1
|
Lee W, Jung KH, Park JA, Kim JY, Lee YJ, Chang Y, Yoo J. In vivo evaluation of PEGylated-liposome encapsulating gadolinium complexes for gadolinium neutron capture therapy. Biochem Biophys Res Commun 2021; 568:23-29. [PMID: 34174538 DOI: 10.1016/j.bbrc.2021.06.045] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/14/2021] [Indexed: 11/20/2022]
Abstract
Gadolinium neutron capture therapy (GdNCT) is a form of binary radiotherapy. It utilizes nuclear reactions that occur when gadolinium-157 is irradiated with thermal neutrons, producing high-energy γ-rays and Auger electrons. Herein, we evaluate the potential of GdNCT for cancer treatment using PEGylated liposome incorporated with an FDA-approved MRI contrast agent. The clinical gadolinium complex (Gadovist®) was successfully encapsulated inside the aqueous core of PEGylated liposomes by repeated freeze and thaw cycling. At a concentration of 152 μM Gd, the Gd-liposome showed high cytotoxicity upon thermal-neutron irradiation. In animal experiments, when a CT26 tumor model was administered with Gd-liposomes (19 mg 157Gd per kg) followed by 20-min irradiation of thermal neutron at a flux of 1.94 × 104 cm-2 s-1, tumor growth was suppressed by 43%, compared to that in the control group, on the 23rd day of post-irradiation. After two-cycle GdNCT treatment at a 10-day interval, tumor growth was more efficiently retarded. On the 31st day after irradiation, the weight of the excised tumor in the GdNCT group (38 mg 157Gd per kg per injection) was only 30% of that of the control group. These results demonstrate the potential of GdNCT using PEGylated liposomes containing MRI contrast agents in cancer treatment.
Collapse
Affiliation(s)
- Woonghee Lee
- Department of Molecular Medicine, Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Ki-Hye Jung
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Ji-Ae Park
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Jung Young Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Yong Jin Lee
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences, Seoul, 01812, Republic of Korea
| | - Yongmin Chang
- Department of Molecular Medicine, Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea
| | - Jeongsoo Yoo
- Department of Molecular Medicine, Brain Korea 21 Four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, School of Medicine, Kyungpook National University, Daegu, 41944, Republic of Korea.
| |
Collapse
|
2
|
Preparation and MRI performances of core-shell structural PEG salicylic acid-gadolinium composite nanoparticles. J RARE EARTH 2021. [DOI: 10.1016/j.jre.2021.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
3
|
Panich AM, Salti M, Prager O, Swissa E, Kulvelis YV, Yudina EB, Aleksenskii AE, Goren SD, Vul' AY, Shames AI. PVP-coated Gd-grafted nanodiamonds as a novel and potentially safer contrast agent for in vivo MRI. Magn Reson Med 2021; 86:935-942. [PMID: 33724543 DOI: 10.1002/mrm.28762] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 01/14/2023]
Abstract
PURPOSE Testing the potential use of saline suspension of polyvinylpyrrolidone (PVP)-coated gadolinium(Gd)-grafted detonation nanodiamonds (DND) as a novel contrast agent in MRI. METHODS Stable saline suspensions of highly purified de-agglomerated Gd-grafted DND particles coated by a PVP protective shell were prepared. T1 and T2 proton relaxivities of the suspensions with varying gadolinium concentration were measured at 8 Tesla. A series of ex vivo (phantom) and in vivo dynamic scans were obtained in 3 Tesla MRI using PVP-coated Gd-grafted DND and gadoterate meglumin in equal concentrations of gadolinium, and then T1 -weighted hyperintensity was compared. RESULTS The proton relaxivities of PVP-coated Gd-grafted DND were found to be r1 = 15.9 ± 0.8 s-1 mM-1 and r2 = 262 ± 15 s-1 mM-1 , respectively, which are somewhat less than those for uncoated Gd-grafted DND but still high enough. Ex vivo MRI evaluation of PVP-coated Gd-grafted DND results with a dose-dependent T1 -weighted hyperintensity with a significant advantage over the same for gadoterate meglumin. The same was found when the 2 contrast agents were tested in vivo. CONCLUSION The novel MRI contrast agent - saline suspensions of PVP-coated Gd-grafted DND - provides significantly higher signal intensities than the common tracer gadoterate meglumin, therefore increasing its potential for a safer use in clinics.
Collapse
Affiliation(s)
- Alexander M Panich
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Moti Salti
- Brain Imaging Research Center, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ofer Prager
- Department of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Evyatar Swissa
- Department of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yuri V Kulvelis
- Department of Neutron Research, Petersburg Nuclear Physics Institute, National Research Centre "Kurchatov Institute", Gatchina, Russia
| | - Elena B Yudina
- Division of Solid State Electronics, Ioffe Institute, St. Petersburg, Russia
| | | | - Shaul D Goren
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alexander Ya Vul'
- Division of Solid State Electronics, Ioffe Institute, St. Petersburg, Russia
| | - Alexander I Shames
- Department of Physics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
4
|
Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci 2021; 269:119020. [PMID: 33450258 DOI: 10.1016/j.lfs.2021.119020] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
The conventional cancer treatment modalities such as radiotherapy and chemotherapy suffer from several limitations; hence, their efficiency needs to be improved with other complementary modalities. Hyperthermia, as an adjuvant therapeutic modality for cancer, can result in a synergistic effect on radiotherapy (radiosensitizer) and chemotherapy (chemosensitizer). Conventional hyperthermia methods affect both tumoral and healthy tissues and have low specificity. In addition, a temperature gradient generates in the tissues situated along the path of the heat source, which is a more serious for deep-seated tumors. Nanoparticles (NPs)-induced hyperthermia can resolve these drawbacks through localization around/within tumoral tissue and generating local hyperthermia. Although there are several review articles dealing with NPs-induced hyperthermia, lack of a paper discussing the combination of NPs-induced hyperthermia with the conventional chemotherapy or radiotherapy is tangible. Accordingly, the main focus of the current paper is to summarize the principles of NPs-induced hyperthermia and more importantly its synergic effects on the conventional chemotherapy or radiotherapy. The heat-producing nanostructures such as gold NPs, iron oxide NPs, and carbon NPs, as well as the non-heat-producing nanostructures, such as lipid-based, polymeric, and silica-based NPs, as the carrier for heat-producing NPs, are discussed and their pros and cons highlighted.
