1
|
Cronin JN, Crockett DC, Perchiazzi G, Farmery AD, Camporota L, Formenti F. Intra-tidal PaO 2 oscillations associated with mechanical ventilation: a pilot study to identify discrete morphologies in a porcine model. Intensive Care Med Exp 2023; 11:60. [PMID: 37672140 PMCID: PMC10482813 DOI: 10.1186/s40635-023-00544-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/28/2023] [Indexed: 09/07/2023] Open
Abstract
BACKGROUND Within-breath oscillations in arterial oxygen tension (PaO2) can be detected using fast responding intra-arterial oxygen sensors in animal models. These PaO2 signals, which rise in inspiration and fall in expiration, may represent cyclical recruitment/derecruitment and, therefore, a potential clinical monitor to allow titration of ventilator settings in lung injury. However, in hypovolaemia models, these oscillations have the potential to become inverted, such that they decline, rather than rise, in inspiration. This inversion suggests multiple aetiologies may underlie these oscillations. A correct interpretation of the various PaO2 oscillation morphologies is essential to translate this signal into a monitoring tool for clinical practice. We present a pilot study to demonstrate the feasibility of a new analysis method to identify these morphologies. METHODS Seven domestic pigs (average weight 31.1 kg) were studied under general anaesthesia with muscle relaxation and mechanical ventilation. Three underwent saline-lavage lung injury and four were uninjured. Variations in PEEP, tidal volume and presence/absence of lung injury were used to induce different morphologies of PaO2 oscillation. Functional principal component analysis and k-means clustering were employed to separate PaO2 oscillations into distinct morphologies, and the cardiorespiratory physiology associated with these PaO2 morphologies was compared. RESULTS PaO2 oscillations from 73 ventilatory conditions were included. Five functional principal components were sufficient to explain ≥ 95% of the variance of the recorded PaO2 signals. From these, five unique morphologies of PaO2 oscillation were identified, ranging from those which increased in inspiration and decreased in expiration, through to those which decreased in inspiration and increased in expiration. This progression was associated with the estimates of the first functional principal component (P < 0.001, R2 = 0.88). Intermediate morphologies demonstrated waveforms with two peaks and troughs per breath. The progression towards inverted oscillations was associated with increased pulse pressure variation (P = 0.03). CONCLUSIONS Functional principal component analysis and k-means clustering are appropriate to identify unique morphologies of PaO2 waveform associated with distinct cardiorespiratory physiology. We demonstrated novel intermediate morphologies of PaO2 waveform, which may represent a development of zone 2 physiologies within the lung. Future studies of PaO2 oscillations and modelling should aim to understand the aetiologies of these morphologies.
Collapse
Affiliation(s)
- John N Cronin
- Department of Anaesthesia and Perioperative Medicine, St. Thomas' Hospital, Guy's and St. Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK.
- Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Douglas C Crockett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Gaetano Perchiazzi
- Hedenstierna Laboratory, Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Andrew D Farmery
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Luigi Camporota
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Department of Intensive Care, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Federico Formenti
- Faculty of Life Sciences and Medicine, King's College London, London, UK
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
Kadwa AR, Grace JF, Zeiler GE. Sources of error in acid-base analysis from a blood gas analyser result: a narrative review. J S Afr Vet Assoc 2022; 93:89-98. [DOI: 10.36303/jsava.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Affiliation(s)
- AR Kadwa
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
- Section of Anaesthesia and Critical Care, Valley Farm Animal Hospital,
South Africa
| | - JF Grace
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
- Section of Anaesthesia and Critical Care, Valley Farm Animal Hospital,
South Africa
| | - GE Zeiler
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria,
South Africa
- Section of Anaesthesia and Critical Care, Valley Farm Animal Hospital,
South Africa
| |
Collapse
|
3
|
Tidal Volume-Dependent Activation of the Renin-Angiotensin System in Experimental Ventilator-Induced Lung Injury. Crit Care Med 2022; 50:e696-e706. [PMID: 35191411 DOI: 10.1097/ccm.0000000000005495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Ventilator-induced lung injury (VILI) is a major contributor to morbidity and mortality in critically ill patients. Mechanical damage to the lungs is potentially aggravated by the activation of the renin-angiotensin system (RAS). This article describes RAS activation profiles in VILI and discusses the effects of angiotensin (Ang) 1-7 supplementation or angiotensin-converting enzyme (ACE) inhibition with captopril as protective strategies. DESIGN Animal study. SETTING University research laboratory. SUBJECTS C57BL/6 mice. INTERVENTIONS Anesthetized mice (n = 12-18 per group) were mechanically ventilated with low tidal volume (LVT, 6 mL/kg), high tidal volume (HVT, 15 mL/kg), or very high tidal volume (VHVT, 30 mL/kg) for 4 hours, or killed after 3 minutes (sham). Additional VHVT groups received infusions of 60 μg/kg/hr Ang 1-7 or a single dose of 100 mg/kg captopril. MEASUREMENTS AND MAIN RESULTS VILI was characterized by increased bronchoalveolar lavage fluid levels of interleukin (IL)-6, keratinocyte-derived cytokine, and macrophage inflammatory protein-2 (MIP2). The Ang metabolites in plasma measured with liquid chromatography tandem mass spectrometry showed a strong activation of the classical (Ang I, Ang II) and alternative RAS (Ang 1-7, Ang 1-5), with highest concentrations found in the HVT group. Although the lung-tissue ACE messenger RNA expression was unchanged, its protein expression showed a dose-dependent increase under mechanical ventilation. The ACE2 messenger RNA expression decreased in all ventilated groups, whereas ACE2 protein levels remained unchanged. Both captopril and Ang 1-7 led to markedly increased Ang 1-7 plasma levels, decreased Ang II levels, and ACE activity (Ang II/Ang I ratio), and effectively prevented VILI. CONCLUSIONS VILI is accompanied by a strong activation of the RAS. Based on circulating Ang metabolite levels and tissue expression of RAS enzymes, classical ACE-dependent and alternative RAS cascades were activated in the HVT group, whereas classical RAS activation prevailed with VHVT ventilation. Ang 1-7 or captopril protected from VILI primarily by modifying the systemic RAS profile.
Collapse
|
4
|
Retamal J, Damiani LF, Basoalto R, Benites MH, Bruhn A, Larsson A, Bugedo G. Physiological and inflammatory consequences of high and low respiratory rate in acute respiratory distress syndrome. Acta Anaesthesiol Scand 2021; 65:1013-1022. [PMID: 33844272 DOI: 10.1111/aas.13830] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/17/2021] [Accepted: 03/29/2021] [Indexed: 12/18/2022]
Abstract
Using protective mechanical ventilation strategies with low tidal volume is usually accompanied by an increment of respiratory rate to maintain adequate alveolar ventilation. However, there is no robust data that support the safety of a high respiratory rate concerning ventilator-induced lung injury. Several experimental animal studies have explored the effects of respiratory rate over lung physiology, using a wide range of frequencies and different models. Clinical evidence is scarce and restricted to the physiological impact of increased respiratory rate. Undoubtedly, the respiratory rate can influence respiratory mechanics in various ways as a factor of multiplication of the power of ventilation, and gas exchange, and also on alveolar dynamics. In this narrative review, we present our point of view over the main experimental and clinical evidence available regarding the effect of respiratory rate on ventilator-induced lung injury development.
Collapse
Affiliation(s)
- Jaime Retamal
- Departamento de Medicina Intensiva Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Luis Felipe Damiani
- Departamento de Medicina Intensiva Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
- Departamento de Ciencias de la Salud Carrera de Kinesiología Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Roque Basoalto
- Departamento de Medicina Intensiva Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Martín H. Benites
- Departamento de Medicina Intensiva Clínica las Condes Santiago Chile
| | - Alejandro Bruhn
- Departamento de Medicina Intensiva Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| | - Anders Larsson
- Hedenstierna Laboratory Department of Surgical Sciences Section of Anaesthesiology and Critical Care Uppsala University Uppsala Sweden
| | - Guillermo Bugedo
- Departamento de Medicina Intensiva Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile
| |
Collapse
|
5
|
Abstract
Supplemental Digital Content is available in the text. Determine the intra-tidal regional gas and blood volume distributions at different levels of atelectasis in experimental lung injury. Test the hypotheses that pulmonary aeration and blood volume matching is reduced during inspiration in the setting of minimal tidal recruitment/derecruitment and that this mismatching is an important determinant of hypoxemia.
Collapse
|
6
|
Nieman GF, Al-Khalisy H, Kollisch-Singule M, Satalin J, Blair S, Trikha G, Andrews P, Madden M, Gatto LA, Habashi NM. A Physiologically Informed Strategy to Effectively Open, Stabilize, and Protect the Acutely Injured Lung. Front Physiol 2020; 11:227. [PMID: 32265734 PMCID: PMC7096584 DOI: 10.3389/fphys.2020.00227] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 02/27/2020] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) causes a heterogeneous lung injury and remains a serious medical problem, with one of the only treatments being supportive care in the form of mechanical ventilation. It is very difficult, however, to mechanically ventilate the heterogeneously damaged lung without causing secondary ventilator-induced lung injury (VILI). The acutely injured lung becomes time and pressure dependent, meaning that it takes more time and pressure to open the lung, and it recollapses more quickly and at higher pressure. Current protective ventilation strategies, ARDSnet low tidal volume (LVt) and the open lung approach (OLA), have been unsuccessful at further reducing ARDS mortality. We postulate that this is because the LVt strategy is constrained to ventilating a lung with a heterogeneous mix of normal and focalized injured tissue, and the OLA, although designed to fully open and stabilize the lung, is often unsuccessful at doing so. In this review we analyzed the pathophysiology of ARDS that renders the lung susceptible to VILI. We also analyzed the alterations in alveolar and alveolar duct mechanics that occur in the acutely injured lung and discussed how these alterations are a key mechanism driving VILI. Our analysis suggests that the time component of each mechanical breath, at both inspiration and expiration, is critical to normalize alveolar mechanics and protect the lung from VILI. Animal studies and a meta-analysis have suggested that the time-controlled adaptive ventilation (TCAV) method, using the airway pressure release ventilation mode, eliminates the constraints of ventilating a lung with heterogeneous injury, since it is highly effective at opening and stabilizing the time- and pressure-dependent lung. In animal studies it has been shown that by “casting open” the acutely injured lung with TCAV we can (1) reestablish normal expiratory lung volume as assessed by direct observation of subpleural alveoli; (2) return normal parenchymal microanatomical structural support, known as alveolar interdependence and parenchymal tethering, as assessed by morphometric analysis of lung histology; (3) facilitate regeneration of normal surfactant function measured as increases in surfactant proteins A and B; and (4) significantly increase lung compliance, which reduces the pathologic impact of driving pressure and mechanical power at any given tidal volume.
