1
|
Mahmoodi M, Ali Darabi M, Mohaghegh N, Erdem A, Ahari A, Abbasgholizadeh R, Tavafoghi M, Hashemian PM, Hosseini V, Iqbal J, Haghniaz R, Montazerian H, Jahangiry J, Nasrolahi F, Mirjafari A, Pagan E, Akbari M, Bae H, John JV, Heidari H, Khademhosseini A, Hassani Najafabadi A. Egg White Photocrosslinkable Hydrogels as Versatile Bioinks for Advanced Tissue Engineering Applications. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2315040. [PMID: 39584050 PMCID: PMC11583837 DOI: 10.1002/adfm.202315040] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 11/26/2024]
Abstract
Three-dimensional (3D) bioprinting using photocrosslinkable hydrogels has gained considerable attention due to its versatility in various applications, including tissue engineering and drug delivery. Egg White (EW) is an organic biomaterial with excellent potential in tissue engineering. It provides abundant proteins, along with biocompatibility, bioactivity, adjustable mechanical properties, and intrinsic antiviral and antibacterial features. Here, we have developed a photocrosslinkable hydrogel derived from EW through methacryloyl modification, resulting in Egg White methacryloyl (EWMA). Upon exposure to UV light, synthesized EWMA becomes crosslinked, creating hydrogels with remarkable bioactivity. These hydrogels offer adjustable mechanical and physical properties compatible with most current bioprinters. The EWMA hydrogels closely resemble the native extracellular matrix (ECM) due to cell-binding and matrix metalloproteinase-responsive motifs inherent in EW. In addition, EWMA promotes cell growth and proliferation in 3D cultures. It facilitates vascularization when investigated with human umbilical vein endothelial cells (HUVECs), making it an attractive replacement for engineering hemocompatible vascular grafts and biomedical implants. In summary, the EWMA matrix enables the biofabrication of various living constructs. This breakthrough enhances the development of physiologically relevant 3D in vitro models and opens many opportunities in regenerative medicine.
Collapse
Affiliation(s)
- Mahboobeh Mahmoodi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
- Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
- Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Ali Darabi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Neda Mohaghegh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Ahmet Erdem
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, 41001, Kocaeli, Turkey
| | - Amir Ahari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Reza Abbasgholizadeh
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Maryam Tavafoghi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Paria Mir Hashemian
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts, USA
| | - Vahid Hosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Javed Iqbal
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Hossein Montazerian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Jamileh Jahangiry
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Fatemeh Nasrolahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Arshia Mirjafari
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Erik Pagan
- Department of Botany, Bacha Khan University, Charsadda, Khyber Pakhtunkhwa, Pakistan
| | - Mohsen Akbari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Laboratory for Innovations in MicroEngineering (LiME), Department of Mechanical Engineering, University of Victoria, Victoria, British Columbia
| | - Hojae Bae
- Department of Stem Cell and Regenerative Biotechnology, KU Convergence Science and Technology Institute, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Materials Discovery, University College London, London, United Kingdom
| | - Johnson V John
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Hossein Heidari
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Center for Minimally Invasive Therapeutics (C-MIT), University of California, Los Angeles, California 90095, USA
- Department of Bioengineering, University of California, Los Angeles, California, USA
| | - Alireza Hassani Najafabadi
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, USA
- Lundquist Institute for Biomedical Innovation, Harbor-UCLA Medical Center, Torrance, California, 90502, USA
| |
Collapse
|
2
|
Shur M, Akouissi O, Rizzo O, Colin DJ, Kolinski JM, Lacour SP. Revealing the complexity of ultra-soft hydrogel re-swelling inside the brain. Biomaterials 2023; 294:122024. [PMID: 36716587 DOI: 10.1016/j.biomaterials.2023.122024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/27/2023]
Abstract
The brain is an ultra-soft viscoelastic matrix. Sub-kPa hydrogels match the brain's mechanical properties but are challenging to manipulate in an implantable format. We propose a simple fabrication and processing sequence, consisting of de-hydration, patterning, implantation, and re-hydration steps, to deliver brain-like hydrogel implants into the nervous tissue. We monitored in real-time the ultra-soft hydrogel re-swelling kinetics in vivo using microcomputed tomography, achieved by embedding gold nanoparticles inside the hydrogel for contrast enhancement. We found that re-swelling in vivo strongly depends on the implant geometry and water availability at the hydrogel-tissue interface. Buckling of the implant inside the brain occurs when the soft implant is tethered to the cranium. Finite-element and analytical models reveal how the shank geometry, modulus and anchoring govern in vivo buckling. Taken together, these considerations on re-swelling kinetics of hydrogel constructs, implant geometry and soft implant-tissue mechanical interplay can guide the engineering of biomimetic brain implants.
