (M.-B.B.)
| |
Collapse
|
3
|
Dharadhar S, Majumdar A, Dhoble S, Patravale V. Microneedles for transdermal drug delivery: a systematic review. Drug Dev Ind Pharm 2018; 45:188-201. [DOI: 10.1080/03639045.2018.1539497] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Saili Dharadhar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Kalina, Mumbai, 400 098, India
| | - Anuradha Majumdar
- Department of Pharmacology and Toxicology, Bombay College of Pharmacy, Kalina, Mumbai, 400 098, India
| | - Sagar Dhoble
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| | - Vandana Patravale
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Matunga, Mumbai, 400 019, India
| |
Collapse
|
4
|
Development and characterization of anti-inflammatory activity of curcumin-loaded biodegradable microspheres with potential use in intestinal inflammatory disorders. Int J Pharm 2017; 518:86-104. [DOI: 10.1016/j.ijpharm.2016.12.057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 12/24/2022]
|
5
|
Guo Z, Zhang T, Fang K, Dou J, Zhou N, Ma X, Gu N. The effects of macroporosity and stiffness of poly[(methyl vinyl ether)-alt-(maleic acid)] cross-linked egg white simulations of an aged extracellular matrix on the proliferation of ovarian cancer cells. RSC Adv 2016. [DOI: 10.1039/c6ra05134k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The effects of macroporosity and stiffness of P(MVE-alt-MA) cross-linked EW simulations of an aged ECM on the proliferation of cancer cells.
Collapse
Affiliation(s)
- Zhenchao Guo
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Tianzhu Zhang
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Kun Fang
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Jun Dou
- Medical School
- Southeast University
- Nanjing 210009
- China
| | - Naizhen Zhou
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Xiaoe Ma
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| | - Ning Gu
- State Key Laboratory of Bioelectronics
- Jiangsu Key Laboratory for Biomaterials and Devices
- School of Biological Science and Medical Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology
- Southeast University
- Nanjing 210096
| |
Collapse
|
6
|
Wang Y, Huang X. Comparative antibacterial efficacy of photodynamic therapy and ultrasonic irrigation against Enterococcus faecalis in vitro. Photochem Photobiol 2014; 90:1084-8. [PMID: 24861937 DOI: 10.1111/php.12293] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 05/21/2014] [Indexed: 11/30/2022]
Abstract
Enterococcus faecalis poses a challenge to the efficacy of traditional root canal disinfection methods. This study was aimed to establish a synergistic root canal disinfection strategy combining ultrasonic irrigation with photodynamic therapy (PDT) together and to test its antibacterial efficacy against E. faecalis. Twenty-seven bovine root canals infected with E. faecalis were randomly divided into three groups and treated with different disinfection methods as follows: ultrasonic irrigation with 2.5% NaOCl, methylene blue (MB)-mediated PDT, or combined ultrasonic irrigation and PDT as described above. Quantification of E. faecalis was performed on the root canals before and immediately after the disinfection treatment. Residual bacteria were determined by counting colony-forming units. Samples were randomly selected from the three groups, and the morphology of residual bacteria inside the dentinal tubules was studied by scanning electron microscopy. The number of surviving E. faecalis in the group treated with the combination method was significantly lower (P < 0.05) than those in the ultrasonic irrigation-treated or PDT-treated groups. Similar results were found in the morphological studies of the three groups. The results of our study highlighted the importance of combination of ultrasonic irrigation and PDT to produce significant antibacterial efficacy against E. faecalis during root canal disinfection.
Collapse
Affiliation(s)
- Yanhuang Wang
- School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | | |
Collapse
|
7
|
Chhabra H, Gupta P, Verma PJ, Jadhav S, Bellare JR. Gelatin–PMVE/MA composite scaffold promotes expansion of embryonic stem cells. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 37:184-94. [DOI: 10.1016/j.msec.2013.12.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 11/16/2013] [Accepted: 12/25/2013] [Indexed: 12/13/2022]
|
8
|
Álvarez AL, Espinar FO, Méndez JB. The Application of Microencapsulation Techniques in the Treatment of Endodontic and Periodontal Diseases. Pharmaceutics 2011; 3:538-71. [PMID: 24310596 PMCID: PMC3857082 DOI: 10.3390/pharmaceutics3030538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/09/2011] [Accepted: 08/24/2011] [Indexed: 11/12/2022] Open
Abstract
In the treatment of intracanal and periodontal infections, the local application of antibiotics and other therapeutic agents in the root canal or in periodontal pockets may be a promising approach to achieve sustained drug release, high antimicrobial activity and low systemic side effects. Microparticles made from biodegradable polymers have been reported to be an effective means of delivering antibacterial drugs in endodontic and periodontal therapy. The aim of this review article is to assess recent therapeutic strategies in which biocompatible microparticles are used for effective management of periodontal and endodontic diseases. In vitro and in vivo studies that have investigated the biocompatibility or efficacy of certain microparticle formulations and devices are presented. Future directions in the application of microencapsulation techniques in endodontic and periodontal therapies are discussed.
Collapse
Affiliation(s)
- Asteria Luzardo Álvarez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; E-Mail:
| | - Francisco Otero Espinar
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; E-Mail:
| | - José Blanco Méndez
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Ciencias, Universidad de Santiago de Compostela, 27002 Lugo, Spain; E-Mail:
- Departamento de Farmacia y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain; E-Mail:
| |
Collapse
|