Collapse
|
5
|
Influence of the particle size of gadolinium-loaded chitosan nanoparticles on their tumor-killing effect in neutron capture therapy in vitro. Appl Radiat Isot 2020; 164:109270. [DOI: 10.1016/j.apradiso.2020.109270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 05/23/2020] [Accepted: 06/04/2020] [Indexed: 12/27/2022]
|
6
|
Li H, Zeng Y, Zhang H, Gu Z, Gong Q, Luo K. Functional gadolinium-based nanoscale systems for cancer theranostics. J Control Release 2020; 329:482-512. [PMID: 32898594 DOI: 10.1016/j.jconrel.2020.08.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/25/2020] [Accepted: 08/30/2020] [Indexed: 02/07/2023]
Abstract
Cancer theranostics is a new strategy for combating cancer that integrates cancer imaging and treatment through theranostic agents to provide an efficient and safe way to improve cancer prognosis. Design and synthesis of these cancer theranostic agents are crucial since these agents are required to be biocompatible, tumor-specific, imaging distinguishable and therapeutically efficacious. In this regard, several types of gadolinium (Gd)-based nanomaterials have been introduced to combine different therapeutic agents with Gd to enhance the efficacy of therapeutic agents. At the same time, the entire treatment procedure could be monitored via imaging tools due to incorporation of Gd ions, Gd chelates and Gd/other imaging probes in the theranostic agents. This review aims to overview recent advances in the Gd-based nanomaterials for cancer theranostics and perspectives for Gd nanomaterial-based cancer theranostics are provided.
Collapse
Affiliation(s)
- Haonan Li
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yujun Zeng
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA 91711, USA
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Department of Radiology, Functional and Molecular Imaging Key Laboratory of Sichuan Province, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Ghorbanizamani F, Moulahoum H, Zihnioglu F, Timur S. Nanohybrid carriers: the yin–yang equilibrium between natural and synthetic in biomedicine. Biomater Sci 2020; 8:3237-3247. [DOI: 10.1039/d0bm00401d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nanocarriers are key players in biomedicine applications. The development of hybrid nanoparticles stems from the need to enhance their quality by lowering disadvantages and fusing the positive qualities of both natural and synthetic materials.
Collapse
Affiliation(s)
| | - Hichem Moulahoum
- Biochemistry Department
- Faculty of Science
- Ege University
- Bornova
- Turkey
| | - Figen Zihnioglu
- Biochemistry Department
- Faculty of Science
- Ege University
- Bornova
- Turkey
| | - Suna Timur
- Biochemistry Department
- Faculty of Science
- Ege University
- Bornova
- Turkey
| |
Collapse
|
8
|
Szczęch M, Karabasz A, Łopuszyńska N, Bzowska M, Węglarz WP, Warszyński P, Szczepanowicz K. Gadolinium labeled polyelectrolyte nanocarriers for theranostic application. Colloids Surf B Biointerfaces 2019; 183:110396. [PMID: 31394424 DOI: 10.1016/j.colsurfb.2019.110396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/01/2019] [Accepted: 07/23/2019] [Indexed: 12/24/2022]
Abstract
Here, we designed a novel Gadolinium (Gd) labeled drug-loaded polyelectrolyte nanocarriers for theranostics. The nanocarriers were formed via layer-by-layer technique with biodegradable polyelectrolytes: PLL (Poly-L-lysine), PLL-Gd (Gadolinium-labeled Poly-L-lysine) and PGA (Poly-L-glutamic acid). Anticancer drug (Paclitaxel) was encapsulated in the formed nanocarriers. The average size of synthesized nanocarriers was around 150 nm. The empty gadolinium labeled nanocarriers did not show any deleterious effects on tested cells (CT26-CEA, B16F10, 4T1 and PBMC), whereas encapsulated paclitaxel retained its cytotoxic/cytostatic activity. Using T2 and T1 NMR relaxation measurements with 9.4 T preclinical MRI scanner, we demonstrated that gadolinium labeled nanocarriers can be detected due to a locally altered contrast in the MR image. Thus, they may become a promising platform for future theranostic applications.