Collapse
Affiliation(s)
- Michael Shur
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Outman Akouissi
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland; Bertarelli Foundation Chair in Translational Neuroengineering, Institute of Bioengineering, Center for Neuroprosthetics, École Polytechnique Fédérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Olivier Rizzo
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland
| | - Didier J Colin
- Preclinical Imaging Platform, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland
| | - John M Kolinski
- Laboratory of Engineering Mechanics of Soft Interfaces, Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Stéphanie P Lacour
- Bertarelli Foundation Chair in Neuroprosthetic Technology, Laboratory for Soft Bioelectronic Interfaces, Neuro-X Institute, École Polytechnique Fedérale de Lausanne (EPFL), 1202, Geneva, Switzerland.
| |
Collapse
|
3
|
Bittner SM, Pearce HA, Hogan KJ, Smoak MM, Guo JL, Melchiorri AJ, Scott DW, Mikos AG. Swelling Behaviors of 3D Printed Hydrogel and Hydrogel-Microcarrier Composite Scaffolds. Tissue Eng Part A 2021; 27:665-678. [PMID: 33470161 DOI: 10.1089/ten.tea.2020.0377] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The present study sought to demonstrate the swelling behavior of hydrogel-microcarrier composite constructs to inform their use in controlled release and tissue engineering applications. In this study, gelatin methacrylate (GelMA) and GelMA-gelatin microparticle (GMP) composite constructs were three-dimensionally printed, and their swelling and degradation behavior was evaluated over time and as a function of the degree of crosslinking of included GMPs. GelMA-only constructs and composite constructs loaded with GMPs crosslinked with 10 mM (GMP-10) or 40 mM (GMP-40) glutaraldehyde were swollen in phosphate-buffered saline for up to 28 days to evaluate changes in swelling and polymer loss. In addition, scaffold reswelling capacity was evaluated under five successive drying-rehydration cycles. All printed materials demonstrated shear thinning behavior, with microparticle additives significantly increasing viscosity relative to the GelMA-only solution. Swelling results demonstrated that for GelMA/GMP-10 and GelMA/GMP-40 scaffolds, fold and volumetric swelling were statistically higher and lower, respectively, than for GelMA-only scaffolds after 28 days, and the volumetric swelling of GelMA and GelMA/GMP-40 scaffolds decreased over time. After 5 drying-rehydration cycles, GelMA scaffolds demonstrated higher fold swelling than both GMP groups while also showing lower volumetric swelling than GMP groups. Although statistical differences were not observed in the swelling of GMP-10 and GMP-40 particles alone, the interaction of GelMA/GMP demonstrated a significant effect on the swelling behaviors of composite scaffolds. These results demonstrate an example hydrogel-microcarrier composite system's swelling behavior and can inform the future use of such a composite system for controlled delivery of bioactive molecules in vitro and in vivo in tissue engineering applications. Impact statement In this study, porous three-dimensional printed (3DP) hydrogel constructs with and without natural polymer microcarriers were fabricated to observe swelling and degradation behavior under continuous swelling and drying-rehydration cycle conditions. Inclusion of microcarriers with different crosslinking densities led to distinct swelling behaviors for each biomaterial ink tested. 3DP hydrogel and hydrogel-microcarrier composite scaffolds have been commonly used in tissue engineering for the delivery of biomolecules. This study demonstrates the swelling behavior of porous hydrogel and hydrogel-microcarrier scaffolds that may inform later use of such materials for controlled release applications in a variety of fields including materials development and tissue regeneration.