Collapse
Affiliation(s)
- Gary F Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hassan Al-Khalisy
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | | | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Sarah Blair
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Girish Trikha
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Medicine, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Penny Andrews
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Maria Madden
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Louis A Gatto
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States.,Department of Biological Sciences, SUNY Cortland, Cortland, NY, United States
| | - Nader M Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
7
|
Nieman GF, Gatto LA, Andrews P, Satalin J, Camporota L, Daxon B, Blair SJ, Al-Khalisy H, Madden M, Kollisch-Singule M, Aiash H, Habashi NM. Prevention and treatment of acute lung injury with time-controlled adaptive ventilation: physiologically informed modification of airway pressure release ventilation. Ann Intensive Care 2020; 10:3. [PMID: 31907704 PMCID: PMC6944723 DOI: 10.1186/s13613-019-0619-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 12/23/2019] [Indexed: 12/16/2022] Open
Abstract
Mortality in acute respiratory distress syndrome (ARDS) remains unacceptably high at approximately 39%. One of the only treatments is supportive: mechanical ventilation. However, improperly set mechanical ventilation can further increase the risk of death in patients with ARDS. Recent studies suggest that ventilation-induced lung injury (VILI) is caused by exaggerated regional lung strain, particularly in areas of alveolar instability subject to tidal recruitment/derecruitment and stress-multiplication. Thus, it is reasonable to expect that if a ventilation strategy can maintain stable lung inflation and homogeneity, regional dynamic strain would be reduced and VILI attenuated. A time-controlled adaptive ventilation (TCAV) method was developed to minimize dynamic alveolar strain by adjusting the delivered breath according to the mechanical characteristics of the lung. The goal of this review is to describe how the TCAV method impacts pathophysiology and protects lungs with, or at high risk of, acute lung injury. We present work from our group and others that identifies novel mechanisms of VILI in the alveolar microenvironment and demonstrates that the TCAV method can reduce VILI in translational animal ARDS models and mortality in surgical/trauma patients. Our TCAV method utilizes the airway pressure release ventilation (APRV) mode and is based on opening and collapsing time constants, which reflect the viscoelastic properties of the terminal airspaces. Time-controlled adaptive ventilation uses inspiratory and expiratory time to (1) gradually “nudge” alveoli and alveolar ducts open with an extended inspiratory duration and (2) prevent alveolar collapse using a brief (sub-second) expiratory duration that does not allow time for alveolar collapse. The new paradigm in TCAV is configuring each breath guided by the previous one, which achieves real-time titration of ventilator settings and minimizes instability induced tissue damage. This novel methodology changes the current approach to mechanical ventilation, from arbitrary to personalized and adaptive. The outcome of this approach is an open and stable lung with reduced regional strain and greater lung protection.
Collapse
Affiliation(s)
- Gary F Nieman
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Louis A Gatto
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Penny Andrews
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | - Joshua Satalin
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.
| | - Luigi Camporota
- Department of Critical Care, Guy's and St, Thomas' NHS Foundation Trust, Westminster Bridge Rd, London, SE1 7EH, UK
| | - Benjamin Daxon
- Dept of Anesthesiology and Perioperative Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905, USA
| | - Sarah J Blair
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Hassan Al-Khalisy
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Maria Madden
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| | | | - Hani Aiash
- Dept of Surgery, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA.,Department of Clinical Perfusion, SUNY Upstate Medical University, 750 E Adams St, Syracuse, NY, 13210, USA
| | - Nader M Habashi
- Multi-trauma Critical Care, R Adams Cowley Shock Trauma Center, University of Maryland Medical Center, 22 South Greene Street, Baltimore, MD, USA
| |
Collapse
|
8
|
|
9
|
Boehme S, Hartmann EK, Tripp T, Thal SC, David M, Abraham D, Baumgardner JE, Markstaller K, Klein KU. PO 2 oscillations induce lung injury and inflammation. Crit Care 2019; 23:102. [PMID: 30917851 PMCID: PMC6438034 DOI: 10.1186/s13054-019-2401-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/18/2019] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Mechanical ventilation can lead to ventilator-induced lung injury (VILI). In addition to the well-known mechanical forces of volutrauma, barotrauma, and atelectrauma, non-mechanical mechanisms have recently been discussed as contributing to the pathogenesis of VILI. One such mechanism is oscillations in partial pressure of oxygen (PO2) which originate in lung tissue in the presence of within-breath recruitment and derecruitment of alveoli. The purpose of this study was to investigate this mechanism's possible independent effects on lung tissue and inflammation in a porcine model. METHODS To separately study the impact of PO2 oscillations on the lungs, an in vivo model was set up that allowed for generating mixed-venous PO2 oscillations by the use of veno-venous extracorporeal membrane oxygenation (vvECMO) in a state of minimal mechanical stress. While applying the identical minimal-invasive ventilator settings, 16 healthy female piglets (weight 50 ± 4 kg) were either exposed for 6 h to a constant mixed-venous hemoglobin saturation (SmvO2) of 65% (which equals a PmvO2 of 41 Torr) (control group), or an oscillating SmvO2 (intervention group) of 40-90% (which equals PmvO2 oscillations of 30-68 Torr)-while systemic normoxia in both groups was maintained. The primary endpoint of histologic lung damage was assessed by ex vivo histologic lung injury scoring (LIS), the secondary endpoint of pulmonary inflammation by qRT-PCR of lung tissue. Cytokine concentration of plasma was carried out by ELISA. A bioinformatic microarray analysis of lung samples was performed to generate hypotheses about underlying pathomechanisms. RESULTS The LIS showed significantly more severe damage of lung tissue after exposure to PO2 oscillations compared to controls (0.53 [0.51; 0.58] vs. 0.27 [0.23; 0.28]; P = 0.0025). Likewise, a higher expression of TNF-α (P = 0.0127), IL-1β (P = 0.0013), IL-6 (P = 0.0007), and iNOS (P = 0.0013) in lung tissue was determined after exposure to PO2 oscillations. Cytokines in plasma showed a similar trend between the groups, however, without significant differences. Results of the microarray analysis suggest that inflammatory (IL-6) and oxidative stress (NO/ROS) signaling pathways are involved in the pathology linked to PO2 oscillations. CONCLUSIONS Artificial mixed-venous PO2 oscillations induced lung damage and pulmonary inflammation in healthy animals during lung protective ventilation. These findings suggest that PO2 oscillations represent an independent mechanism of VILI.
Collapse
Affiliation(s)
- Stefan Boehme
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Erik K. Hartmann
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Thomas Tripp
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Serge C. Thal
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Matthias David
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
- Department of Anesthesiology and Critical Care Medicine, KKM Catholic Medical Center Mainz, Mainz, Germany
| | - Dietmar Abraham
- Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - James E. Baumgardner
- Department of Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, PA 15261 USA
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | - Klaus U. Klein
- Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
10
|
Formenti F, Farmery AD. Intravascular oxygen sensors with novel applications for bedside respiratory monitoring. Anaesthesia 2018; 72 Suppl 1:95-104. [PMID: 28044329 PMCID: PMC5396266 DOI: 10.1111/anae.13745] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/12/2016] [Indexed: 11/26/2022]
Abstract
Measurement allows us to quantify various parameters and variables in natural systems. In addition, by measuring the effect by which a perturbation of one part of the system influences the system as a whole, insights into the functional mechanisms of the system can be inferred. Clinical monitoring has a different role to that of scientific measurement. Monitoring describes measurements whose prime purpose is not to give insights into underlying mechanisms, but to provide information to ‘warn’ of imminent events. What is often more important is the description of trends in measured variables. In this article, we give some examples ‐ focussed around oxygen sensors ‐ of how new sensors can make important measurements and might in the future contribute to improved clinical management.
Collapse
Affiliation(s)
- F Formenti
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK.,Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - A D Farmery
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| |
Collapse
|
11
|
Crockett DC, Cronin JN, Bommakanti N, Chen R, Hahn CEW, Hedenstierna G, Larsson A, Farmery AD, Formenti F. Tidal changes in PaO 2 and their relationship to cyclical lung recruitment/derecruitment in a porcine lung injury model. Br J Anaesth 2018; 122:277-285. [PMID: 30686314 PMCID: PMC6354046 DOI: 10.1016/j.bja.2018.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/21/2018] [Accepted: 09/10/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Tidal recruitment/derecruitment (R/D) of collapsed regions in lung injury has been presumed to cause respiratory oscillations in the partial pressure of arterial oxygen (PaO2). These phenomena have not yet been studied simultaneously. We examined the relationship between R/D and PaO2 oscillations by contemporaneous measurement of lung-density changes and PaO2. METHODS Five anaesthetised pigs were studied after surfactant depletion via a saline-lavage model of R/D. The animals were ventilated with a mean fraction of inspired O2 (FiO2) of 0.7 and a tidal volume of 10 ml kg-1. Protocolised changes in pressure- and volume-controlled modes, inspiratory:expiratory ratio (I:E), and three types of breath-hold manoeuvres were undertaken. Lung collapse and PaO2 were recorded using dynamic computed tomography (dCT) and a rapid PaO2 sensor. RESULTS During tidal ventilation, the expiratory lung collapse increased when I:E <1 [mean (standard deviation) lung collapse=15.7 (8.7)%; P<0.05], but the amplitude of respiratory PaO2 oscillations [2.2 (0.8) kPa] did not change during the respiratory cycle. The expected relationship between respiratory PaO2 oscillation amplitude and R/D was therefore not clear. Lung collapse increased during breath-hold manoeuvres at end-expiration and end-inspiration (14% vs 0.9-2.1%; P<0.0001). The mean change in PaO2 from beginning to end of breath-hold manoeuvres was significantly different with each type of breath-hold manoeuvre (P<0.0001). CONCLUSIONS This study in a porcine model of collapse-prone lungs did not demonstrate the expected association between PaO2 oscillation amplitude and the degree of recruitment/derecruitment. The results suggest that changes in pulmonary ventilation are not the sole determinant of changes in PaO2 during mechanical ventilation in lung injury.