Collapse
Affiliation(s)
- Marta Szczęch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Alicja Karabasz
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Natalia Łopuszyńska
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Monika Bzowska
- Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Władysław P Węglarz
- Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Piotr Warszyński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Krzysztof Szczepanowicz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland.
| |
Collapse
|
9
|
Mahdavi B, Shokrani P, Hejazi SH, Talebi A, Taheri A. Doxorubicin-loaded PVP coated Gd2O3 NPs for effective chemoradiotherapy in melanoma. J Drug Deliv Sci Technol 2019. [DOI: 10.1016/j.jddst.2019.101189] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
10
|
Narmani A, Farhood B, Haghi-Aminjan H, Mortezazadeh T, Aliasgharzadeh A, Mohseni M, Najafi M, Abbasi H. Gadolinium nanoparticles as diagnostic and therapeutic agents: Their delivery systems in magnetic resonance imaging and neutron capture therapy. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.01.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Temperature and Vibration Dependence of the Faraday Effect of Gd₂O₃ NPs-Doped Alumino-Silicate Glass Optical Fiber. SENSORS 2018; 18:s18040988. [PMID: 29584633 PMCID: PMC5948947 DOI: 10.3390/s18040988] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 03/16/2018] [Accepted: 03/22/2018] [Indexed: 11/17/2022]
Abstract
All-optical fiber magnetic field sensor based on the Gd₂O₃ nano-particles (NPs)-doped alumino-silicate glass optical fiber was developed, and its temperature and vibration dependence on the Faraday Effect were investigated. Uniformly embedded Gd₂O₃ NPs were identified to form in the core of the fiber, and the measured absorption peaks of the fiber appearing at 377 nm, 443 nm, and 551 nm were attributed to the Gd₂O₃ NPs incorporated in the fiber core. The Faraday rotation angle (FRA) of the linearly polarized light was measured at 650 nm with the induced magnetic field by the solenoid. The Faraday rotation angle was found to increase linearly with the magnetic field, and it was about 18.16° ± 0.048° at 0.142 Tesla (T) at temperatures of 25 °C-120 °C, by which the estimated Verdet constant was 3.19 rad/(T∙m) ± 0.01 rad/(T∙m). The variation of the FRA with time at 0.142 T and 120 °C was negligibly small (-9.78 × 10-4 °/min). The variation of the FRA under the mechanical vibration with the acceleration below 10 g and the frequency above 50 Hz was within 0.5°.
Collapse
|
12
|
Woźniak A, Grześkowiak BF, Babayevska N, Zalewski T, Drobna M, Woźniak-Budych M, Wiweger M, Słomski R, Jurga S. ZnO@Gd2O3 core/shell nanoparticles for biomedical applications: Physicochemical, in vitro and in vivo characterization. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 80:603-615. [DOI: 10.1016/j.msec.2017.07.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/31/2017] [Accepted: 07/08/2017] [Indexed: 01/10/2023]
|
13
|
Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP. Gd-DTPA Adsorption on Chitosan/Magnetite Nanocomposites. NANOSCALE RESEARCH LETTERS 2016; 11:168. [PMID: 27030468 PMCID: PMC4814391 DOI: 10.1186/s11671-016-1363-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 03/10/2016] [Indexed: 06/01/2023]
Abstract
The synthesis of the chitosan/magnetite nanocomposites is presented. Composites were prepared by co-precipitation of iron(II) and iron(III) salts by aqueous ammonia in the 0.1 % chitosan solution. It was shown that magnetite synthesis in the chitosan medium does not affect the magnetite crystal structure. The thermal analysis data showed 4.6 % of mass concentration of chitosan in the hybrid chitosan/magnetite composite. In the concentration range of initial Gd-DTPA solution up to 0.4 mmol/L, addition of chitosan to magnetite increases the adsorption capacity and affinity to Gd-DTPA complex. The Langmuir and Freundlich adsorption models were applied to describe adsorption processes. Nanocomposites were characterized by scanning electron microscopy (SEM), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and specific surface area determination (ASAP) methods.
Collapse
Affiliation(s)
- Ie V Pylypchuk
- Nanomaterials Department, Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine.
| | - D Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - M Kozioł
- Department of Inorganic Chemistry, Faculty of Chemistry, Maria Curie Skłodowska University, M. Curie Skłodowska Sq. 2, 20-031, Lublin, Poland
| | - P P Gorbyk
- Nanomaterials Department, Chuiko Institute of Surface Chemistry of the National Academy of Sciences of Ukraine, 17 General Naumov Str., 03164, Kyiv, Ukraine
| |
Collapse
|
14
|
Štefančíková L, Lacombe S, Salado D, Porcel E, Pagáčová E, Tillement O, Lux F, Depeš D, Kozubek S, Falk M. Effect of gadolinium-based nanoparticles on nuclear DNA damage and repair in glioblastoma tumor cells. J Nanobiotechnology 2016; 14:63. [PMID: 27464501 PMCID: PMC4964094 DOI: 10.1186/s12951-016-0215-8] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 07/18/2016] [Indexed: 12/03/2022] Open
Abstract
Background Tumor targeting of radiotherapy represents a great challenge. The addition of multimodal nanoparticles, such as 3 nm gadolinium-based nanoparticles (GdBNs), has been proposed as a promising strategy to amplify the effects of radiation in tumors and improve diagnostics using the same agents. This singular property named theranostic is a unique advantage of GdBNs. It has been established that the amplification of radiation effects by GdBNs appears due to fast electronic processes. However, the influence of these nanoparticles on cells is not yet understood. In particular, it remains dubious how nanoparticles activated by ionizing radiation interact with cells and their constituents. A crucial question remains open of whether damage to the nucleus is necessary for the radiosensitization exerted by GdBNs (and other nanoparticles). Methods We studied the effect of GdBNs on the induction and repair of DNA double-strand breaks (DSBs) in the nuclear DNA of U87 tumor cells irradiated with γ-rays. For this purpose, we used currently the most sensitive method of DSBs detection based on high-resolution confocal fluorescence microscopy coupled with immunodetection of two independent DSBs markers. Results We show that, in the conditions where GdBNs amplify radiation effects, they remain localized in the cytoplasm, i.e. do not penetrate into the nucleus. In addition, the presence of GdBNs in the cytoplasm neither increases induction of DSBs by γ-rays in the nuclear DNA nor affects their consequent repair. Conclusions Our results suggest that the radiosensitization mediated by GdBNs is a cytoplasmic event that is independent of the nuclear DNA breakage, a phenomenon commonly accepted as the explanation of biological radiation effects. Considering our earlier recognized colocalization of GdBNs with the lysosomes and endosomes, we revolutionary hypothesize here about these organelles as potential targets for (some) nanoparticles. If confirmed, this finding of cytoplasmically determined radiosensitization opens new perspectives of using nano-radioenhancers to improve radiotherapy without escalating the risk of pathologies related to genetic damage.