Collapse
Affiliation(s)
- Sean M Bittner
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA
| | - Hannah A Pearce
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA
| | - Katie J Hogan
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA.,Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
| | - Mollie M Smoak
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA
| | - Jason L Guo
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA
| | - Anthony J Melchiorri
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA
| | - David W Scott
- Department of Statistics, Rice University, Houston, Texas, USA
| | - Antonios G Mikos
- Department of Bioengineering and Rice University, Houston, Texas, USA.,Biomaterials Lab, Rice University, Houston, Texas, USA.,NIH/NIBIB Center for Engineering Complex Tissues, Rice University, Houston, Texas, USA
| |
Collapse
|
4
|
Barnett HH, Heimbuck AM, Pursell I, Hegab RA, Sawyer BJ, Newman JJ, Caldorera-Moore ME. Poly (ethylene glycol) hydrogel scaffolds with multiscale porosity for culture of human adipose-derived stem cells. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2019; 30:895-918. [PMID: 31039085 DOI: 10.1080/09205063.2019.1612725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Three-dimensional (3 D) hydrogel scaffolds are an attractive option for tissue regeneration applications because they allow for cell migration, fluid exchange, and can be synthesized to closely mimic the physical properties of the extracellular matrix environment. The material properties of hydrogels play a vital role in cellular migration and differentiation. In light of this, in-depth understanding of material properties is required before such scaffolds can be used to study their influence on cells. Herein, various blends and thicknesses of poly (ethylene glycol) dimethacrylate (PEGDMA) hydrogels were synthesized, flash frozen, and dried by lyophilization to create scaffolds with multiscale porosity. Environmental scanning electron microscopy (ESEM) images demonstrated that lyophilization induced microporous voids in the PEGDMA hydrogels while swelling studies show the hydrogels retain their innate swelling properties. Change in pore size was observed between drying methods, polymer blend, and thickness when imaged in the hydrated state. Human adipose-derived stem cells (hASCs) were seeded on lyophilized and non-lyophilized hydrogels to determine if the scaffolds would support cell attachment and proliferation of a clinically relevant cell type. Cell attachment and morphology of the hASCs were evaluated using fluorescence imaging. Qualitative observations in cell attachment and morphology of hASCs on the surface of the different hydrogel spatial configurations indicate these multiscale porosity hydrogels create a suitable scaffold for hASC culture. These findings offer another factor of tunability in creating biomimetic hydrogels for various tissue engineering applications including tissue repair, regeneration, wound healing, and controlled release of growth factors.
Collapse
Affiliation(s)
- Haley H Barnett
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Abitha M Heimbuck
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - India Pursell
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | - Rachel A Hegab
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA
| | - Benjamin J Sawyer
- b Department of Biomedical Engineering , Louisiana Tech University , Ruston , LA , USA.,c Department of chemistry, Trinity University , San Antonio , TX , USA
| | - Jamie J Newman
- a School of Biological Sciences, Louisiana Tech University , Ruston , LA , USA
| | | |
Collapse
|
5
|
Lueckgen A, Garske DS, Ellinghaus A, Desai RM, Stafford AG, Mooney DJ, Duda GN, Cipitria A. Hydrolytically-degradable click-crosslinked alginate hydrogels. Biomaterials 2018; 181:189-198. [PMID: 30086448 DOI: 10.1016/j.biomaterials.2018.07.031] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 12/30/2022]
Abstract
Degradable biomaterials aim to recapitulate the dynamic microenvironment that cells are naturally exposed to. By oxidizing the alginate polymer backbone, thereby rendering it susceptible to hydrolysis, and crosslinking it via norbornene-tetrazine click chemistry, we can control rheological, mechanical, and degradation properties of resulting hydrogels. Chemical modifications were confirmed by nuclear magnetic resonance (NMR) and the resulting mechanical properties measured by rheology and unconfined compression testing, demonstrating that these are both a function of norbornene coupling and oxidation state. The degradation behavior was verified by tracking mechanical and swelling behavior over time, showing that degradation could be decoupled from initial mechanical properties. The cell compatibility was assessed in 2D and 3D using a mouse pre-osteoblast cell line and testing morphology, proliferation, and viability. Cells attached, spread and proliferated in 2D and retained a round morphology and stable number in 3D, while maintaining high viability in both contexts over 7 days. Finally, oxidized and unoxidized control materials were implanted subcutaneously into the backs of C57/Bl6 mice, and recovered after 8 weeks. Histological staining revealed morphological differences and fibrous tissue infiltration only in oxidized materials. These materials with tunable and decoupled mechanical and degradation behavior could be useful in many tissue engineering applications.
Collapse
Affiliation(s)
- Aline Lueckgen
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Daniela S Garske
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Agnes Ellinghaus
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Rajiv M Desai
- School of Engineering and Applied Sciences - Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alexander G Stafford
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David J Mooney
- School of Engineering and Applied Sciences - Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Georg N Duda
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Amaia Cipitria
- Julius Wolff Institute & Center for Musculoskeletal Surgery, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité - Universitätsmedizin Berlin, 13353 Berlin, Germany; Max Planck Institute of Colloids and Interfaces, Department of Biomaterials, 14476 Potsdam, Germany.
