1
|
Gradinaru LM, Bercea M, Lupu A, Gradinaru VR. Development of Polyurethane/Peptide-Based Carriers with Self-Healing Properties. Polymers (Basel) 2023; 15:polym15071697. [PMID: 37050311 PMCID: PMC10096672 DOI: 10.3390/polym15071697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/30/2023] Open
Abstract
In situ-forming gels with self-assembling and self-healing properties are materials of high interest for various biomedical applications, especially for drug delivery systems and tissue regeneration. The main goal of this research was the development of an innovative gel carrier based on dynamic inter- and intramolecular interactions between amphiphilic polyurethane and peptide structures. The polyurethane architecture was adapted to achieve the desired amphiphilicity for self-assembly into an aqueous solution and to facilitate an array of connections with peptides through physical interactions, such as hydrophobic interactions, dipole-dipole, electrostatic, π–π stacking, or hydrogen bonds. The mechanism of the gelation process and the macromolecular conformation in water were evaluated with DLS, ATR-FTIR, and rheological measurements at room and body temperatures. The DLS measurements revealed a bimodal distribution of small (~30–40 nm) and large (~300–400 nm) hydrodynamic diameters of micelles/aggregates at 25 °C for all samples. The increase in the peptide content led to a monomodal distribution of the peaks at 37 °C (~25 nm for the sample with the highest content of peptide). The sol–gel transition occurs very quickly for all samples (within 20–30 s), but the equilibrium state of the gel structure is reached after 1 h in absence of peptide and required more time as the content of peptide increases. Moreover, this system presented self-healing properties, as was revealed by rheological measurements. In the presence of peptide, the structure recovery after each cycle of deformation is a time-dependent process, the recovery is complete after about 300 s. Thus, the addition of the peptide enhanced the polymer chain entanglement through intermolecular interactions, leading to the preparation of a well-defined gel carrier. Undoubtedly, this type of polyurethane/peptide-based carrier, displaying a sol–gel transition at a biologically relevant temperature and enhanced viscoelastic properties, is of great interest in the development of medical devices for minimally invasive procedures or precision medicine.
Collapse
|
2
|
Regan B, Boyle F, O'Kennedy R, Collins D. Evaluation of Molecularly Imprinted Polymers for Point-of-Care Testing for Cardiovascular Disease. SENSORS (BASEL, SWITZERLAND) 2019; 19:E3485. [PMID: 31395843 PMCID: PMC6720456 DOI: 10.3390/s19163485] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 07/29/2019] [Accepted: 08/06/2019] [Indexed: 12/13/2022]
Abstract
Molecular imprinting is a rapidly growing area of interest involving the synthesis of artificial recognition elements that enable the separation of analyte from a sample matrix and its determination. Traditionally, this approach can be successfully applied to small analyte (<1.5 kDa) separation/ extraction, but, more recently it is finding utility in biomimetic sensors. These sensors consist of a recognition element and a transducer similar to their biosensor counterparts, however, the fundamental distinction is that biomimetic sensors employ an artificial recognition element. Molecularly imprinted polymers (MIPs) employed as the recognition elements in biomimetic sensors contain binding sites complementary in shape and functionality to their target analyte. Despite the growing interest in molecularly imprinting techniques, the commercial adoption of this technology is yet to be widely realised for blood sample analysis. This review aims to assess the applicability of this technology for the point-of-care testing (POCT) of cardiovascular disease-related biomarkers. More specifically, molecular imprinting is critically evaluated with respect to the detection of cardiac biomarkers indicative of acute coronary syndrome (ACS), such as the cardiac troponins (cTns). The challenges associated with the synthesis of MIPs for protein detection are outlined, in addition to enhancement techniques that ultimately improve the analytical performance of biomimetic sensors. The mechanism of detection employed to convert the analyte concentration into a measurable signal in biomimetic sensors will be discussed. Furthermore, the analytical performance of these sensors will be compared with biosensors and their potential implementation within clinical settings will be considered. In addition, the most suitable application of these sensors for cardiovascular assessment will be presented.