Collapse
Affiliation(s)
- Lenka Štefančíková
- Department of Cell Biology and Radiobiology, Institute of Biophysics of ASCR, Brno, Czech Republic. .,Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Sud 11, CNRS, Université Paris Saclay, Bât 351, 91405, Orsay Cedex, France.
| | - Sandrine Lacombe
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Sud 11, CNRS, Université Paris Saclay, Bât 351, 91405, Orsay Cedex, France
| | - Daniela Salado
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Sud 11, CNRS, Université Paris Saclay, Bât 351, 91405, Orsay Cedex, France
| | - Erika Porcel
- Institute des Sciences Moléculaires d'Orsay (ISMO), Université Paris Sud 11, CNRS, Université Paris Saclay, Bât 351, 91405, Orsay Cedex, France
| | - Eva Pagáčová
- Department of Cell Biology and Radiobiology, Institute of Biophysics of ASCR, Brno, Czech Republic
| | - Olivier Tillement
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, 69622, Villeurbanne Cedex, France
| | - François Lux
- Institut Lumière Matière, Université Claude Bernard Lyon 1, CNRS, 69622, Villeurbanne Cedex, France
| | - Daniel Depeš
- Department of Cell Biology and Radiobiology, Institute of Biophysics of ASCR, Brno, Czech Republic
| | - Stanislav Kozubek
- Department of Cell Biology and Radiobiology, Institute of Biophysics of ASCR, Brno, Czech Republic
| | - Martin Falk
- Department of Cell Biology and Radiobiology, Institute of Biophysics of ASCR, Brno, Czech Republic.
| |
Collapse
|
15
|
Ahab A, Rohman F, Iskandar F, Haryanto F, Arif I. A simple straightforward thermal decomposition synthesis of PEG-covered Gd 2 O 3 (Gd 2 O 3 @PEG) nanoparticles. ADV POWDER TECHNOL 2016. [DOI: 10.1016/j.apt.2016.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
16
|
Banerjee S, Ghose M, Paul SS, Patra S, Mukherjea KK. A gadolinium(III) complex: synthesis, structure, photophysical profile and its role in the degradation of nitroaromatics. J COORD CHEM 2016. [DOI: 10.1080/00958972.2015.1125475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Madhulika Ghose
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | | - Swarup Patra
- Department of Chemistry, Jadavpur University, Kolkata, India
| | | |
Collapse
|
17
|
Mi P, Dewi N, Yanagie H, Kokuryo D, Suzuki M, Sakurai Y, Li Y, Aoki I, Ono K, Takahashi H, Cabral H, Nishiyama N, Kataoka K. Hybrid Calcium Phosphate-Polymeric Micelles Incorporating Gadolinium Chelates for Imaging-Guided Gadolinium Neutron Capture Tumor Therapy. ACS NANO 2015; 9:5913-21. [PMID: 26033034 DOI: 10.1021/acsnano.5b00532] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Gadolinium (Gd) chelates-loaded nanocarriers have high potential for achieving magnetic resonance imaging (MRI)-guided Gd neutron capture therapy (GdNCT) of tumors. Herein, we developed calcium phosphate micelles hybridized with PEG-polyanion block copolymers, and incorporated with the clinical MRI contrast agent Gd-diethylenetriaminepentaacetic acid (Gd-DTPA/CaP). The Gd-DTPA/CaP were nontoxic to cancer cells at the concentration of 100 μM based on Gd-DTPA, while over 50% of the cancer cells were killed by thermal neutron irradiation at this concentration. Moreover, the Gd-DTPA/CaP showed a dramatically increased accumulation of Gd-DTPA in tumors, leading to the selective contrast enhancement of tumor tissues for precise tumor location by MRI. The enhanced tumor-to-blood distribution ratio of Gd-DTPA/CaP resulted in the effective suppression of tumor growth without loss of body weight, indicating the potential of Gd-DTPA/CaP for safe cancer treatment.