Collapse
Affiliation(s)
- D C Crockett
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK.
| | - J N Cronin
- Centre for Human and Applied Physiological Sciences, King's College, London, UK
| | - N Bommakanti
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK; Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - R Chen
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - C E W Hahn
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - G Hedenstierna
- Hedenstierna Laboratory, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - A Larsson
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - A D Farmery
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - F Formenti
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK; Centre for Human and Applied Physiological Sciences, King's College, London, UK; Department of Biomechanics, University of Nebraska Omaha, Omaha, NE, USA.
| |
Collapse
|
12
|
Preemptive Mechanical Ventilation Based on Dynamic Physiology in the Alveolar Microenvironment: Novel Considerations of Time-Dependent Properties of the Respiratory System. J Trauma Acute Care Surg 2018; 85:1081-1091. [PMID: 30124627 DOI: 10.1097/ta.0000000000002050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The acute respiratory distress syndrome (ARDS) remains a serious clinical problem with the current treatment being supportive in the form of mechanical ventilation. However, mechanical ventilation can be a double-edged sword; if set properly, it can significantly reduce ARDS associated mortality but if set improperly it can have unintended consequences causing a secondary ventilator induced lung injury (VILI). The hallmark of ARDS pathology is a heterogeneous lung injury, which predisposes the lung to a secondary VILI. The current standard of care approach is to wait until ARDS is well established and then apply a low tidal volume (LVt) strategy to avoid over-distending the remaining normal lung. However, even with the use of LVt strategy, the mortality of ARDS remains unacceptably high at ~40%. In this review, we analyze the lung pathophysiology associated with ARDS that renders the lung highly vulnerable to a secondary VILI. The current standard of care LVt strategy is critiqued as well as new strategies used in combination with LVt to protect the lung. Using the current understanding of alveolar mechanics (i.e. the dynamic change in alveolar size and shape with tidal ventilation) we provide a rationale for why the current protective ventilation strategies have not further reduced ARDS mortality. New strategies of protective ventilation based on dynamic physiology in the micro-environment (i.e. alveoli and alveolar ducts) are discussed. Current evidence suggests that alveolar inflation and deflation is viscoelastic in nature, with a fast and slow phase in both alveolar recruitment and collapse. Using this knowledge, a ventilation strategy with a prolonged time at inspiration would recruit alveoli and a brief release time at expiration would prevent alveolar collapse, converting heterogeneous to homogeneous lung inflation significantly reducing ARDS incidence and mortality.
Collapse
|
13
|
Wohlrab P, Kraft F, Tretter V, Ullrich R, Markstaller K, Klein KU. Recent advances in understanding acute respiratory distress syndrome. F1000Res 2018; 7. [PMID: 29568488 PMCID: PMC5840611 DOI: 10.12688/f1000research.11148.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/20/2018] [Indexed: 12/17/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by acute diffuse lung injury, which results in increased pulmonary vascular permeability and loss of aerated lung tissue. This causes bilateral opacity consistent with pulmonary edema, hypoxemia, increased venous admixture, and decreased lung compliance such that patients with ARDS need supportive care in the intensive care unit to maintain oxygenation and prevent adverse outcomes. Recently, advances in understanding the underlying pathophysiology of ARDS led to new approaches in managing these patients. In this review, we want to focus on recent scientific evidence in the field of ARDS research and discuss promising new developments in the treatment of this disease.
Collapse
Affiliation(s)
- Peter Wohlrab
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Felix Kraft
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Verena Tretter
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Roman Ullrich
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Markstaller
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Klaus Ulrich Klein
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| |
Collapse
|
14
|
Boehme S, Toemboel FPR, Hartmann EK, Bentley AH, Weinheimer O, Yang Y, Achenbach T, Hagmann M, Kaniusas E, Baumgardner JE, Markstaller K. Detection of inspiratory recruitment of atelectasis by automated lung sound analysis as compared to four-dimensional computed tomography in a porcine lung injury model. Crit Care 2018; 22:50. [PMID: 29475456 PMCID: PMC6389194 DOI: 10.1186/s13054-018-1964-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/24/2018] [Indexed: 11/21/2022] Open
Abstract
Background Cyclic recruitment and de-recruitment of atelectasis (c-R/D) is a contributor to ventilator-induced lung injury (VILI). Bedside detection of this dynamic process could improve ventilator management. This study investigated the potential of automated lung sound analysis to detect c-R/D as compared to four-dimensional computed tomography (4DCT). Methods In ten piglets (25 ± 2 kg), acoustic measurements from 34 thoracic piezoelectric sensors (Meditron ASA, Norway) were performed, time synchronized to 4DCT scans, at positive end-expiratory pressures of 0, 5, 10, and 15 cmH2O during mechanical ventilation, before and after induction of c-R/D by surfactant washout. 4DCT was post-processed for within-breath variation in atelectatic volume (Δ atelectasis) as a measure of c-R/D. Sound waveforms were evaluated for: 1) dynamic crackle energy (dCE): filtered crackle sounds (600–700 Hz); 2) fast Fourier transform area (FFT area): spectral content above 500 Hz in frequency and above −70 dB in amplitude in proportion to the total amount of sound above −70 dB amplitude; and 3) dynamic spectral coherence (dSC): variation in acoustical homogeneity over time. Parameters were analyzed for global, nondependent, central, and dependent lung areas. Results In healthy lungs, negligible values of Δ atelectasis, dCE, and FFT area occurred. In lavage lung injury, the novel dCE parameter showed the best correlation to Δ atelectasis in dependent lung areas (R2 = 0.88) where c-R/D took place. dCE was superior to FFT area analysis for each lung region examined. The analysis of dSC could predict the lung regions where c-R/D originated. Conclusions c-R/D is associated with the occurrence of fine crackle sounds as demonstrated by dCE analysis. Standardized computer-assisted analysis of dCE and dSC seems to be a promising method for depicting c-R/D. Electronic supplementary material The online version of this article (10.1186/s13054-018-1964-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Stefan Boehme
- Department of Anesthesia, General Intensive Care Medicine and Pain Management, Medical University Vienna, Waehringer Guertel, 18-20, Vienna, Austria. .,Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.
| | - Frédéric P R Toemboel
- Department of Anesthesia, General Intensive Care Medicine and Pain Management, Medical University Vienna, Waehringer Guertel, 18-20, Vienna, Austria
| | - Erik K Hartmann
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Alexander H Bentley
- Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Oliver Weinheimer
- Department of Diagnostic and Interventional Radiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.,Department of Diagnostic and Interventional Radiology, University Hospital of Heidelberg, Heidelberg, Germany.,Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Heidelberg, Germany
| | - Yang Yang
- Department of Diagnostic and Interventional Radiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| | - Tobias Achenbach
- Department of Diagnostic and Interventional Radiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany.,Institute of Diagnostic and Interventional Radiology, St. Vinzenz Hospital, Cologne, Germany
| | - Michael Hagmann
- Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University Vienna, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - James E Baumgardner
- Department of Anesthesiology, University of Pittsburgh Medical Center, Pittsburgh, PA, 15261, USA
| | - Klaus Markstaller
- Department of Anesthesia, General Intensive Care Medicine and Pain Management, Medical University Vienna, Waehringer Guertel, 18-20, Vienna, Austria.,Department of Anesthesiology, Medical Center of the Johannes-Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
15
|
Nabian M, Narusawa U. Patient-specific optimization of mechanical ventilation for patients with acute respiratory distress syndrome using quasi-static pulmonary P-V data. INFORMATICS IN MEDICINE UNLOCKED 2018; 12:44-55. [PMID: 35036518 PMCID: PMC8740849 DOI: 10.1016/j.imu.2018.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/05/2018] [Accepted: 06/06/2018] [Indexed: 11/13/2022] Open
Abstract
Quasi-static, pulmonary pressure-volume (P-V) curves were combined with a respiratory system model to analyze tidal pressure cycles, simulating mechanical ventilation of patients with acute respiratory distress syndrome (ARDS). Two important quantities including 1) tidal recruited volume and 2) tidal hyperinflated volume were analytically computed by integrating the distribution of alveolar elements over the affected pop-open pressure range. We analytically predicted the tidal recruited volume of four canine subjects and compared our results with similar experimental measurements on canine models for the validation. We then applied our mathematical model to the P-V data of ARDS populations in four stages of Early ARDS, Deep Knee, Advanced ARDS and Baby Lung to quantify the tidal recruited volume and tidal hyperinflated volume as an indicator of ventilator-induced lung injury (VILI). These quantitative predictions based on patient-specific P-V data suggest that the optimum parameters of mechanical ventilation including PEEP and Tidal Pressure (Volume) are largely varying among ARDS population and are primarily influenced by the degree in the severity of ARDS.