| |
Collapse
|
6
|
Luong PT, Browning MB, Bixler RS, Cosgriff-Hernandez E. Drying and storage effects on poly(ethylene glycol) hydrogel mechanical properties and bioactivity. J Biomed Mater Res A 2013; 102:3066-76. [PMID: 24123725 DOI: 10.1002/jbm.a.34977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 09/13/2013] [Accepted: 09/23/2013] [Indexed: 12/25/2022]
Abstract
Hydrogels based on poly(ethylene glycol) (PEG) are increasingly used in biomedical applications because of their ability to control cell-material interactions by tuning hydrogel physical and biological properties. Evaluation of stability after drying and storage are critical in creating an off-the-shelf biomaterial that functions in vivo according to original specifications. However, there has not been a study that systematically investigates the effects of different drying conditions on hydrogel compositional variables. In the first part of this study, PEG-diacrylate hydrogels underwent common processing procedures (vacuum-drying, lyophilizing, hydrating then vacuum-drying), and the effect of this processing on the mechanical properties and swelling ratios was measured. Significant changes in compressive modulus, tensile modulus, and swelling ratio only occurred for select processed hydrogels. No consistent trends were observed after processing for any of the formulations tested. The effect of storage conditions on cell adhesion and spreading on collagen- and streptococcal collagen-like protein (Scl2-2)-PEG-diacrylamide hydrogels was then evaluated to characterize bioactivity retention after storage. Dry storage conditions preserved bioactivity after 6 weeks of storage; whereas, storage in PBS significantly reduced bioactivity. This loss of bioactivity was attributed to ester hydrolysis of the protein linker, acrylate-PEG-N-hydroxysuccinimide. These studies demonstrate that these processing methods and dry storage conditions may be used to prepare bioactive PEG hydrogel scaffolds with recoverable functionality after storage.
Collapse
Affiliation(s)
- P T Luong
- Department of Biomedical Engineering, Texas A&M University, College Station, Texas, 77843-3120
| | | | | | | |
Collapse
|
7
|
Oligo[poly(ethylene glycol)fumarate] hydrogel enhances osteochondral repair in porcine femoral condyle defects. Clin Orthop Relat Res 2013; 471:1174-85. [PMID: 22826014 PMCID: PMC3586016 DOI: 10.1007/s11999-012-2487-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Management of osteochondritis dissecans remains a challenge. Use of oligo[poly(ethylene glycol)fumarate] (OPF) hydrogel scaffold alone has been reported in osteochondral defect repair in small animal models. However, preclinical evaluation of usage of this scaffold alone as a treatment strategy is limited. QUESTIONS/PURPOSES We therefore (1) determined in vitro pore size and mechanical stiffness of freeze-dried and rehydrated freeze-dried OPF hydrogels, respectively; (2) assessed in vivo gross defect filling percentage and histologic findings in defects implanted with rehydrated freeze-dried hydrogels for 2 and 4 months in a porcine model; (3) analyzed highly magnified histologic sections for different types of cartilage repair tissues, subchondral bone, and scaffold; and (4) assessed neotissue filling percentage, cartilage phenotype, and Wakitani scores. METHODS We measured pore size of freeze-dried OPF hydrogel scaffolds and mechanical stiffness of fresh and rehydrated forms. Twenty-four osteochondral defects from 12 eight-month-old micropigs were equally divided into scaffold and control (no scaffold) groups. Gross and histologic examination, one-way ANOVA, and one-way Mann-Whitney U test were performed at 2 and 4 months postoperatively. RESULTS Pore sizes ranged from 20 to 433 μm in diameter. Rehydrated freeze-dried scaffolds had mechanical stiffness of 1 MPa. The scaffold itself increased percentage of neotissue filling at both 2 and 4 months to 58% and 54%, respectively, with hyaline cartilage making up 39% of neotissue at 4 months. CONCLUSIONS Rehydrated freeze-dried OPF hydrogel can enhance formation of hyaline-fibrocartilaginous mixed repair tissue of osteochondral defects in a porcine model. CLINICAL RELEVANCE Rehydrated freeze-dried OPF hydrogel alone implanted into cartilage defects is insufficient to generate a homogeneously hyaline cartilage repair tissue, but its spacer effect can be enhanced by other tissue-regenerating mediators.
Collapse
|
8
|
|
9
|
Pedraza E, Brady AC, Fraker CA, Stabler CL. Synthesis of macroporous poly(dimethylsiloxane) scaffolds for tissue engineering applications. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 24:1041-56. [PMID: 23683037 DOI: 10.1080/09205063.2012.735097] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Macroporous, biostable scaffolds with controlled porous architecture were prepared from poly(dimethylsiloxane) (PDMS) using sodium chloride particles and a solvent casting and particulate leaching technique. The effect of particulate size range and overall porosity on the resulting structure was evaluated. Results found 90% v/v scaffolds and particulate ranges above 100 μm to have the most optimal open framework and porosity. Resulting hydrophobic PDMS scaffolds were coated with fibronectin and evaluated as a platform for adherent cell culture using human mesenchymal stem cells. Biocompatibility of PDMS scaffolds was also evaluated in a rodent model, where implants were found to be highly biocompatible and biostable, with positive extracellular matrix deposition throughout the scaffold. These results demonstrate the suitability of macroporous PDMS scaffolds for tissue engineering applications where strong integration with the host is desired.
