1
|
Eyal R, Albeck N, Shein-Idelson M. PreyTouch: a touchscreen-based closed-loop system for studying predator-prey interactions. Commun Biol 2024; 7:1650. [PMID: 39702825 DOI: 10.1038/s42003-024-07345-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 12/02/2024] [Indexed: 12/21/2024] Open
Abstract
The ability to catch prey is crucial for survival and reproduction and is subject to strong natural selection across predators. Prey capture demands the orchestrated activation of multiple brain regions and the interplay between sensory processing, decision-making, and motor execution. These factors, together with the ubiquity of prey capture across species makes it appealing for comparative studies across neuroscience and ecology. However, despite recent technological advances, experimental approaches for studying natural behaviors such as prey catch are lagging behind. To bridge this gap, we created PreyTouch-a novel approach for performing prey capture experiments that incorporate flexible prey control, accurate monitoring of predator touchscreen strikes and automated rewarding. Further, its real-time processing enables coupling predator movement and prey dynamics for studying predator-prey interactions. Finally, PreyTouch is optimized for automated long-term experiments featuring a web UI for remote control and monitoring. We successfully validated PreyTouch by conducting long-term prey capture experiments on the lizard Pogona vitticeps. This revealed the existence of prey preferences, complex prey attack patterns, and fast learning of prey dynamics. PreyTouch's unique features and the importance of studying prey capture behavior make it a valuable platform for connecting natural behavior with cognitive studies across various species and disciplines.
Collapse
Affiliation(s)
- Regev Eyal
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Nitzan Albeck
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, Tel Aviv University, Tel Aviv, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Damas-Moreira I, Szabo B, Drosopoulos G, Stober C, Lisičić D, Caspers BA. Smarter in the city? Lizards from urban and semi-natural habitats do not differ in a cognitive task in two syntopic species. Curr Zool 2024; 70:361-370. [PMID: 39035752 PMCID: PMC11255991 DOI: 10.1093/cz/zoae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 03/22/2024] [Indexed: 07/23/2024] Open
Abstract
Urbanization occurs at a global scale, imposing dramatic and abrupt environmental changes that lead to biodiversity loss. Yet, some animal species can handle these changes, and thrive in such artificial environments. One possible explanation is that urban individuals are equipped with better cognitive abilities, but most studies have focused on birds and mammals and yielded varied results. Reptiles have received much less attention, despite some lizard species being common city dwellers. The Italian wall lizard, Podarcis siculus, and the common wall lizard, Podarcis muralis, are two successful lizards in anthropogenic habitats that thrive in urban locations. To test for differences in a cognitive skill between urban and semi-natural environments, we investigated inhibitory control through a detour task in syntopic populations of the two species, across 249 lizards that were tested in partially artificial field settings. Sophisticated inhibitory control is considered essential for higher degrees of cognitive flexibility and other higher-level cognitive abilities. In this task, we confronted lizards with a transparent barrier, separating them from a desired shelter area that they could only reach by controlling their impulse to go straight and instead detour the barrier. We found no differences between lizards in urban and semi-natural environments, nor between species, but females overall performed better than males. Moreover, 48% of the lizards in our study did not perform a correct trial in any of the 5 trials, hinting at the difficulty of the task for these species. This study is among the first to address lizard cognition, through their inhibitory control, as a potential explanation for success in cities and highlights one should be careful with assuming that urban animals generally have enhanced cognitive performance, as it might be taxa, task, or condition dependent.