Collapse
Affiliation(s)
- Mohsen Nabian
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Uichiro Narusawa
- Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, USA
- Department of Bio-engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
16
|
Nieman GF, Satalin J, Andrews P, Aiash H, Habashi NM, Gatto LA. Personalizing mechanical ventilation according to physiologic parameters to stabilize alveoli and minimize ventilator induced lung injury (VILI). Intensive Care Med Exp 2017; 5:8. [PMID: 28150228 PMCID: PMC5289131 DOI: 10.1186/s40635-017-0121-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 01/26/2017] [Indexed: 12/15/2022] Open
Abstract
It has been shown that mechanical ventilation in patients with, or at high-risk for, the development of acute respiratory distress syndrome (ARDS) can be a double-edged sword. If the mechanical breath is improperly set, it can amplify the lung injury associated with ARDS, causing a secondary ventilator-induced lung injury (VILI). Conversely, the mechanical breath can be adjusted to minimize VILI, which can reduce ARDS mortality. The current standard of care ventilation strategy to minimize VILI attempts to reduce alveolar over-distension and recruitment-derecruitment (R/D) by lowering tidal volume (Vt) to 6 cc/kg combined with adjusting positive-end expiratory pressure (PEEP) based on a sliding scale directed by changes in oxygenation. Thus, Vt is often but not always set as a "one-size-fits-all" approach and although PEEP is often set arbitrarily at 5 cmH2O, it may be personalized according to changes in a physiologic parameter, most often to oxygenation. However, there is evidence that oxygenation as a method to optimize PEEP is not congruent with the PEEP levels necessary to maintain an open and stable lung. Thus, optimal PEEP might not be personalized to the lung pathology of an individual patient using oxygenation as the physiologic feedback system. Multiple methods of personalizing PEEP have been tested and include dead space, lung compliance, lung stress and strain, ventilation patterns using computed tomography (CT) or electrical impedance tomography (EIT), inflection points on the pressure/volume curve (P/V), and the slope of the expiratory flow curve using airway pressure release ventilation (APRV). Although many studies have shown that personalizing PEEP is possible, there is no consensus as to the optimal technique. This review will assess various methods used to personalize PEEP, directed by physiologic parameters, necessary to adaptively adjust ventilator settings with progressive changes in lung pathophysiology.
Collapse
Affiliation(s)
- Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY USA
| | - Joshua Satalin
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY USA
- Cardiopulmonary Critical Care Lab, Department of Surgery, Upstate Medical University, 750 East Adams Street, Syracuse, NY 13210 USA
| | | | - Hani Aiash
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY USA
| | - Nader M. Habashi
- Department of Trauma Critical Care Medicine, R Adams Cowley Shock Trauma Center, University of Maryland, Baltimore, MD USA
| | - Louis A. Gatto
- Biological Sciences Department, Biological Sciences Department, SUNY Cortland, Cortland, NY USA
| |
Collapse
|
17
|
Formenti F, Bommakanti N, Chen R, Cronin JN, McPeak H, Holopherne-Doran D, Hedenstierna G, Hahn CEW, Larsson A, Farmery AD. Respiratory oscillations in alveolar oxygen tension measured in arterial blood. Sci Rep 2017; 7:7499. [PMID: 28878215 PMCID: PMC5587703 DOI: 10.1038/s41598-017-06975-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 06/20/2017] [Indexed: 01/02/2023] Open
Abstract
Arterial oxygen partial pressure can increase during inspiration and decrease during expiration in the presence of a variable shunt fraction, such as with cyclical atelectasis, but it is generally presumed to remain constant within a respiratory cycle in the healthy lung. We measured arterial oxygen partial pressure continuously with a fast intra-vascular sensor in the carotid artery of anaesthetized, mechanically ventilated pigs, without lung injury. Here we demonstrate that arterial oxygen partial pressure shows respiratory oscillations in the uninjured pig lung, in the absence of cyclical atelectasis (as determined with dynamic computed tomography), with oscillation amplitudes that exceeded 50 mmHg, depending on the conditions of mechanical ventilation. These arterial oxygen partial pressure respiratory oscillations can be modelled from a single alveolar compartment and a constant oxygen uptake, without the requirement for an increased shunt fraction during expiration. Our results are likely to contribute to the interpretation of arterial oxygen respiratory oscillations observed during mechanical ventilation in the acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Federico Formenti
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom. .,Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | - Nikhil Bommakanti
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - Rongsheng Chen
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - John N Cronin
- Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| | - Hanne McPeak
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | | | | | - Clive E W Hahn
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| | - Anders Larsson
- Department of Surgical Sciences, University of Uppsala, Uppsala, Sweden
| | - Andrew D Farmery
- Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Cyclic PaO 2 oscillations assessed in the renal microcirculation: correlation with tidal volume in a porcine model of lung lavage. BMC Anesthesiol 2017; 17:92. [PMID: 28693425 PMCID: PMC5504855 DOI: 10.1186/s12871-017-0382-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Accepted: 06/30/2017] [Indexed: 01/08/2023] Open
Abstract
Background Oscillations of the arterial partial pressure of oxygen induced by varying shunt fractions occur during cyclic alveolar recruitment within the injured lung. Recently, these were proposed as a pathomechanism that may be relevant for remote organ injury following acute respiratory distress syndrome. This study examines the transmission of oxygen oscillations to the renal tissue and their tidal volume dependency. Methods Lung injury was induced by repetitive bronchoalveolar lavage in eight anaesthetized pigs. Cyclic alveolar recruitment was provoked by high tidal volume ventilation. Oscillations of the arterial partial pressure of oxygen were measured in real-time in the macrocirculation by multi-frequency phase fluorimetry and in the renal microcirculation by combined white-light spectrometry and laser-Doppler flowmetry during tidal volume down-titration. Results Significant respiratory-dependent oxygen oscillations were detected in the macrocirculation and transmitted to the renal microcirculation in a substantial extent. The amplitudes of these oscillations significantly correlate to the applied tidal volume and are minimized during down-titration. Conclusions In a porcine model oscillations of the arterial partial pressure of oxygen are induced by cyclic alveolar recruitment and transmitted to the renal microcirculation in a tidal volume-dependent fashion. They might play a role in organ crosstalk and remote organ damage following lung injury.
Collapse
|
19
|
Moderate hyperoxia induces inflammation, apoptosis and necrosis in human umbilical vein endothelial cells. Eur J Anaesthesiol 2017; 34:141-149. [DOI: 10.1097/eja.0000000000000593] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Sei K, Fujita M, Okawa S, Hirasawa T, Kushibiki T, Sasa H, Furuya K, Ishihara M. Appropriate timing of blood sampling for blood gas analysis in the ventilated rabbit. J Surg Res 2016; 206:325-336. [DOI: 10.1016/j.jss.2016.08.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Revised: 06/20/2016] [Accepted: 08/02/2016] [Indexed: 10/21/2022]
|
21
|
Abstract
OBJECTIVE Systemic PaO2 oscillations occur during cyclic recruitment and derecruitment of atelectasis in acute respiratory failure and might harm brain tissue integrity. DESIGN Controlled animal study. SETTING University research laboratory. SUBJECTS Adult anesthetized pigs. INTERVENTIONS Pigs were randomized to a control group (anesthesia and extracorporeal circulation for 20 hr with constant PaO2, n = 10) or an oscillation group (anesthesia and extracorporeal circulation for 20 hr with artificial PaO2 oscillations [3 cycles min⁻¹], n = 10). Five additional animals served as native group (n = 5). MEASUREMENTS AND MAIN RESULTS Outcome following exposure to artificial PaO2 oscillations compared with constant PaO2 levels was measured using 1) immunohistochemistry, 2) real-time polymerase chain reaction for inflammatory markers, 3) receptor autoradiography, and 4) transcriptome analysis in the hippocampus. Our study shows that PaO2 oscillations are transmitted to brain tissue as detected by novel ultrarapid oxygen sensing technology. PaO2 oscillations cause significant decrease in NISSL-stained neurons (p < 0.05) and induce inflammation (p < 0.05) in the hippocampus and a shift of the balance of hippocampal neurotransmitter receptor densities toward inhibition (p < 0.05). A pathway analysis suggests that cerebral immune and acute-phase response may play a role in mediating PaO2 oscillation-induced brain injury. CONCLUSIONS Artificial PaO2 oscillations cause mild brain injury mediated by inflammatory pathways. Although artificial PaO2 oscillations and endogenous PaO2 oscillations in lung-diseased patients have different origins, it is likely that they share the same noxious effect on the brain. Therefore, PaO2 oscillations might represent a newly detected pathway potentially contributing to the crosstalk between acute lung and remote brain injury.
Collapse
|
22
|
Wu J, Stefaniak J, Hafner C, Schramel JP, Kaun C, Wojta J, Ullrich R, Tretter VE, Markstaller K, Klein KU. Intermittent Hypoxia Causes Inflammation and Injury to Human Adult Cardiac Myocytes. Anesth Analg 2016; 122:373-80. [PMID: 26505576 DOI: 10.1213/ane.0000000000001048] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intermittent hypoxia may occur in a number of clinical scenarios, including interruption of myocardial blood flow or breathing disorders such as obstructive sleep apnea. Although intermittent hypoxia has been linked to cardiovascular and cerebrovascular disease, the effect of intermittent hypoxia on the human heart is not fully understood. Therefore, in the present study, we compared the cellular responses of cultured human adult cardiac myocytes (HACMs) exposed to intermittent hypoxia and different conditions of continuous hypoxia and normoxia. METHODS HACMs were exposed to intermittent hypoxia (0%-21% O2), constant mild hypoxia (10% O2), constant severe hypoxia (0% O2), or constant normoxia (21% O2), using a novel cell culture bioreactor with gas-permeable membranes. Cell proliferation, lactate dehydrogenase release, vascular endothelial growth factor release, and cytokine (interleukin [IL] and macrophage migration inhibitory factor) release were assessed at baseline and after 8, 24, and 72 hours of exposure. A signal transduction pathway finder array was performed to determine the changes in gene expression. RESULTS In comparison with constant normoxia and constant mild hypoxia, intermittent hypoxia induced earlier and greater inflammatory response and extent of cell injury as evidenced by lower cell numbers and higher lactate dehydrogenase, vascular endothelial growth factor, and proinflammatory cytokine (IL-1β, IL-6, IL-8, and macrophage migration inhibitory factor) release. Constant severe hypoxia showed more detrimental effects on HACMs at later time points. Pathway analysis demonstrated that intermittent hypoxia primarily altered gene expression in oxidative stress, Wnt, Notch, and hypoxia pathways. CONCLUSIONS Intermittent and constant severe hypoxia, but not constant mild hypoxia or normoxia, induced inflammation and cell injury in HACMs. Cell injury occurred earliest and was greatest after intermittent hypoxia exposure. Our in vitro findings suggest that intermittent hypoxia exposure may produce rapid and substantial damage to the human heart.