Collapse
Affiliation(s)
- Peng Mi
- †Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
- ‡Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
- §Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Novriana Dewi
- ⊥Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hironobu Yanagie
- ⊥Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Daisuke Kokuryo
- ∥Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Minoru Suzuki
- #Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yoshinori Sakurai
- #Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Yanmin Li
- ∇Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Ichio Aoki
- ∥Molecular Imaging Center, National Institute of Radiological Sciences, Anagawa 4-9-1, Inage, Chiba, 263-8555, Japan
| | - Koji Ono
- #Research Reactor Institute, Kyoto University, Asahiro nishi, Kumatori-cho, Sennan-gun, Osaka 590-0494, Japan
| | - Hiroyuki Takahashi
- ⊥Department of Nuclear Engineering and Management, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- ∇Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Nobuhiro Nishiyama
- †Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
- ‡Polymer Chemistry Division, Chemical Resources Laboratory, Tokyo Institute of Technology, R1-11, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Kazunori Kataoka
- †Innovation Center of Nanomedicine, Kawasaki Institute of Industry Promotion, 66-20 Horikawa-cho, Saiwai-ku, Kawasaki 212-0013, Japan
- §Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- ∇Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- ⊗Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
18
|
Cell localisation of gadolinium-based nanoparticles and related radiosensitising efficacy in glioblastoma cells. Cancer Nanotechnol 2014; 5:6. [PMID: 25328549 PMCID: PMC4192560 DOI: 10.1186/s12645-014-0006-6] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 09/09/2014] [Indexed: 11/10/2022] Open
Abstract
Recently, the addition of nanoparticles (NPs) has been proposed as a new strategy to enhance the effect of radiotherapy particularly in the treatment of aggressive tumors such as glioblastoma. The physical processes involved in radiosensitisation by nanoparticles have been well studied although further understanding of its biological impact is still lacking, and this includes the localisation of these NPs in the target cells. Most studies were performed with NPs tagged with fluorescent markers. However, the presence of these markers can influence the NPs uptake and localisation. In this study, a set of methods was used to unambiguously and fully characterise the uptake of label-free NPs, their co-localisation with cell organelles, and their radiosensitising efficacy. This set was applied to the case of gadolinium-based nanoparticles (GdBN) used to amplify the radiation killing of U87 glioblastoma cells extracted from highly aggressive human tumor. For the first time, Synchrotron Radiation Deep UV (SR-DUV) microscopy is proposed as a new tool to track label-free GdBN. It confirmed the localisation of the NPs in the cytoplasm of U87 cells and the absence of NPs in the nucleus. In a second step, Transmission Electron Microscopy (TEM) demonstrated that GdBN penetrate cells by endocytosis. Third, using confocal microscopy it was found that GdBN co-localise with lysosomes but not with mitochondria. Finally, clonogenic assay measurements proved that the presence of NPs in the lysosomes induces a neat amplification of the killing of glioblastoma cells irradiated by gamma rays. The set of combined experimental protocols—TEM, SR-DUV and confocal microscopy—demonstrates a new standard method to study the localisation of label-free NPs together with their radiosensitising properties. This will further the understanding of NP-induced radiosentisation and contribute to the development of nanoagents for radiotherapy.
Collapse
|
19
|
Zhang Y, Wei W, Das GK, Yang Tan TT. Engineering lanthanide-based materials for nanomedicine. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2014. [DOI: 10.1016/j.jphotochemrev.2014.06.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
20
|
Ichikawa H, Uneme T, Andoh T, Arita Y, Fujimoto T, Suzuki M, Sakurai Y, Shinto H, Fukasawa T, Fujii F, Fukumori Y. Gadolinium-loaded chitosan nanoparticles for neutron-capture therapy: Influence of micrometric properties of the nanoparticles on tumor-killing effect. Appl Radiat Isot 2014; 88:109-13. [DOI: 10.1016/j.apradiso.2013.12.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Revised: 12/09/2013] [Accepted: 12/17/2013] [Indexed: 11/26/2022]
|
21
|
Moghaddam MJ, de Campo L, Hirabayashi M, Bean PA, Waddington LJ, Scoble JA, Coia G, Drummond CJ. Gadolinium-DTPA amphiphile nanoassemblies: agents for magnetic resonance imaging and neutron capture therapy. Biomater Sci 2014; 2:924-935. [DOI: 10.1039/c3bm60235d] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Gandhi S, Thandavan K, Kwon BJ, Woo HJ, Yi SS, Lee HS, Jeong JH, Jang K, Shin DS. Mesoporous silica: a highly promising and compatible candidate for optical and biomedical applications. RSC Adv 2014. [DOI: 10.1039/c3ra47414c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
23
|
Lipani E, Laurent S, Surin M, Vander Elst L, Leclère P, Muller RN. High-relaxivity and luminescent silica nanoparticles as multimodal agents for molecular imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:3419-3427. [PMID: 23383648 DOI: 10.1021/la304689d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The design and synthesis of a new bimodal contrast agent for magnetic resonance imaging and optical imaging is reported. Tunable-sized silica nanoparticles were synthesized by a microemulsion-mediated pathway and used as carriers for paramagnetic and luminescent probes. The near-infrared luminescent agent was a ruthenium complex that was directly entrapped in the silica shell to provide photoluminescence enhancement and to make it highly photostable as it was protected from the surrounding environment. The paramagnetic activity came from a Gd-DTPA derivative that was grafted on the silica surface. NMRD profiles showed a strong relaxivity enhancement (increase of 432% in the r1 value at 20 MHz) when the paramagnetic complex was grafted at the nanoparticle surface, because of a reduction of its mobility. Polyethylene glycol was also grafted at the nanoparticle surface to enhance the nanoparticle residence time in the bloodstream. A thorough characterization of the material confirmed its potential as a very effective bimodal contrast agent.