Collapse
Affiliation(s)
| | - Birgit Szabo
- Division of Behavioural Ecology, University of Bern, 3032, Switzerland
| | | | - Carolin Stober
- Department of Behavioural Ecology, Bielefeld University, 33615, Germany
| | - Duje Lisičić
- Department of Biology, University of Zagreb, 10000, Croatia
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, 33615, Germany
- Joint Institute of Individualisation in a Changing Environment (JICE), University of Münster and Bielefeld University, 33615, Germany
| |
Collapse
|
3
|
Eisenberg T, Shein-Idelson M. ReptiLearn: An automated home cage system for behavioral experiments in reptiles without human intervention. PLoS Biol 2024; 22:e3002411. [PMID: 38422162 PMCID: PMC10931465 DOI: 10.1371/journal.pbio.3002411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/12/2024] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Understanding behavior and its evolutionary underpinnings is crucial for unraveling the complexities of brain function. Traditional approaches strive to reduce behavioral complexity by designing short-term, highly constrained behavioral tasks with dichotomous choices in which animals respond to defined external perturbation. In contrast, natural behaviors evolve over multiple time scales during which actions are selected through bidirectional interactions with the environment and without human intervention. Recent technological advancements have opened up new possibilities for experimental designs that more closely mirror natural behaviors by replacing stringent experimental control with accurate multidimensional behavioral analysis. However, these approaches have been tailored to fit only a small number of species. This specificity limits the experimental opportunities offered by species diversity. Further, it hampers comparative analyses that are essential for extracting overarching behavioral principles and for examining behavior from an evolutionary perspective. To address this limitation, we developed ReptiLearn-a versatile, low-cost, Python-based solution, optimized for conducting automated long-term experiments in the home cage of reptiles, without human intervention. In addition, this system offers unique features such as precise temperature measurement and control, live prey reward dispensers, engagement with touch screens, and remote control through a user-friendly web interface. Finally, ReptiLearn incorporates low-latency closed-loop feedback allowing bidirectional interactions between animals and their environments. Thus, ReptiLearn provides a comprehensive solution for researchers studying behavior in ectotherms and beyond, bridging the gap between constrained laboratory settings and natural behavior in nonconventional model systems. We demonstrate the capabilities of ReptiLearn by automatically training the lizard Pogona vitticeps on a complex spatial learning task requiring association learning, displaced reward learning, and reversal learning.
Collapse
Affiliation(s)
- Tal Eisenberg
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
| | - Mark Shein-Idelson
- School of Neurobiology, Biochemistry, and Biophysics, The George S. Wise Faculty of Life Science, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Button DJ, Zanno LE. Neuroanatomy of the late Cretaceous Thescelosaurus neglectus (Neornithischia: Thescelosauridae) reveals novel ecological specialisations within Dinosauria. Sci Rep 2023; 13:19224. [PMID: 37932280 PMCID: PMC10628235 DOI: 10.1038/s41598-023-45658-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/22/2023] [Indexed: 11/08/2023] Open
Abstract
Ornithischian dinosaurs exhibited a diversity of ecologies, locomotory modes, and social structures, making them an ideal clade in which to study the evolution of neuroanatomy and behaviour. Here, we present a 3D digital reconstruction of the endocranial spaces of the latest Cretaceous neornithischian Thescelosaurus neglectus, in order to interpret the neuroanatomy and paleobiology of one of the last surviving non-avian dinosaurs. Results demonstrate that the brain of Thescelosaurus was relatively small compared to most other neornithischians, instead suggesting cognitive capabilities within the range of extant reptiles. Other traits include a narrow hearing range, with limited ability to distinguish high frequencies, paired with unusually well-developed olfactory lobes and anterior semicircular canals, indicating acute olfaction and vestibular sensitivity. This character combination, in conjunction with features of the postcranial anatomy, is consistent with specializations for burrowing behaviours in the clade, as evidenced by trace and skeletal fossil evidence in earlier-diverging thescelosaurids, although whether they reflect ecological adaptations or phylogenetic inheritance in T. neglectus itself is unclear. Nonetheless, our results provide the first evidence of neurological specializations to burrowing identified within Ornithischia, and non-avian dinosaurs more generally, expanding the range of ecological adaptations recognized within this major clade.
Collapse
Affiliation(s)
- David J Button
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, BS8 1TQ, UK.