Collapse
Affiliation(s)
- Jing Wu
- From the *Department of Anesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria; †Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; ‡Unit of Anesthesiology and Perioperative Intensive Care, University of Veterinary Medicine, Vienna, Austria; §Department of Internal Medicine II and ‖Core Facilities, Medical University of Vienna, Vienna, Austria; and ¶Ludwig Boltzmann Cluster for Cardiovascular Research, Vienna, Austria
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The standard of care of patients with ARDS: ventilatory settings and rescue therapies for refractory hypoxemia. Intensive Care Med 2016; 42:699-711. [PMID: 27040102 PMCID: PMC4828494 DOI: 10.1007/s00134-016-4325-4] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Purpose Severe ARDS is often associated with refractory hypoxemia, and early identification and treatment of hypoxemia is mandatory. For the management of severe ARDS ventilator settings, positioning therapy, infection control, and supportive measures are essential to improve survival. Methods and results A precise definition of life-threating hypoxemia is not identified. Typical clinical determinations are: arterial partial pressure of oxygen < 60 mmHg and/or arterial oxygenation < 88 % and/or the ratio of PaO2/FIO2 < 100. For mechanical ventilation specific settings are recommended: limitation of tidal volume (6 ml/kg predicted body weight), adequate high PEEP (>12 cmH2O), a recruitment manoeuvre in special situations, and a ‘balanced’ respiratory rate (20-30/min). Individual bedside methods to guide PEEP/recruitment (e.g., transpulmonary pressure) are not (yet) available. Prone positioning [early (≤ 48 hrs after onset of severe ARDS) and prolonged (repetition of 16-hr-sessions)] improves survival. An advanced infection management/control includes early diagnosis of bacterial, atypical, viral and fungal specimen (blood culture, bronchoalveolar lavage), and of infection sources by CT scan, followed by administration of broad-spectrum anti-infectives. Neuromuscular blockage (Cisatracurium ≤ 48 hrs after onset of ARDS), as well as an adequate sedation strategy (score guided) is an important supportive therapy. A negative fluid balance is associated with improved lung function and the use of hemofiltration might be indicated for specific indications. Conclusions A specific standard of care is required for the management of severe ARDS with refractory hypoxemia.
Collapse
|
24
|
Chen R, Formenti F, McPeak H, Obeid AN, Hahn C, Farmery A. Experimental investigation of the effect of polymer matrices on polymer fibre optic oxygen sensors and their time response characteristics using a vacuum testing chamber and a liquid flow apparatus. SENSORS AND ACTUATORS. B, CHEMICAL 2016; 222:531-535. [PMID: 26726286 PMCID: PMC4643756 DOI: 10.1016/j.snb.2015.08.095] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 08/19/2015] [Accepted: 08/22/2015] [Indexed: 06/05/2023]
Abstract
Very fast sensors that are able to track rapid changes in oxygen partial pressure (PO2) in the gas and liquid phases are increasingly required in scientific research - particularly in the life sciences. Recent interest in monitoring very fast changes in the PO2 of arterial blood in some respiratory failure conditions is one such example. Previous attempts to design fast intravascular electrochemical oxygen sensors for use in physiology and medicine have failed to meet the criteria that are now required in modern investigations. However, miniature photonic devices are capable of meeting this need. In this article, we present an inexpensive polymer type fibre-optic, oxygen sensor that is two orders of magnitude faster than conventional electrochemical oxygen sensors. It is constructed with biologically inert polymer materials and is both sufficiently small and robust for direct insertion in to a human artery. The sensors were tested and evaluated in both a gas testing chamber and in a flowing liquid test system. The results showed a very fast T90 response time, typically circa 20 ms when tested in the gas phase, and circa 100 ms in flowing liquid.
Collapse
Affiliation(s)
- Rongsheng Chen
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Federico Formenti
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Hanne McPeak
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew N. Obeid
- Oxford Optronix Ltd, 19-21, Central 127, Olympic Avenue, Milton Park, Oxford OX14 4SA, UK
| | - Clive Hahn
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Andrew Farmery
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
25
|
Retamal J, Borges JB, Bruhn A, Cao X, Feinstein R, Hedenstierna G, Johansson S, Suarez-Sipmann F, Larsson A. High respiratory rate is associated with early reduction of lung edema clearance in an experimental model of ARDS. Acta Anaesthesiol Scand 2016; 60:79-92. [PMID: 26256848 DOI: 10.1111/aas.12596] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 07/08/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022]
Abstract
BACKGROUND The independent impact of respiratory rate on ventilator-induced lung injury has not been fully elucidated. The aim of this study was to investigate the effects of two clinically relevant respiratory rates on early ventilator-induced lung injury evolution and lung edema during the protective ARDSNet strategy. We hypothesized that the use of a higher respiratory rate during a protective ARDSNet ventilation strategy increases lung inflammation and, in addition, lung edema associated to strain-induced activation of transforming growth factor beta (TGF-β) in the lung epithelium. METHODS Twelve healthy piglets were submitted to a two-hit lung injury model and randomized into two groups: LRR (20 breaths/min) and HRR (40 breaths/min). They were mechanically ventilated during 6 h according to the ARDSNet strategy. We assessed respiratory mechanics, hemodynamics, and extravascular lung water (EVLW). At the end of the experiment, the lungs were excised and wet/dry ratio, TGF-β pathway markers, regional histology, and cytokines were evaluated. RESULTS No differences in oxygenation, PaCO2 levels, systemic and pulmonary arterial pressures were observed during the study. Respiratory system compliance and mean airway pressure were lower in LRR group. A decrease in EVLW over time occurred only in the LRR group (P < 0.05). Wet/dry ratio was higher in the HRR group (P < 0.05), as well as TGF-β pathway activation. Histological findings suggestive of inflammation and inflammatory tissue cytokines were higher in LRR. CONCLUSION HRR was associated with more pulmonary edema and higher activation of the TGF-β pathway. In contrast with our hypothesis, HRR was associated with less lung inflammation.
Collapse
Affiliation(s)
- J. Retamal
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
- Departamento de Medicina Intensiva; Pontificia Universidad Cat ó lica de Chile; Santiago Chile
| | - J. B. Borges
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
- Cardio-Pulmonary Department; Pulmonary Divison; Heart Institute (Incor); University of São Paulo; São Paulo Brazil
| | - A. Bruhn
- Departamento de Medicina Intensiva; Pontificia Universidad Cat ó lica de Chile; Santiago Chile
| | - X. Cao
- Department of Medical Biochemistry and Microbiology; Uppsala University; Uppsala Sweden
| | - R. Feinstein
- Department of Pathology and Wildlife Diseases; National Veterinary Institute; Uppsala Sweden
| | - G. Hedenstierna
- Department of Medical Science, Clinical Physiology; Uppsala University Hospital; Uppsala Sweden
| | - S. Johansson
- Department of Medical Biochemistry and Microbiology; Uppsala University; Uppsala Sweden
| | - F. Suarez-Sipmann
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
| | - A. Larsson
- Hedenstierna Laboratory; Department of Surgical Sciences; Section of Anaesthesiology & Critical Care; Uppsala University; Uppsala Sweden
| |
Collapse
|
26
|
Wu J, Hafner C, Schramel JP, Kaun C, Krychtiuk KA, Wojta J, Boehme S, Ullrich R, Tretter EV, Markstaller K, Klein KU. Cyclic and constant hyperoxia cause inflammation, apoptosis and cell death in human umbilical vein endothelial cells. Acta Anaesthesiol Scand 2015; 60:492-501. [PMID: 26489399 DOI: 10.1111/aas.12646] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 09/02/2015] [Accepted: 09/09/2015] [Indexed: 12/14/2022]
Abstract
BACKGROUND Perioperative high-dose oxygen (O2 ) exposure can cause hyperoxia. While the effect of constant hyperoxia on the vascular endothelium has been investigated to some extent, the impact of cyclic hyperoxia largely remains unknown. We hypothesized that cyclic hyperoxia would induce more injury than constant hyperoxia to human umbilical vein endothelial cells (HUVECs). METHODS HUVECs were exposed to cyclic hyperoxia (5-95% O2 ) or constant hyperoxia (95% O2 ), normoxia (21% O2 ), and hypoxia (5% O2 ). Cell growth, viability (Annexin V/propidium iodide and 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyl tetrazolium bromide, MTT) lactate dehydrogenase (LDH), release, cytokine (interleukin, IL and macrophage migration inhibitory factor, MIF) release, total antioxidant capacity (TAC), and superoxide dismutase activity (SOD) of cell lysate were assessed at baseline and 8, 24, and 72 h. A signal transduction pathway finder array for gene expression analysis was performed after 8 h. RESULTS Constant and cyclic hyperoxia-induced gradually detrimental effects on HUVECs. After 72 h, constant or cyclic hyperoxia exposure induced change in cytotoxic (LDH +12%, P = 0.026; apoptosis +121/61%, P < 0.01; alive cells -15%, P < 0.01; MTT -16/15%, P < 0.01), inflammatory (IL-6 +142/190%, P < 0.01; IL-8 +72/43%, P < 0.01; MIF +147/93%, P < 0.01), or redox-sensitive (SOD +278%, TAC-25% P < 0.01) markers. Gene expression analysis revealed that constant and cyclic hyperoxia exposure differently activates oxidative stress, nuclear factor kappa B, Notch, and peroxisome proliferator-activated receptor pathways. CONCLUSIONS Extreme hyperoxia exposure induces inflammation, apoptosis and cell death in HUVECs. Although our findings cannot be transferred to clinical settings, results suggest that hyperoxia exposure may cause vascular injury that could play a role in determining perioperative outcome.