Collapse
Affiliation(s)
- Brian Regan
- School of Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Fiona Boyle
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Richard O'Kennedy
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
- Research Complex, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - David Collins
- School of Biotechnology, Dublin City University, Dublin 9, Ireland
| |
Collapse
|
3
|
Qu Q, Yu XJ, Wu X, Shi F, Wang LL. Fast separation of hen egg white protein with a phosphorylcholine type zwitterionic ion chromatography stationary phase. CHINESE CHEM LETT 2012. [DOI: 10.1016/j.cclet.2012.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Simonovsky FI, Porter SC, Ratner BD. Synthesis of segmented poly(ether urethane)s and poly(ether urethane urea)s incorporating various side-chain or backbone functionalities. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:267-84. [PMID: 15794490 DOI: 10.1163/1568562053115462] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
A series of linear and branched functionalized high-molecular-weight segmented poly (ether urethane)s and poly(ether urethane urea)s were prepared by chain-extending isocyanate pre-polymers based on poly(tetramethylene oxide) with molecular weight 1000 and 4,4'-diphenylmethane diisocyanate. Different functional groups were incorporated within the polymer backbone or on side-chains by using several chain extenders during the synthesis: glycerol, 2,2-bis (hydroxymethyl) propionic acid, 1H, 1H,2H,3H,3H-perfluoroundecane-1,2-diol, 1H,1H,8H,8H-dodecanefluoro-1,8-octanediol, 1,3-diamino-2-hydroxypropane and 3,5-diaminobenzoic acid, using the method of gradual approach to stoichiometry. In some cases, pendant functional groups were used as reactive sites for the further attachment of side groups. Polymers were characterized using 1H-NMR and FT-IR spectroscopies and GPC in conjunction with chemical structural confirmation by a model compound comparison study of 4,4'-diphenylmethane diisocyanate or trifluoro-p-tolyl isocyanate reacted with 1,3-diamino-2-hydroxypropane and 1,4-butanediol.
Collapse
Affiliation(s)
- Felix I Simonovsky
- Department of Bioengineering, University of Washington, P.O. Box 351720, Seattle, WA 98195-1720, USA
| | | | | |
Collapse
|
5
|
Li L, Wang JH, Xin Z. Synthesis and biocompatibility of a novel silicone hydrogel containing phosphorylcholine. Eur Polym J 2011. [DOI: 10.1016/j.eurpolymj.2011.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Tan DS, Zhang XQ, Wang JC, Li JH, Tan H, Fu Q. Synthesis and phase behavior of polyurethanes end-capped with fluorinated phosphatidylcholine head groups. CHINESE JOURNAL OF POLYMER SCIENCE 2011. [DOI: 10.1007/s10118-011-1071-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Wu L, Guo Z, Meng S, Zhong W, Du Q, Chou LL. Synthesis of a zwitterionic silane and its application in the surface modification of silicon-based material surfaces for improved hemocompatibility. ACS APPLIED MATERIALS & INTERFACES 2010; 2:2781-2788. [PMID: 20839802 DOI: 10.1021/am1004249] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A phosphorylcholine-like silane coupling agent bearing zwitterionic molecular structure was synthesized and studied. The chemical structure of this silane coupling agent was characterized by FTIR, 1H NMR and 31P NMR. The zwitterionic structure was successfully constructed onto the surface of silicon as a self-assembled layer (SAL). Static water contact angle, and atomic force microscopy (AFM) were used to investigate the wettability and surface topography of the modified silicon surfaces. Static water contact angle results indicated that the hydrophilicity of the surfaces could be effectively improved by the modification with this zwitterionic silane coupling agent. The changes of the topography and water contact angle of the modified surfaces with different incubation periods in PBS solution were also measured to evaluate the stability of the SALs. Blood compatibility of the modified surfaces were evaluated by testing the full-blood activated partial thromboplastin time (APTT), prothrombin time (PT), and thrombin time (TT), as well as by observing the adhered blood platelets onto the surface. The modified surfaces showed prolonged clotting time and fewer adherent platelets, revealing that the blood compatibility was evidently improved by the modification using this zwitterionic silane.