Collapse
Affiliation(s)
- Estelle Lipani
- Department of General, Organic and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Mons (BE), Belgium
| | | | | | | | | | | |
Collapse
|
24
|
Anishur Rahman ATM, Majewski P, Vasilev K. Gd2O3nanoparticles: size-dependent nuclear magnetic resonance. CONTRAST MEDIA & MOLECULAR IMAGING 2012; 8:92-5. [DOI: 10.1002/cmmi.1481] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - Peter Majewski
- School AME; University of South Australia; Mawson Lakes SA-5095 Australia
| | - Krasimir Vasilev
- School AME; University of South Australia; Mawson Lakes SA-5095 Australia
| |
Collapse
|
25
|
Rima W, Sancey L, Aloy MT, Armandy E, Alcantara GB, Epicier T, Malchère A, Joly-Pottuz L, Mowat P, Lux F, Tillement O, Burdin B, Rivoire A, Boulé C, Anselme-Bertrand I, Pourchez J, Cottier M, Roux S, Rodriguez-Lafrasse C, Perriat P. Internalization pathways into cancer cells of gadolinium-based radiosensitizing nanoparticles. Biomaterials 2012; 34:181-95. [PMID: 23046756 DOI: 10.1016/j.biomaterials.2012.09.029] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Accepted: 09/16/2012] [Indexed: 01/23/2023]
Abstract
Over the last few decades, nanoparticles have been studied in theranostic field with the objective of exhibiting a long circulation time through the body coupled to major accumulation in tumor tissues, rapid elimination, therapeutic potential and contrast properties. In this context, we developed sub-5 nm gadolinium-based nanoparticles that possess in vitro efficient radiosensitizing effects at moderate concentration when incubated with head and neck squamous cell carcinoma cells (SQ20B). Two main cellular internalization mechanisms were evidenced and quantified: passive diffusion and macropinocytosis. Whereas the amount of particles internalized by passive diffusion is not sufficient to induce in vitro a significant radiosensitizing effect, the cellular uptake by macropinocytosis leads to a successful radiotherapy in a limited range of particles incubation concentration. Macropinocytosis processes in two steps: formation of agglomerates at vicinity of the cell followed by their collect via the lamellipodia (i.e. the "arms") of the cell. The first step is strongly dependent on the physicochemical characteristics of the particles, especially their zeta potential that determines the size of the agglomerates and their distance from the cell. These results should permit to control the quantity of particles internalized in the cell cytoplasm, promising ambitious opportunities towards a particle-assisted radiotherapy using lower radiation doses.
Collapse
Affiliation(s)
- Wael Rima
- INSA-Lyon, MATEIS CNRS UMR5510, 69621 Villeurbanne Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Liu Y, Zhang N. Gadolinium loaded nanoparticles in theranostic magnetic resonance imaging. Biomaterials 2012; 33:5363-75. [DOI: 10.1016/j.biomaterials.2012.03.084] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/25/2012] [Indexed: 12/15/2022]
|
27
|
Tu C, Louie AY. Nanoformulations for molecular MRI. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2012; 4:448-57. [PMID: 22488901 DOI: 10.1002/wnan.1170] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nanoscale contrast agents have shown the ability to increase the detection sensitivity of magnetic resonance imaging (MRI) by several orders of magnitude, endowing this traditionally macroscopic modality with the ability to observe unique molecular signatures. Herein, we describe three types of nanoparticulate contrast agents: iron oxide nanoparticles, gadolinium-based nanoparticles, and bio-essential manganese, cobalt, nickel, and copper ion-containing nanoformulations. Some of these agents have been approved for clinical use, but more are still under development for medical imaging. The advantages and disadvantages of each nanoformulation, in terms of intrinsic magnetism, ease of synthesis, biodistribution, etc. are discussed.
Collapse
Affiliation(s)
- Chuqiao Tu
- Department of Biomedical Engineering, University of California at Davis, Davis, CA, USA.
| | | |
Collapse
|
28
|
Liu Y, Chen Z, Liu C, Yu D, Lu Z, Zhang N. Gadolinium-loaded polymeric nanoparticles modified with Anti-VEGF as multifunctional MRI contrast agents for the diagnosis of liver cancer. Biomaterials 2011; 32:5167-76. [PMID: 21521627 DOI: 10.1016/j.biomaterials.2011.03.077] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2011] [Accepted: 03/29/2011] [Indexed: 12/21/2022]
Abstract
Molecular imaging is essential to increase the sensitivity and selectivity of cancer diagnosis especially in the early stage of tumor. Here, we designed a novel multifunctional polymeric nanoparticle contrast agent (Anti-VEGF PLA-PEG-PLL-Gd NP) simultaneously modified with Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) and anti-vascular endothelial growth factor (VEGF) antibody to deliver Gd-DTPA to the tumor area and achieve the early diagnosis of hepatocellular carcinoma (HCC). The Anti-VEGF PLA-PEG-PLL-Gd NPs exhibited high T(1) relaxivity and no obvious cytotoxicity under the experimental concentrations in human hepatocellular carcinoma (HepG2) cells. The results of in vitro cell uptake experiments demonstrated that the uptake process of NPs was both concentration and time depended. Compared with non-targeted NPs, the Anti-VEGF antibody modified NPs showed much higher cell uptake in the HepG2 cells. During in vivo studies, the targeted NPs showed significantly signal intensity enhancement at the tumor site (mouse hepatocarcinoma tumor, H22) compared with non-targeted NPs and Gd-DTPA injection in tumor-bearing mice and the imaging time was significantly prolonged from less than an hour (Gd-DTPA injection group) to 12 h. These results demonstrated that this novel MRI contrast agent Anti-VEGF PLA-PEG-PLL-Gd NPs showed great potential in the early diagnosis of liver tumors.