Collapse
Affiliation(s)
- J. Wu
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
- Department of Anesthesiology; Union Hospital; Tongji Medical College; Huazhong University of Science and Technology; Wuhan China
| | - C. Hafner
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - J. P. Schramel
- Unit of Anaesthesiology and Perioperative Intensive Care; University of Veterinary Medicine; Vienna Austria
| | - C. Kaun
- Department of Internal Medicine II; Medical University Vienna; Vienna Austria
- Core Facilities; Medical University of Vienna; Vienna Austria
| | - K. A. Krychtiuk
- Department of Internal Medicine II; Medical University Vienna; Vienna Austria
- Ludwig Boltzmann Cluster for Cardiovascular Research; Vienna Austria
| | - J. Wojta
- Department of Internal Medicine II; Medical University Vienna; Vienna Austria
- Core Facilities; Medical University of Vienna; Vienna Austria
- Ludwig Boltzmann Cluster for Cardiovascular Research; Vienna Austria
| | - S. Boehme
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - R. Ullrich
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - E. V. Tretter
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - K. Markstaller
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| | - K. U. Klein
- Department of Anaesthesia; General Intensive Care and Pain Management; Medical University of Vienna; Vienna Austria
| |
Collapse
|
27
|
Retamal J, Bugedo G, Larsson A, Bruhn A. High PEEP levels are associated with overdistension and tidal recruitment/derecruitment in ARDS patients. Acta Anaesthesiol Scand 2015; 59:1161-9. [PMID: 26061818 DOI: 10.1111/aas.12563] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 01/14/2023]
Abstract
BACKGROUND Positive end-expiratory pressure (PEEP) improves gas exchange and respiratory mechanics, and it may decrease tissue injury and inflammation. The mechanisms of this protective effect are not fully elucidated. Our aim was to determine the intrinsic effects of moderate and higher levels of PEEP on tidal recruitment/derecruitment, hyperinflation, and lung mechanics, in patients with acute respiratory distress syndrome (ARDS). METHODS Nine patients with ARDS of mainly pulmonary origin were ventilated sequential and randomly using two levels of PEEP: 9 and 15 cmH2 O, and studied with dynamic computed tomography at a fix transversal lung region. Tidal recruitment/derecruitment and hyperinflation were determined as non-aerated tissue and hyperinflated tissue variation between inspiration and expiration, expressed as percentage of total weight. We also assessed the maximal amount of non-aerated and hyperinflated tissue weight. RESULTS PEEP 15 cmH2 O was associated with decrease in non-aerated tissue in all the patients (P < 0.01). However, PEEP 15 cmH2 O did not decrease tidal recruitment/derecruitment compared to PEEP 9 cmH2 O (P = 1). In addition, PEEP 15 cmH2 O markedly increased maximal hyperinflation (P < 0.01) and tidal hyperinflation (P < 0.05). Lung compliance decreased with PEEP 15 cmH2 O (P < 0.001). CONCLUSION In this series of patients with ARDS of mainly pulmonary origin, application of high levels of PEEP did not decrease tidal recruitment/derecruitment, but instead consistently increased tidal and maximal hyperinflation.
Collapse
Affiliation(s)
- J. Retamal
- Facultad de Medicina; Departamento de Medicina Intensiva; Pontificia Universidad Católica de Chile; Santiago Chile
- Hedenstierna Laboratory; Surgical Science Department; Uppsala University; Uppsala Sweden
| | - G. Bugedo
- Facultad de Medicina; Departamento de Medicina Intensiva; Pontificia Universidad Católica de Chile; Santiago Chile
| | - A. Larsson
- Hedenstierna Laboratory; Surgical Science Department; Uppsala University; Uppsala Sweden
| | - A. Bruhn
- Facultad de Medicina; Departamento de Medicina Intensiva; Pontificia Universidad Católica de Chile; Santiago Chile
| |
Collapse
|
28
|
Formenti F. Conclusions From Inverse Ratio Ventilation Studied at a Respiratory Rate of 6 Breaths/Minute. Crit Care Med 2015; 43:e323-4. [PMID: 26181130 PMCID: PMC4539574 DOI: 10.1097/ccm.0000000000001062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Federico Formenti
- Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
The authors reply. Crit Care Med 2015; 43:e324-5. [DOI: 10.1097/ccm.0000000000001109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Andrews PL, Sadowitz B, Kollisch-Singule M, Satalin J, Roy S, Snyder K, Gatto LA, Nieman GF, Habashi NM. Alveolar instability (atelectrauma) is not identified by arterial oxygenation predisposing the development of an occult ventilator-induced lung injury. Intensive Care Med Exp 2015. [PMID: 26215818 PMCID: PMC4480795 DOI: 10.1186/s40635-015-0054-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Improperly set mechanical ventilation (MV) with normal lungs can advance lung injury and increase the incidence of acute respiratory distress syndrome (ARDS). A key mechanism of ventilator-induced lung injury (VILI) is an alteration in alveolar mechanics including alveolar instability or recruitment/derecruitment (R/D). We hypothesize that R/D cannot be identified by PaO2 (masking occult VILI), and if protective ventilation is not applied, ARDS incidence will increase. METHODS Sprague-Dawley rats (n = 8) were anesthetized, surgically instrumented, and placed on MV. A thoracotomy was performed and an in vivo microscope attached to the pleural surface of the lung with baseline dynamic changes in alveolar size during MV recorded. Alveolar instability was induced by intra-tracheal instillation of Tween and alveolar R/D identified as a marked change in alveolar size from inspiration to expiration with increases in positive end-expiratory pressure (PEEP) levels. RESULTS Despite maintaining a clinically acceptable PaO2 (55-80 mmHg), the alveoli remained unstable with significant R/D at low PEEP levels. Although PaO2 consistently increased with an increase in PEEP, R/D did not plateau until PEEP was >9 cmH2O. CONCLUSIONS PaO2 remained clinically acceptable while alveolar instability persisted at all levels of PEEP (especially PEEP <9 cmH2O). Therefore, PaO2 levels cannot be used reliably to guide protective MV strategies or infer that VILI is not occurring. Using PaO2 to set a PEEP level necessary to stabilize the alveoli could underestimate the potential for VILI. These findings highlight the need for more accurate marker(s) of alveolar stability to guide protective MV necessary to prevent VILI.
Collapse
Affiliation(s)
- Penny L Andrews
- Department of Critical Care, R Adams Cowley Shock Trauma Center, Baltimore, MD, USA,
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hyperinflation deteriorates arterial oxygenation and lung injury in a rabbit model of ARDS with repeated open endotracheal suctioning. BMC Anesthesiol 2015; 15:73. [PMID: 25943099 PMCID: PMC4428090 DOI: 10.1186/s12871-015-0045-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/21/2015] [Indexed: 12/14/2022] Open
Abstract
Background Hyperinflation (HI) is performed following open endotracheal suctioning (OES), whose goals include: to stimulate a cough, recover oxygenation and improve compliance. However, it may also induce unintended consequences, including: lung stress and strain, failure to maintain high distending pressure, and subsequently cycling recruitment and derecruitment. Here, our aim was to investigate the effects of hyperinflation after repeated OES on sequential alteration of arterial oxygenation and lung injury profile using a saline lavage-induced surfactant depleted ARDS rabbit model. Methods Briefly, 30 Japanese White Rabbits were anesthetized and ventilated in pressure-controlled setting with a tidal volume of 6-8 ml/kg. Animals were divided into four groups, i.e.; Control, ARDS, OES, and HI. Saline-lavage-induced lung injury was induced except for Control group. Thereafter, rabbits were ventilated with positive-end expiratory pressure (PEEP) at 10 cm H2O. The ARDS group received ventilation with the same PEEP without derecruitment. As intervention, OES and HI were performed in ARDS animals. OES was performed for 15 seconds at 150 mm Hg, whereas HI was performed with PEEP at 0 cm H2O and peak inspiratory pressure at +5 cm H2O for a minute. Total duration of the experiment was for 3 hours. OES and HI were performed every 15 minutes from beginning of the protocol. Results PaO2 was maintained at about 400 mm Hg in both control and ARDS groups for the duration of this study, while in both OES and HI groups, PaO2 decreased continuously up to 3 hours, dropped to a mean (±SD) of 226 ± 28.9 and 97.0 ± 30.7 mmHg at 3 h, respectively. HI group had the lowest PaO2 in the present investigation. Histological lung injury score was the highest in HI group than other three groups. Pulmonary TNF-α and IL-8 levels were the highest in HI group compared to other groups, but without significant alterations at circulatory level in all the experimental groups. Conclusions We show in the present study that hyperinflation following repeated OES deteriorate arterial oxygenation and the severity of lung injury in a rabbit model of ARDS undergoing mechanical ventilation.