Collapse
Affiliation(s)
- Lingxiang Wu
- Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | | | | | | | | | | |
Collapse
|
8
|
Zhi ZL, Liu B, Jones PM, Pickup JC. Polysaccharide Multilayer Nanoencapsulation of Insulin-Producing β-Cells Grown as Pseudoislets for Potential Cellular Delivery of Insulin. Biomacromolecules 2010; 11:610-6. [DOI: 10.1021/bm901152k] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Zheng-liang Zhi
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| | - Bo Liu
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| | - Peter M Jones
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| | - John C Pickup
- Metabolic Unit, King’s College London School of Medicine, Guy’s Hospital, London, United Kingdom, and Diabetes Research Group, School of Biomedical and Health Sciences, King’s College London, Guy’s Campus, London, United Kingdom
| |
Collapse
|
9
|
YASUZAWA M, MATSUKI T, YAMADA T, KUNUGI A. Synthesis and Electropolymerization of Phosphorylcholine-Containing Pyrroles and Their Hemocompatible Properties. ANAL SCI 2010; 26:539-43. [DOI: 10.2116/analsci.26.539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Mikito YASUZAWA
- Department of Chemical Science and Technology, Institute of Science and Technology, The University of Tokushima
| | - Takashi MATSUKI
- Department of Chemical Science and Technology, Institute of Science and Technology, The University of Tokushima
| | - Tetsuya YAMADA
- Department of Chemical Science and Technology, Institute of Science and Technology, The University of Tokushima
| | - Akira KUNUGI
- Department of Chemical Science and Technology, Institute of Science and Technology, The University of Tokushima
| |
Collapse
|
10
|
Hunley MT, McKee MG, Long TE. Submicron functional fibrous scaffolds based on electrospun phospholipids. ACTA ACUST UNITED AC 2007. [DOI: 10.1039/b613474b] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Jiang W, Fischer G, Girmay Y, Irgum K. Zwitterionic stationary phase with covalently bonded phosphorylcholine type polymer grafts and its applicability to separation of peptides in the hydrophilic interaction liquid chromatography mode. J Chromatogr A 2006; 1127:82-91. [PMID: 16814299 DOI: 10.1016/j.chroma.2006.05.080] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Revised: 05/23/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
A novel phosphorylcholine type zwitterionic stationary phase was synthesized by graft polymerization of 2-methacryloyloxyethyl phosphorylcholine onto the surface of porous silica particles. The resulting material possesses both negatively charged phosphoric acid and positively charged quaternary ammonium groups, which renders it a low net charge over a wide pH range. The composition of the surface grafts were determined by elemental analysis and solid state NMR, and the surface charge (zeta-potential) in different buffer solutions were measured using photon correlation spectroscopy. Separation of several peptides was investigated on packed columns in the hydrophilic interaction liquid chromatography (HILIC) separation mode. It was shown that small peptides can be separated based on hydrophilic interaction and ionic interaction between the stationary phase and analyte. The organic solvent composition, the pH and the salt concentration of the eluent have strong effects on the retention time. Compared to native silica before grafting, the newly synthesized zwitterionic material gave more stable retention times for basic peptides over pH range 3-7 due to elimination of the dissociation of silanol groups.
Collapse
Affiliation(s)
- Wen Jiang
- Umeå University, Department of Chemistry, S-901 87 Umeå, Sweden.
| | | | | | | |
Collapse
|
12
|
Biomimetic surface modification on polyacrylonitrile-based asymmetric membranes via direct formation of phospholipid moieties. POLYMER 2006. [DOI: 10.1016/j.polymer.2006.02.088] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|