Collapse
Affiliation(s)
- Yongjun Liu
- School of Pharmaceutical Science, Shandong University, Ji'nan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
29
|
Anishur Rahman A, Vasilev K, Majewski P. Ultra small Gd2O3 nanoparticles: Absorption and emission properties. J Colloid Interface Sci 2011; 354:592-6. [DOI: 10.1016/j.jcis.2010.11.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/02/2010] [Accepted: 11/05/2010] [Indexed: 11/17/2022]
|
30
|
Liu G, Tse NMK, Hill MR, Kennedy DF, Drummond CJ. Disordered Mesoporous Gadolinosilicate Nanoparticles Prepared Using Gadolinium Based Ionic Liquid Emulsions: Potential as Magnetic Resonance Imaging Contrast Agents. Aust J Chem 2011. [DOI: 10.1071/ch11064] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Gadolinium doped mesoporous silica (gadolinosilicate) nanoparticles were synthesized using a novel approach aimed at incorporating Gd ions into a porous silica network. The ionic liquid, gadolinium (Z)-octadec-9-enoate (Gd Oleate) was utilized in a dual role, as a soft template to generate porous silica and also to act as a gadolinium source for incorporation into the silicate. The generated silicate materials were characterized for size, structure and composition, confirming that gadolinium was successfully doped into the silicate network in a mesoporous nanoparticulate form. Proton relaxivity results indicated that the gadolinium doped silicates had slightly lower longitudinal relaxivity and much higher transverse relaxivity than the commercial contrast agent Magnevist®, suggesting that the mesoporous nanoparticulate materials have potential as contrast agents for magnetic resonance imaging.
Collapse
|
31
|
In vivo magnetomotive optical molecular imaging using targeted magnetic nanoprobes. Proc Natl Acad Sci U S A 2010; 107:8085-90. [PMID: 20404194 DOI: 10.1073/pnas.0913679107] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Dynamic magnetomotion of magnetic nanoparticles (MNPs) detected with magnetomotive optical coherence tomography (MM-OCT) represents a new methodology for contrast enhancement and therapeutic interventions in molecular imaging. In this study, we demonstrate in vivo imaging of dynamic functionalized iron oxide MNPs using MM-OCT in a preclinical mammary tumor model. Using targeted MNPs, in vivo MM-OCT images exhibit strong magnetomotive signals in mammary tumor, and no significant signals were measured from tumors of rats injected with nontargeted MNPs or saline. The results of in vivo MM-OCT are validated by MRI, ex vivo MM-OCT, Prussian blue staining of histological sections, and immunohistochemical analysis of excised tumors and internal organs. The MNPs are antibody functionalized to target the human epidermal growth factor receptor 2 (HER2 neu) protein. Fc-directed conjugation of the antibody to the MNPs aids in reducing uptake by macrophages in the reticulo-endothelial system, thereby increasing the circulation time in the blood. These engineered magnetic nanoprobes have multifunctional capabilities enabling them to be used as dynamic contrast agents in MM-OCT and MRI.
Collapse
|
32
|
Tu C, Ma X, Pantazis P, Kauzlarich SM, Louie AY. Paramagnetic, silicon quantum dots for magnetic resonance and two-photon imaging of macrophages. J Am Chem Soc 2010; 132:2016-23. [PMID: 20092250 PMCID: PMC2836323 DOI: 10.1021/ja909303g] [Citation(s) in RCA: 136] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantum dots (QDs) are an attractive platform for building multimodality imaging probes, but the toxicity for typical cadmium QDs limits enthusiasm for their clinical use. Nontoxic, silicon QDs are more promising but tend to require short-wavelength excitations which are subject to tissue scattering and autofluorescence artifacts. Herein, we report the synthesis of paramagnetic, manganese-doped, silicon QDs (Si(Mn) QDs) and demonstrate that they are detectable by both MRI and near-infrared excited, two-photon imaging. The Si(Mn) QDs are coated with dextran sulfate to target them to scavenger receptors on macrophages, a biomarker of vulnerable plaques. TEM images show that isolated QDs have an average core diameter of 4.3 +/- 1.0 nm and the hydrodynamic diameters of coated nanoparticles range from 8.3 to 43 nm measured by dynamic light scattering (DLS). The Si(Mn) QDs have an r(1) relaxivity of 25.50 +/- 1.44 mM(-1) s(-1) and an r(2) relaxivity of 89.01 +/- 3.26 mM(-1) s(-1) (37 degrees C, 1.4 T). They emit strong fluorescence at 441 nm with a quantum yield of 8.1% in water. Cell studies show that the probes specifically accumulate in macrophages by a receptor-mediated process, are nontoxic to mammalian cells, and produce distinct contrast in both T(1)-weighted magnetic resonance and single- or two-photon excitation fluorescence images. These QDs have promising diagnostic potential as high macrophage density is associated with atherosclerotic plaques vulnerable to rupture.