Collapse
Affiliation(s)
- Eileen Pedraza
- Department of Biomedical Engineering, College of Engineering, University of Miami, Coral Gables, FL 33134, USA
| | | | | | | |
Collapse
|
10
|
Abstract
This protocol describes the synthesis of oligo(poly(ethylene glycol) fumarate) (OPF; 1-35 kDa; a polymer useful for tissue engineering applications) by a one-pot reaction of poly(ethylene glycol) (PEG) and fumaryl chloride. The procedure involves three parts: dichloromethane and PEG are first dried; the reaction step follows, in which fumaryl chloride and triethylamine are added dropwise to a solution of PEG in dichloromethane; and finally, the product solution is filtered to remove by-product salt, and the OPF product is twice crystallized, washed and dried under vacuum. The reaction is affected by the molecular weight of PEG and reactant molar ratio. The OPF product is cross-linked by radical polymerization by either a thermally induced or ultraviolet-induced radical initiator, and the physical properties of the OPF oligomer and resulting cross-linked hydrogel are easily tailored by varying PEG molecular weight. OPF hydrogels are injectable, they polymerize in situ and they undergo biodegradation by hydrolysis of ester bonds. The expected time required to complete this protocol is 6 d.
Collapse
|
11
|
Kretlow JD, Mikos AG. Founder's award to Antonios G. Mikos, Ph.D., 2011 Society for Biomaterials annual meeting and exposition, Orlando, Florida, April 13-16, 2011: Bones to biomaterials and back again--20 years of taking cues from nature to engineer synthetic polymer scaffolds. J Biomed Mater Res A 2011; 98:323-31. [PMID: 21714068 DOI: 10.1002/jbm.a.33154] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2011] [Accepted: 04/28/2011] [Indexed: 12/11/2022]
Abstract
For biomaterials scientists focusing on tissue engineering applications, the gold standard material is healthy, autologous tissue. Ideal material properties and construct design parameters are thus both obvious and often times unachievable; additional considerations such as construct delivery and the underlying pathology necessitating new tissue yield additional design challenges with solutions that are not evident in nature. For the past nearly two decades, our laboratory and collaborators have aimed to develop both new biomaterials and a better understanding of the complex interplay between material and host tissue to facilitate bone and cartilage regeneration. Various approaches have ranged from mimicking native tissue material properties and architecture to developing systems for bioactive molecule delivery as soluble factors or bound directly to the biomaterial substrate. Such technologies have allowed others and us to design synthetic biomaterials incorporating increasing levels of complexity found in native tissues with promising advances made toward translational success. Recent work focuses on translation of these technologies in specific clinical situations through the use of adjunctive biomaterials designed to address existing pathologies or guide host-material integration.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, Houston, Texas 77251-1892, USA
| | | |
Collapse
|
12
|
Rooney GE, Knight AM, Madigan NN, Gross L, Chen B, Giraldo CV, Seo S, Nesbitt JJ, Dadsetan M, Yaszemski MJ, Windebank AJ. Sustained delivery of dibutyryl cyclic adenosine monophosphate to the transected spinal cord via oligo [(polyethylene glycol) fumarate] hydrogels. Tissue Eng Part A 2011; 17:1287-302. [PMID: 21198413 DOI: 10.1089/ten.tea.2010.0396] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study describes the use of oligo [(polyethylene glycol) fumarate] (OPF) hydrogel scaffolds as vehicles for sustained delivery of dibutyryl cyclic adenosine monophosphate (dbcAMP) to the transected spinal cord. dbcAMP was encapsulated in poly(lactic-co-glycolic acid) (PLGA) microspheres, which were embedded within the scaffolds architecture. Functionality of the released dbcAMP was assessed using neurite outgrowth assays in PC12 cells and by delivery to the transected spinal cord within OPF seven channel scaffolds, which had been loaded with Schwann cells or mesenchymal stem cells (MSCs). Our results showed that encapsulation of dbcAMP in microspheres lead to prolonged release and continued functionality in vitro. These microspheres were then successfully incorporated into OPF scaffolds and implanted in the transected thoracic spinal cord. Sustained delivery of dbcAMP inhibited axonal regeneration in the presence of Schwann cells but rescued MSC-induced inhibition of axonal regeneration. dbcAMP was also shown to reduce capillary formation in the presence of MSCs, which was coupled with significant functional improvements. Our findings demonstrate the feasibility of incorporating PLGA microsphere technology for spinal cord transection studies. It represents a novel sustained delivery mechanism within the transected spinal cord and provides a platform for potential delivery of other therapeutic agents.