Collapse
|
32
|
Influence of Inspiration to Expiration Ratio on Cyclic Recruitment and Derecruitment of Atelectasis in a Saline Lavage Model of Acute Respiratory Distress Syndrome*. Crit Care Med 2015; 43:e65-74. [DOI: 10.1097/ccm.0000000000000788] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
33
|
|
34
|
Formenti F, Chen R, McPeak H, Murison PJ, Matejovic M, Hahn CEW, Farmery AD. Intra-breath arterial oxygen oscillations detected by a fast oxygen sensor in an animal model of acute respiratory distress syndrome. Br J Anaesth 2015; 114:683-8. [PMID: 25631471 PMCID: PMC4364062 DOI: 10.1093/bja/aeu407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background There is considerable interest in oxygen partial pressure (Po2) monitoring in physiology, and in tracking Po2 changes dynamically when it varies rapidly. For example, arterial Po2 (PaO2) can vary within the respiratory cycle in cyclical atelectasis (CA), where PaO2 is thought to increase and decrease during inspiration and expiration, respectively. A sensor that detects these PaO2 oscillations could become a useful diagnostic tool of CA during acute respiratory distress syndrome (ARDS). Methods We developed a fibreoptic Po2 sensor (<200 µm diameter), suitable for human use, that has a fast response time, and can measure Po2 continuously in blood. By altering the inspired fraction of oxygen (FIO2) from 21 to 100% in four healthy animal models, we determined the linearity of the sensor's signal over a wide range of PaO2 values in vivo. We also hypothesized that the sensor could measure rapid intra-breath PaO2 oscillations in a large animal model of ARDS. Results In the healthy animal models, PaO2 responses to changes in FIO2 were in agreement with conventional intermittent blood-gas analysis (n=39) for a wide range of PaO2 values, from 10 to 73 kPa. In the animal lavage model of CA, the sensor detected PaO2 oscillations, also at clinically relevant PaO2 levels close to 9 kPa. Conclusions We conclude that these fibreoptic PaO2 sensors have the potential to become a diagnostic tool for CA in ARDS.
Collapse
Affiliation(s)
- F Formenti
- Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - R Chen
- Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - H McPeak
- Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - P J Murison
- School of Veterinary Sciences, University of Bristol, Bristol, UK
| | - M Matejovic
- Biomedical Centre, Charles University in Prague, Faculty of Medicine in Pilsen, alej Svobody 80, 304 60 Pilsen, Czech Republic First Medical Department, Charles University in Prague, Faculty of Medicine in Pilsen, alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - C E W Hahn
- Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| | - A D Farmery
- Nuffield Department of Clinical Neurosciences, Nuffield Division of Anaesthetics, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Bodenstein M, Boehme S, Wang H, Duenges B, Markstaller K. Hints for cyclical recruitment of atelectasis during ongoing mechanical ventilation in lavage and oleic acid lung injury detected by SpO₂ oscillations and electrical impedance tomography. Exp Lung Res 2014; 40:427-38. [PMID: 25153803 DOI: 10.3109/01902148.2014.944719] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE OF THE STUDY Detection of cyclical recruitment of atelectasis after induction of lavage (LAV) or oleic acid injury (OAI) in mechanically ventilated pigs. Primary hypothesis is that oxygen oscillations within the respiratory cycle can be detected by SpO₂ recordings (direct hint). SpO₂ oscillations reflect shunt oscillations that can only be explained by cyclical recruitment of atelectasis. Secondary hypothesis is that electrical impedance tomography (EIT) depicts specific regional changes of lung aeration and of pulmonary mechanical properties (indirect hint). MATERIALS AND METHODS Three groups (each n = 7) of mechanically ventilated pigs were investigated applying above mentioned methods before and repeatedly after induction of lung injury: (1) sham treated animals (SHAM), (2) LAV, and (3) OAI. RESULTS Early oxygen oscillations occurred in the LAV group (mean calculated amplitude: 73.8 mmHg reflecting shunt oscillation of 11.2% in mean). In the OAI group oxygen oscillations occurred hours after induction of lung injury (mean calculated amplitude: 57.1 mmHg reflecting shunt oscillations of 8.4% in mean). The SHAM group had no relevant oxygen oscillations (<30 mmHg, shunt oscillations < 1.5%). Synchronously to oxygen oscillations, EIT depicted (1) a decrease of ventilation in dorsal areas, (2) an increase in ventral areas, (3) a decrease of especially dependent expiratory impedance, 3) an increase in late inspiratory flow especially in the dependant areas, (4) an increase in the speed of peak expiratory flow (PEF), and (5) a decrease of dorsal late expiratory flow. CONCLUSIONS SpO2 and EIT recordings detect events that are interpreted as cyclical recruitment of atelectasis.
Collapse
Affiliation(s)
- Marc Bodenstein
- 1Department of Anaesthesiology, University Medical Center Mainz, Mainz, Germany
| | | | | | | | | |
Collapse
|
36
|
Formenti F, Farmery AD, Hahn CEW. Response to Baumgardner et al. Respir Physiol Neurobiol 2014; 196:38. [PMID: 24583206 DOI: 10.1016/j.resp.2014.01.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 01/12/2014] [Indexed: 10/25/2022]
Affiliation(s)
- Federico Formenti
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Andrew D Farmery
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Clive E W Hahn
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
37
|
Large changes in PaO2 oscillation amplitude with respiratory rate are not measurement artifact. Respir Physiol Neurobiol 2014; 195:59. [PMID: 24456732 DOI: 10.1016/j.resp.2014.01.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 01/12/2014] [Indexed: 11/21/2022]
|
38
|
Abstract
This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport.
Collapse
Affiliation(s)
- A Barry Baker
- Department of Anaesthesia, University of Sydney, NSW, Australia.
| | | |
Collapse
|
39
|
Formenti F, Chen R, McPeak H, Matejovic M, Farmery AD, Hahn CEW. A fibre optic oxygen sensor that detects rapid PO2 changes under simulated conditions of cyclical atelectasis in vitro. Respir Physiol Neurobiol 2013; 191:1-8. [PMID: 24184746 PMCID: PMC3906517 DOI: 10.1016/j.resp.2013.10.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/11/2013] [Accepted: 10/14/2013] [Indexed: 12/02/2022]
Abstract
Real time detection of cyclical atelectasis is fundamental for individualised mechanical-ventilation therapy in ARDS. Intra-arterial oxygen sensors could be used to detect the breath-by-breath oscillations in PO2 during cyclical atelectasis. The fidelity with which oxygen sensors can detect these arterial PO2 oscillations depends on the sensors’ speed of response. We present a system for testing fast-response fibre optic oxygen sensors under simulated conditions of cyclical atelectasis. We show that a prototype fibre optic oxygen sensor, compatible with clinical use, can detect rapid PO2 changes in vitro.
Two challenges in the management of Acute Respiratory Distress Syndrome are the difficulty in diagnosing cyclical atelectasis, and in individualising mechanical ventilation therapy in real-time. Commercial optical oxygen sensors can detect PaO2 oscillations associated with cyclical atelectasis, but are not accurate at saturation levels below 90%, and contain a toxic fluorophore. We present a computer-controlled test rig, together with an in-house constructed ultra-rapid sensor to test the limitations of these sensors when exposed to rapidly changing PO2 in blood in vitro. We tested the sensors’ responses to simulated respiratory rates between 10 and 60 breaths per minute. Our sensor was able to detect the whole amplitude of the imposed PO2 oscillations, even at the highest respiratory rate. We also examined our sensor's resistance to clot formation by continuous in vivo deployment in non-heparinised flowing animal blood for 24 h, after which no adsorption of organic material on the sensor's surface was detectable by scanning electron microscopy.
Collapse
Affiliation(s)
- Federico Formenti
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| | - Rongsheng Chen
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Hanne McPeak
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Martin Matejovic
- Biomedical Centre, Charles University in Prague, Faculty of Medicine in Pilsen, alej Svobody 80, 304 60 Pilsen, Czech Republic; First Medical Department, Charles University in Prague, Faculty of Medicine in Pilsen, alej Svobody 80, 304 60 Pilsen, Czech Republic
| | - Andrew D Farmery
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Clive E W Hahn
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK.
| |
Collapse
|
40
|
de Prost N, Costa EL, Wellman T, Musch G, Tucci MR, Winkler T, Harris R, Venegas JG, Kavanagh BP, Vidal Melo MF. Effects of ventilation strategy on distribution of lung inflammatory cell activity. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R175. [PMID: 23947920 PMCID: PMC4056777 DOI: 10.1186/cc12854] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 08/15/2013] [Indexed: 01/22/2023]
Abstract
Introduction Leukocyte infiltration is central to the development of acute lung injury, but it is not known how mechanical ventilation strategy alters the distribution or activation of inflammatory cells. We explored how protective (vs. injurious) ventilation alters the magnitude and distribution of lung leukocyte activation following systemic endotoxin administration. Methods Anesthetized sheep received intravenous endotoxin (10 ng/kg/min) followed by 2 h of either injurious or protective mechanical ventilation (n = 6 per group). We used positron emission tomography to obtain images of regional perfusion and shunting with infused 13N[nitrogen]-saline and images of neutrophilic inflammation with 18F-fluorodeoxyglucose (18F-FDG). The Sokoloff model was used to quantify 18F-FDG uptake (Ki), as well as its components: the phosphorylation rate (k3, a surrogate of hexokinase activity) and the distribution volume of 18F-FDG (Fe) as a fraction of lung volume (Ki = Fe × k3). Regional gas fractions (fgas) were assessed by examining transmission scans. Results Before endotoxin administration, protective (vs. injurious) ventilation was associated with a higher ratio of partial pressure of oxygen in arterial blood to fraction of inspired oxygen (PaO2/FiO2) (351 ± 117 vs. 255 ± 74 mmHg; P < 0.01) and higher whole-lung fgas (0.71 ± 0.12 vs. 0.48 ± 0.08; P = 0.004), as well as, in dependent regions, lower shunt fractions. Following 2 h of endotoxemia, PaO2/FiO2 ratios decreased in both groups, but more so with injurious ventilation, which also increased the shunt fraction in dependent lung. Protective ventilation resulted in less nonaerated lung (20-fold; P < 0.01) and more normally aerated lung (14-fold; P < 0.01). Ki was lower during protective (vs. injurious) ventilation, especially in dependent lung regions (0.0075 ± 0.0043/min vs. 0.0157 ± 0.0072/min; P < 0.01). 18F-FDG phosphorylation rate (k3) was twofold higher with injurious ventilation and accounted for most of the between-group difference in Ki. Dependent regions of the protective ventilation group exhibited lower k3 values per neutrophil than those in the injurious ventilation group (P = 0.01). In contrast, Fe was not affected by ventilation strategy (P = 0.52). Lung neutrophil counts were not different between groups, even when regional inflation was accounted for. Conclusions During systemic endotoxemia, protective ventilation may reduce the magnitude and heterogeneity of pulmonary inflammatory cell metabolic activity in early lung injury and may improve gas exchange through its effects predominantly in dependent lung regions. Such effects are likely related to a reduction in the metabolic activity, but not in the number, of lung-infiltrating neutrophils.