Collapse
Affiliation(s)
- Chuqiao Tu
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| | - Xuchu Ma
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
- Department of Chemistry, University of California, Davis, CA 95616, USA
| | - Periklis Pantazis
- Biological Imaging Center, Beckman Institute, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Angelique Y. Louie
- Department of Biomedical Engineering, University of California, Davis, CA 95616, USA
| |
Collapse
|
33
|
Liu G, Conn CE, Waddington LJ, Mudie ST, Drummond CJ. Colloidal amphiphile self-assembly particles composed of gadolinium oleate and myverol: evaluation as contrast agents for magnetic resonance imaging. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:2383-2391. [PMID: 19852474 DOI: 10.1021/la902845j] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Gadolinium oleate has been added at various concentrations to a Myverol inverse bicontinuous cubic phase forming system, and the potential of these systems as magnetic resonance imaging (MRI) contrast agents has been investigated. Differential scanning calorimetry (DSC), small-angle X-ray scattering (SAXS), and cryo-transmission electron microscopy (cryo-TEM) measurements on the Gd oleate/Myverol systems indicate that Gd oleate is at least partially incorporated within the cubic phase of Myverol. However, at Gd oleate concentrations greater than 1 wt %, partial phase separation of the system may occur with the formation of a Gd-oleate-rich lamellar phase as well as the cubic phase. Bulk Gd oleate/Myverol mixtures can be dispersed into stable colloidal dispersions. SAXS and cryo-TEM measurements on these dispersions indicate that the presence of Gd oleate in the Myverol system prevents the formation of cubosomes from the bulk cubic phase. Instead, the dispersion consists of putative Gd-oleate-rich nonswelling lamellar nanoparticles as well as colloidal particles lacking ordered internal structure. In vitro studies on these dispersions demonstrated that the relaxivity of select Gd oleate/Myverol systems is much higher than that of pure Gd oleate, exemplifying the promise of this system type for magnetic resonance imaging. The highest water proton relaxivities (r(1) = 34.2 mM(-1) s(-1) and r(2) = 27.3 mM(-1) s(-1) at 20 MHz and room temperature) were obtained at a Gd oleate loading concentration of 1 wt %, with a subsequent decrease in relaxivity with increasing Gd oleate concentration. These maximum relaxivities compare favorably with the relaxivities for the commercial contrast agent, Magnevist (r(1) = 4.91 mM(-1) s(-1) and r(2) = 6.26 mM(-1) s(-1) at 20 MHz and room temperature).
Collapse
Affiliation(s)
- Guozhen Liu
- CSIRO Molecular and Health Technologies, Private Bag 10, Clayton South MDC, VIC 3169, Australia
| | | | | | | | | |
Collapse
|
34
|
Tseng TK, Choi J, Davidson M, Holloway PH. Synthesis and luminescent characteristics of europium dopants in SiO2/Gd2O3 core/shell scintillating nanoparticles. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm00941e] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
35
|
REZAEIPOOR ROBABEH, JOHN RENU, ADIE STEVENG, CHANEY ERICJ, MARJANOVIC MARINA, OLDENBURG AMYL, RINNE STEPHANIEA, BOPPART STEPHENA. Fc-DIRECTED ANTIBODY CONJUGATION OF MAGNETIC NANOPARTICLES FOR ENHANCED MOLECULAR TARGETING. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2009; 2:387-396. [PMID: 21643439 PMCID: PMC3105601 DOI: 10.1142/s1793545809000693] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In this study, we report the fabrication of engineered iron oxide magnetic nanoparticles (MNPs) functionalized with anti-human epidermal growth factor receptor type 2 (HER2) antibody to target the tumor antigen HER2. The Fc-directed conjugation of antibodies to the MNPs aids their efficient immunospecific targeting through free Fab portions. The directional specificity of conjugation was verified on a macrophage cell line. Immunofluorescence studies on macrophages treated with functionalized MNPs and free anti-HER2 antibody revealed that the antibody molecules bind to the MNPs predominantly through their Fc portion. Different cell lines with different HER2 expression levels were used to test the specificity of our functionalized nanoprobe for molecular targeting applications. The results of cell line targeting demonstrate that these engineered MNPs are able to differentiate between cell lines with different levels of HER2 expression.
Collapse
Affiliation(s)
- ROBABEH REZAEIPOOR
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - RENU JOHN
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - STEVEN G. ADIE
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - ERIC J. CHANEY
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - MARINA MARJANOVIC
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - AMY L. OLDENBURG
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - STEPHANIE A. RINNE
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - STEPHEN A. BOPPART
- Biophotonics Imaging Laboratory, Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Departments of Electrical and Computer Engineering, Bioengineering, and Internal Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
36
|
Ou M, Mutelet B, Martini M, Bazzi R, Roux S, Ledoux G, Tillement O, Perriat P. Optimization of the synthesis of nanostructured Tb3+-doped Gd2O3 by in-situ luminescence following up. J Colloid Interface Sci 2009; 333:684-9. [DOI: 10.1016/j.jcis.2009.01.062] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Revised: 10/07/2008] [Accepted: 01/20/2009] [Indexed: 11/26/2022]
|
37
|
Arrais A, Botta M, Avedano S, Giovenzana GB, Gianolio E, Boccaleri E, Stanghellini PL, Aime S. Carbon coated microshells containing nanosized Gd(iii) oxidic phases for multiple bio-medical applications. Chem Commun (Camb) 2008:5936-8. [DOI: 10.1039/b811554k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|