Collapse
Affiliation(s)
- Gemma E Rooney
- Department of Neurology, Mayo Clinic College of Medicine, Rochester, Minnesota, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Runge MB, Dadsetan M, Baltrusaitis J, Ruesink T, Lu L, Windebank AJ, Yaszemski MJ. Development of electrically conductive oligo(polyethylene glycol) fumarate-polypyrrole hydrogels for nerve regeneration. Biomacromolecules 2010; 11:2845-53. [PMID: 20942380 PMCID: PMC3947846 DOI: 10.1021/bm100526a] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Electrically conductive hydrogel composites consisting of oligo(polyethylene glycol) fumarate (OPF) and polypyrrole (PPy) were developed for applications in nerve regeneration. OPF-PPy scaffolds were synthesized using three different anions: naphthalene-2-sulfonic acid sodium salt (NSA), dodecylbenzenesulfonic acid sodium salt (DBSA), and dioctyl sulfosuccinate sodium salt (DOSS). Scaffolds were characterized by ATR-FTIR, XPS, AFM, dynamic mechanical analysis, electrical resistivity measurements, and swelling experiments. OPF-PPy scaffolds were shown to consist of up to 25 mol % polypyrrole with a compressive modulus ranging from 265 to 323 kPa and a sheet resistance ranging from 6 to 30 × 10(3) Ohms/square. In vitro studies using PC12 cells showed OPF-PPy materials had no cytotoxicity and PC12 cells showed distinctly better cell attachment and an increase in the percent of neurite bearing cells on OPF-PPy materials compared to OPF. The neurite lengths of PC12 cells were significantly higher on OPF-PPyNSA and OPF-PPyDBSA. These results show that electrically conductive OPF-PPy hydrogels are promising candidates for future applications in nerve regeneration.
Collapse
Affiliation(s)
- M. Brett Runge
- Mayo Clinic College of Medicine, Departments of Orthopedic Surgery of Biomedical Engineering
| | - Mahrokh Dadsetan
- Mayo Clinic College of Medicine, Departments of Orthopedic Surgery of Biomedical Engineering
| | | | - Terry Ruesink
- Mayo Clinic College of Medicine, Departments of Orthopedic Surgery of Biomedical Engineering
| | - Lichun Lu
- Mayo Clinic College of Medicine, Departments of Orthopedic Surgery of Biomedical Engineering
| | | | - Michael J. Yaszemski
- Mayo Clinic College of Medicine, Departments of Orthopedic Surgery of Biomedical Engineering
| |
Collapse
|
14
|
Rechichi A, Sartori S, Caporale A, Ciardelli G, Vozzi G, Mazzucco L, Peggion E, Giusti P. Development of a RGDS-peptide modified polyurethane for tissue regeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2009; 611:249-50. [DOI: 10.1007/978-0-387-73657-0_114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Kretlow JD, Mikos AG. 2007 AIChE Alpha Chi Sigma Award: From Material to Tissue: Biomaterial Development, Scaffold Fabrication, and Tissue Engineering. AIChE J 2008; 54:3048-3067. [PMID: 19756176 DOI: 10.1002/aic.11610] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The need for techniques to facilitate the regeneration of failing or destroyed tissues remains great with the aging of the worldwide population and the continued incidence of trauma and diseases such as cancer. A 16-year history in biomaterial scaffold development and tissue engineering is examined, beginning with the synthesis of novel materials and fabrication of 3D porous scaffolds. Exploring cell-scaffold interactions and subsequently cellular delivery using biomaterial carriers, we have developed a variety of techniques for bone and cartilage engineering. In addition to delivering cells, we have utilized growth factors, DNA, and peptides to improve the in vitro and in vivo regeneration of tissues. This review covers important developments and discoveries within our laboratory, and the increasing breadth in the scope of our work within the expanding field of tissue engineering is presented.