| | - Lindsay E Zanno
- Paleontology, North Carolina Museum of Natural Sciences, Raleigh, NC, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
5
|
Krochmal AR, Roth TC. The case for investigating the cognitive map in nonavian reptiles. Anim Behav 2023. [DOI: 10.1016/j.anbehav.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
De Meester G, Van Linden L, Torfs J, Pafilis P, Šunje E, Steenssens D, Zulčić T, Sassalos A, Van Damme R. Learning with lacertids: Studying the link between ecology and cognition within a comparative framework. Evolution 2022; 76:2531-2552. [PMID: 36111365 DOI: 10.1111/evo.14618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/10/2022] [Accepted: 08/21/2022] [Indexed: 01/22/2023]
Abstract
Cognition is an essential tool for animals to deal with environmental challenges. Nonetheless, the ecological forces driving the evolution of cognition throughout the animal kingdom remain enigmatic. Large-scale comparative studies on multiple species and cognitive traits have been advanced as the best way to facilitate our understanding of cognitive evolution, but such studies are rare. Here, we tested 13 species of lacertid lizards (Reptilia: Lacertidae) using a battery of cognitive tests measuring inhibitory control, problem-solving, and spatial and reversal learning. Next, we tested the relationship between species' performance and (a) resource availability (temperature and precipitation), habitat complexity (Normalized Difference Vegetation Index), and habitat variability (seasonality) in their natural habitat and (b) their life history (size at hatching and maturity, clutch size, and frequency). Although species differed markedly in their cognitive abilities, such variation was mostly unrelated to their ecology and life history. Yet, species living in more variable environments exhibited lower behavioral flexibility, likely due to energetic constrains in such habitats. Our standardized protocols provide opportunities for collaborative research, allowing increased sample sizes and replication, essential for moving forward in the field of comparative cognition. Follow-up studies could include more detailed measures of habitat structure and look at other potential selective drivers such as predation.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Lisa Van Linden
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Jonas Torfs
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Panayiotis Pafilis
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Emina Šunje
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium.,Department of Biology, Faculty of Natural Sciences, University of Sarajevo, Sarajevo, 71000, Bosnia and Herzegovina.,Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Dries Steenssens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| | - Tea Zulčić
- Herpetological Association in Bosnia and Herzegovina: BHHU: ATRA, Sarajevo, 71000, Bosnia and Herzegovina
| | - Athanasios Sassalos
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Athens, 157 84, Greece
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, 2610, Belgium
| |
Collapse
|
7
|
Personality assessment of headstart Texas horned lizards (Phrynosoma cornutum) in human care prior to release. Appl Anim Behav Sci 2022. [DOI: 10.1016/j.applanim.2022.105690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Gavriilidi I, De Meester G, Van Damme R, Baeckens S. How to behave when marooned: the behavioural component of the island syndrome remains underexplored. Biol Lett 2022; 18:20220030. [PMID: 35440235 PMCID: PMC9039784 DOI: 10.1098/rsbl.2022.0030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/25/2022] [Indexed: 12/16/2022] Open
Abstract
Animals on islands typically depart from their mainland relatives in assorted aspects of their biology. Because they seem to occur in concert, and to some extent evolve convergently in disparate taxa, these changes are referred to as the 'island syndrome'. While morphological, physiological and life-history components of the island syndrome have received considerable attention, much less is known about how insularity affects behaviour. In this paper, we argue why changes in personality traits and cognitive abilities can be expected to form part of the island syndrome. We provide an overview of studies that have compared personality traits and cognitive abilities between island and mainland populations, or among islands. Overall, the pickings are remarkably slim. There is evidence that animals on islands tend to be bolder than on the mainland, but effects on other personality traits go either way. The evidence for effects of insularity on cognitive abilities or style is highly circumstantial and very mixed. Finally, we consider the ecological drivers that may induce such changes, and the mechanisms through which they might occur. We conclude that our knowledge of the behavioural and cognitive responses to island environments remains limited, and we encourage behavioural biologists to make more use of these 'natural laboratories for evolution'.
Collapse
Affiliation(s)
- Ioanna Gavriilidi
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Section of Zoology and Marine Biology, Department of Biology, National and Kapodistrian University of Athens, Greece
| | - Gilles De Meester
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Raoul Van Damme
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Department of Biology, University of Antwerp, Wilrijk, Belgium
- Evolution and Optics of Nanostructures Lab, Department of Biology, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Overlooked and Under-Studied: A Review of Evidence-Based Enrichment in Varanidae. JOURNAL OF ZOOLOGICAL AND BOTANICAL GARDENS 2022. [DOI: 10.3390/jzbg3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Enrichment has become a key aspect of captive husbandry practices as a means of improving animal welfare by increasing environmental stimuli. However, the enrichment methods that are most effective varies both between and within species, and thus evaluation underpins successful enrichment programs. Enrichment methods are typically based upon previously reported successes and those primarily with mammals, with one of the main goals of enrichment research being to facilitate predictions about which methods may be most effective for a particular species. Yet, despite growing evidence that enrichment is beneficial for reptiles, there is limited research on enrichment for Varanidae, a group of lizards known as monitor lizards. As a result, it can be difficult for keepers to implement effective enrichment programs as time is a large limiting factor. In order for appropriate and novel enrichment methods to be created, it is necessary to understand a species’ natural ecology, abilities, and how they perceive the world around them. This is more difficult for non-mammalian species as the human-centered lens can be a hinderance, and thus reptile enrichment research is slow and lagging behind that of higher vertebrates. This review discusses the physiological, cognitive, and behavioral abilities of Varanidae to suggest enrichment methods that may be most effective.
Collapse
|