Collapse
Affiliation(s)
- James D Kretlow
- Department of Bioengineering, Rice University, P.O. Box 1892, MS 142, Houston, TX 77251-1892
| | | |
Collapse
|
16
|
Kasper FK, Jerkins E, Tanahashi K, Barry MA, Tabata Y, Mikos AG. Characterization of DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres
in vitro. J Biomed Mater Res A 2006; 78:823-35. [PMID: 16741980 DOI: 10.1002/jbm.a.30736] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This research investigates the release of plasmid DNA from novel hydrogel composites of oligo(poly(ethylene glycol) fumarate) (OPF) and cationized gelatin microspheres (CGMS), as well as the swelling and degradation of these materials in vitro. The release of total DNA and of double-stranded DNA was measured fluorescently, and the swelling properties and polymer mass loss of the hydrogels were assessed. Further, the structural integrity of the released DNA was determined through electrophoresis. It was found that plasmid DNA can be released in a sustained fashion over the course of up to 49-140 days in vitro from hydrogels of OPF synthesized from poly(ethylene glycol) of nominal molecular weights of 10 kDa and 3 kDa, respectively, with the release kinetics depending upon the material composition and the method of DNA loading. Released DNA was predominately double-stranded DNA (dsDNA) in structure and of the open-circular conformation. The results suggest that DNA release from hydrogel composites of OPF and CGMS is dominated by the degradation of the OPF component of the gels. Electrophoresis results indicate that the released DNA retains suitable conformation for potential bioactivity over the course of at least 63 days of release. Thus, these studies demonstrate the potential of composites of OPF and CGMS in controlled gene delivery applications.
Collapse
Affiliation(s)
- F Kurtis Kasper
- Department of Bioengineering, Rice University, PO Box 1892, MS-142, Houston, Texas 77251-1892, USA
| | | | | | | | | | | |
Collapse
|
17
|
Varghese S, Elisseeff JH. Hydrogels for Musculoskeletal Tissue Engineering. POLYMERS FOR REGENERATIVE MEDICINE 2006. [DOI: 10.1007/12_072] [Citation(s) in RCA: 117] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Kasper FK, Young S, Tanahashi K, Barry MA, Tabata Y, Jansen JA, Mikos AG. Evaluation of bone regeneration by DNA release from composites of oligo(poly(ethylene glycol) fumarate) and cationized gelatin microspheres in a critical-sized calvarial defect. J Biomed Mater Res A 2006; 78:335-42. [PMID: 16639744 DOI: 10.1002/jbm.a.30698] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
This research examines the bone formation response to release of plasmid DNA encoding human Bone Morphogenetic Protein-2 from hydrogel composites consisting of cationized gelatin microspheres (CGMS) embedded within a crosslinked oligo(poly(ethylene glycol) fumarate) (OPF) hydrogel network in a critical-sized rat cranial defect model after 30 days. Four composite groups were investigated: (1) composites with 10 microg DNA loaded into the CGMS phase, (2) composites with 10 microg DNA loaded into the OPF phase, (3) composites with 100 microg DNA loaded into the OPF phase, and (4) composites without DNA (material control). Light microscopy revealed no enhancement in bone formation for groups releasing plasmid DNA, relative to the material control group. Limited formation of new bone was observed from the defect margins and within the defect for some samples. The hydrogels swelled appreciably and fragmentation of the implants was noted to varying degrees among samples within groups, with a presence of inflammatory cells related to the degree of fragmentation. The lack of enhancement in bone formation indicates that the release of plasmid DNA from the composites was not sufficient to elicit a bone regeneration response.
Collapse
Affiliation(s)
- F Kurtis Kasper
- Department of Bioengineering, Rice University, PO Box 1892, MS-142, Houston, Texas 77251-1892, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Kasper FK, Kushibiki T, Kimura Y, Mikos AG, Tabata Y. In vivo release of plasmid DNA from composites of oligo(poly(ethylene glycol)fumarate) and cationized gelatin microspheres. J Control Release 2005; 107:547-61. [PMID: 16139915 DOI: 10.1016/j.jconrel.2005.07.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 07/01/2005] [Accepted: 07/08/2005] [Indexed: 10/25/2022]
Abstract
Composites of cationized gelatin microspheres (CGMS), crosslinked with either 3 mM or 6 mM glutaraldehyde solution, and a novel hydrogel material, oligo(poly(ethylene glycol)fumarate) (OPF) were fabricated and investigated toward prolonging the release of plasmid DNA in vivo relative to the constituent materials. The composites and constituent materials were investigated in a subcutaneous murine model to assess the release of 125I-labeled plasmid DNA and 125I-labeled cationized gelatin in vivo. The time profiles of the radioactivity remaining were employed to compare the profiles of DNA release and cationized gelatin degradation. Both composite formulations (incorporating either 3 mM or 6 mM CGMS) prolonged the bioavailability of plasmid DNA relative to both injected plasmid DNA solution and the respective non-embedded cationized gelatin microspheres. Injected plasmid DNA solution persisted in the subject for only 7-10 days, whereas the persistence of DNA from composites of OPF and either 3 mM or 6 mM CGMS extended to at least day 42. The 3 mM and 6 mM CGMS each increased the persistence of DNA slightly, relative to injection of DNA solution, to between 28 and 35 days. Interestingly, the release profile of plasmid DNA from composites was not significantly different from the release of DNA from OPF alone. The release of plasmid DNA from the composites was in accord with the degradation of the microspheres within the OPF. These results show that composites of OPF and cationized gelatin microspheres are able to prolong the availability of plasmid DNA in vivo relative to cationized gelatin microspheres alone and provide a promising candidate material for the sustained, controlled release of plasmid DNA.
Collapse
Affiliation(s)
- F Kurtis Kasper
- Department of Bioengineering, MS-142, P.O. Box 1892, Rice University, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
20
|
Kasper FK, Seidlits SK, Tang A, Crowther RS, Carney DH, Barry MA, Mikos AG. In vitro release of plasmid DNA from oligo(poly(ethylene glycol) fumarate) hydrogels. J Control Release 2005; 104:521-39. [PMID: 15911051 DOI: 10.1016/j.jconrel.2005.03.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2004] [Revised: 03/08/2005] [Accepted: 03/08/2005] [Indexed: 11/29/2022]
Abstract
This research investigates the release of plasmid DNA in vitro from novel, injectable hydrogels based on the polymer oligo(poly(ethylene glycol) fumarate) (OPF). These biodegradable hydrogels can be crosslinked under physiological conditions to physically entrap plasmid DNA. The DNA release kinetics were characterized fluorescently with the PicoGreen and OliGreen Reagents as well as through the use of radiolabeled plasmid. Further, the ability of the released DNA to be expressed was assessed through bacterial transformations. It was found that plasmid DNA can be released in a sustained, linear fashion over the course of 45-62 days, with the release kinetics depending upon the molecular weight of the poly(ethylene glycol) from which the OPF was synthesized. Two formulations of OPF were synthesized from poly(ethylene glycol) of a nominal molecular weight of either 3.35K (termed OPF 3K) or 10K (termed OPF 10K). By the time the gels had completely degraded, 97.8+/-0.3% of the initially loaded DNA was recovered from OPF 3K hydrogels, with 80.8+/-1.9% of the initial DNA retaining its double-stranded form. Likewise, for OPF 10K gels, 92.1+/-4.3% of the initially loaded DNA was recovered upon complete degradation of the gels, with 81.6+/-3.8% of the initial DNA retaining double-stranded form. Experiments suggest that the release of plasmid DNA from OPF hydrogels is dominated by the degradation of the gels. Bacterial transformation results indicated that the DNA retained bioactivity over the course of 42 days of release. Thus, these studies demonstrate the potential of OPF hydrogels in controlled gene delivery applications.
Collapse
Affiliation(s)
- F Kurtis Kasper
- Department of Bioengineering, Rice University, PO Box 1892, MS-142, Houston, TX 77251-1892, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Temenoff JS, Park H, Jabbari E, Conway DE, Sheffield TL, Ambrose CG, Mikos AG. Thermally Cross-Linked Oligo(poly(ethylene glycol) fumarate) Hydrogels Support Osteogenic Differentiation of Encapsulated Marrow Stromal Cells In Vitro. Biomacromolecules 2004; 5:5-10. [PMID: 14715001 DOI: 10.1021/bm030067p] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel polymer, oligo(poly(ethylene glycol) fumarate) (OPF), cross-linked with a thermal radical initiation system has recently been developed in our laboratory as an injectable, biodegradable cell carrier for regeneration of orthopaedic tissues. The cross-linking, swelling, and degradative properties of hydrogels prepared from OPF with poly(ethylene glycol) of two different chain lengths were assessed. The two OPF types had similar gelation onset times ( approximately 3.6 min) but, when cross-linked for 8 min at 37 degrees C, exhibited significantly different swelling characteristics (fold swelling: 17.5 +/- 0.2 vs 13.4 +/- 0.4). Rat marrow stromal cells (MSCs) were then directly combined with the hydrogel precursors and encapsulated in a model OPF formulation at approximately 14 million cells/mL, cultured in vitro in the presence of osteogenic supplements (dexamethasone), and monitored over 28 days via histology. MSC differentiation in these samples (6 mm diameter x 0.5 mm thick before swelling), as determined by Von Kossa staining for calcified matrix, was apparent by day 21. At day 28, mineralized matrix could be seen throughout the samples, many microns away from the cells. These experiments strongly support the usefulness of thermally cross-linked OPF hydrogels as injectable cell carriers for bone regeneration.
Collapse
Affiliation(s)
- Johnna S Temenoff
- Department of Bioengineering, Rice University, Houston, Texas 77251, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Hoerstrup SP, Lu L, Lysaght MJ, Mikos AG, Rein D, Schoen FJ, Temenoff JS, Tessmar JK, Vacanti JP. Tissue Engineering. Biomater Sci 1996. [DOI: 10.1016/b978-012582460-6/50011-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|