Collapse
|
41
|
Cyclic recruitment of atelectasis – Are there implications for our clinical practice? TRENDS IN ANAESTHESIA AND CRITICAL CARE 2013. [DOI: 10.1016/j.tacc.2013.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Eatwell K, Mancinelli E, Hedley J, Benato L, Shaw DJ, Self I, Meredith A. Use of arterial blood gas analysis as a superior method for evaluating respiratory function in pet rabbits (Oryctolagus cuniculus). Vet Rec 2013; 173:166. [PMID: 23845942 DOI: 10.1136/vr.101218] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A retrospective study compared invasive (arterial blood gas analysis) and non-invasive (capnography and pulse oximetry) methods of monitoring respiratory function in conscious rabbits. Arterial samples from 50 healthy dwarf lop rabbits, presenting for routine surgical neutering, were analysed on a point-of-care blood gas analysis machine. Reference intervals were obtained for pH (7.35-7.54), PaCO2 (mm Hg) (25.29-40.37), PaO2 (mm Hg) (50.3-98.2), base excess (mmol/l) (6.7-6.5), HCO3 (mmol/l) (17.96-29.41), TCO2 (mmol/l) (18.9-30.5). SaO2 (per cent) (88.8-98.0), Na (mmol/l) (137.6-145.2), K (mmol/l) (3.28-4.87), iCal (mmol/l) (1.64-1.94), glucose (mmol/l) (6.23-10.53), haematocrit (per cent) (23.3-40.2) and haemoglobin (mg/dl) (7.91-13.63). Pulse oximetry (SPO2) and capnography (ETCO2) readings were taken concurrently. There was no statistically significant relationship between SPO2 and SaO2 with a mean difference between SPO2 and SaO2 of 8.22 per cent. There was a statistically significant relationship between ETCO2 vs PaCO2, but a wide range of ETCO2 values were observed for a given PaCO2. The mean difference between these was 16.16 mm Hg. The study has provided reference intervals for arterial blood gas analysis in rabbits and demonstrated that capnography and pulse oximetry readings should not be relied upon in conscious rabbits as a guide to ventilation and oxygenation.
Collapse
Affiliation(s)
- K Eatwell
- From the Royal (Dick) School of Veterinary Studies and The Roslin Institute, The University of Edinburgh, Hospital for Small Animals, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, Scotland
| | | | | | | | | | | | | |
Collapse
|
43
|
Boehme S, Duenges B, Klein KU, Hartwich V, Mayr B, Consiglio J, Baumgardner JE, Markstaller K, Basciani R, Vogt A. Multi frequency phase fluorimetry (MFPF) for oxygen partial pressure measurement: ex vivo validation by polarographic clark-type electrode. PLoS One 2013; 8:e60591. [PMID: 23565259 PMCID: PMC3614895 DOI: 10.1371/journal.pone.0060591] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/28/2013] [Indexed: 11/27/2022] Open
Abstract
Background Measurement of partial pressure of oxygen (PO2) at high temporal resolution remains a technological challenge. This study introduces a novel PO2 sensing technology based on Multi-Frequency Phase Fluorimetry (MFPF). The aim was to validate MFPF against polarographic Clark-type electrode (CTE) PO2 measurements. Methodology/Principal Findings MFPF technology was first investigated in N = 8 anaesthetised pigs at FIO2 of 0.21, 0.4, 0.6, 0.8 and 1.0. At each FIO2 level, blood samples were withdrawn and PO2 was measured in vitro with MFPF using two FOXY-AL300 probes immediately followed by CTE measurement. Secondly, MFPF-PO2 readings were compared to CTE in an artificial circulatory setup (human packed red blood cells, haematocrit of 30%). The impacts of temperature (20, 30, 40°C) and blood flow (0.8, 1.6, 2.4, 3.2, 4.0 L min−1) on MFPF-PO2 measurements were assessed. MFPF response time in the gas- and blood-phase was determined. Porcine MFPF-PO2 ranged from 63 to 749 mmHg; the corresponding CTE samples from 43 to 712 mmHg. Linear regression: CTE = 15.59+1.18*MFPF (R2 = 0.93; P<0.0001). Bland Altman analysis: meandiff 69.2 mmHg, rangediff -50.1/215.6 mmHg, 1.96-SD limits -56.3/194.8 mmHg. In artificial circulatory setup, MFPF-PO2 ranged from 20 to 567 mmHg and CTE samples from 11 to 575 mmHg. Linear regression: CTE = −8.73+1.05*MFPF (R2 = 0.99; P<0.0001). Bland-Altman analysis: meandiff 6.6 mmHg, rangediff -9.7/20.5 mmHg, 1.96-SD limits -12.7/25.8 mmHg. Differences between MFPF and CTE-PO2 due to variations of temperature were less than 6 mmHg (range 0–140 mmHg) and less than 35 mmHg (range 140–750 mmHg); differences due to variations in blood flow were less than 15 mmHg (all P-values>0.05). MFPF response-time (monoexponential) was 1.48±0.26 s for the gas-phase and 1.51±0.20 s for the blood-phase. Conclusions/Significance MFPF-derived PO2 readings were reproducible and showed excellent correlation and good agreement with Clark-type electrode-based PO2 measurements. There was no relevant impact of temperature and blood flow upon MFPF-PO2 measurements. The response time of the MFPF FOXY-AL300 probe was adequate for real-time sensing in the blood phase.
Collapse
Affiliation(s)
- Stefan Boehme
- Department of Anaesthesia, General Intensive Care and Pain Management, Medical University of Vienna, Vienna, Austria.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
KLEIN KU, HARTMANN EK, BOEHME S, SZCZYRBA M, HEYLEN L, LIU T, DAVID M, WERNER C, MARKSTALLER K, ENGELHARD K. PaO2 oscillations caused by cyclic alveolar recruitment can be monitored in pig buccal mucosa microcirculation. Acta Anaesthesiol Scand 2013; 57:320-5. [PMID: 23167550 DOI: 10.1111/aas.12019] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/13/2012] [Indexed: 12/11/2022]
Abstract
BACKGROUND Cyclic alveolar recruitment and derecruitment play a role in the pathomechanism of acute lung injury and may lead to arterial partial pressure of oxygen (PaO(2) ) oscillations within the respiratory cycle. It remains unknown, however, if these PaO(2) oscillations are transmitted to the microcirculation. The present study investigates if PaO(2) oscillations can be detected in the pig buccal mucosa microcirculation. METHODS Respiratory failure was induced by surfactant depletion in seven pigs. PaO(2) oscillations caused by cyclic recruitment and derecruitment were measured in the thoracic aorta by fast fluorescence quenching of oxygen technology. Haemoglobin oxygen saturation, haemoglobin amount and blood flow in the buccal mucosa microcirculation were determined by combined fast white light spectrometry and laser Doppler flowmetry additionally to systolic arterial pressure. Measurements were performed during baseline conditions and during cyclic recruitment and derecruitment. RESULTS Measurements remained stable during baseline. Respiratory-dependent oscillations occurred in the systemic circulation [PaO(2) oscillations 92 (69-172) mmHg; systolic arterial pressure oscillations 33 (13-35) %] and were related to the respiratory rate (5.0 ± 0.2/min) as confirmed by Fourier analysis. Synchronised oscillations were detected to the pig buccal mucosa microcirculation [haemoglobin oxygen saturation oscillations 3.4 (2.7-4.9) %; haemoglobin amount oscillations 8.5 (2.3-13.3) %; blood flow oscillations 66 (18-87) %]. The delay between PaO(2) -\ and microcirculatory oxygen oscillations was 7.2 ± 2.8 s. CONCLUSION The present study suggests that PaO(2) oscillations caused by cyclic recruitment and derecruitment were transmitted to the buccal mucosa microcirculation. This non-invasive approach of measuring oxygen waves as a surrogate parameter of cyclic recruitment and derecruitment could be used to monitor PaO(2) oscillations at the bedside.
Collapse
Affiliation(s)
| | - E. K. HARTMANN
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | | - M. SZCZYRBA
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - L. HEYLEN
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - T. LIU
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - M. DAVID
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | - C. WERNER
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| | | | - K. ENGELHARD
- Department of Anaesthesiology; Medical Center of the Johannes Gutenberg-University; Mainz; Germany
| |
Collapse
|
45
|
Klein K, Boehme S, Hartmann E, Szczyrba M, Heylen L, Liu T, David M, Werner C, Markstaller K, Engelhard K. Transmission of arterial oxygen partial pressure oscillations to the cerebral microcirculation in a porcine model of acute lung injury caused by cyclic recruitment and derecruitment. Br J Anaesth 2013; 110:266-73. [DOI: 10.1093/bja/aes376] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
46
|
Cereda M, Emami K, Xin Y, Kadlecek S, Kuzma NN, Mongkolwisetwara P, Profka H, Pickup S, Ishii M, Kavanagh BP, Deutschman CS, Rizi RR. Imaging the interaction of atelectasis and overdistension in surfactant-depleted lungs. Crit Care Med 2013; 41:527-35. [PMID: 23263577 PMCID: PMC3557664 DOI: 10.1097/ccm.0b013e31826ab1f2] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Atelectasis and surfactant depletion may contribute to greater distension-and thereby injury-of aerated lung regions; recruitment of atelectatic lung may protect these regions by attenuating such overdistension. However, the effects of atelectasis (and recruitment) on aerated airspaces remain elusive. We tested the hypothesis that during mechanical ventilation, surfactant depletion increases the dimensions of aerated airspaces and that lung recruitment reverses these changes. DESIGN Prospective imaging study in an animal model. SETTING Research imaging facility. SUBJECTS Twenty-seven healthy Sprague Dawley rats. INTERVENTIONS Surfactant depletion was obtained by saline lavage in anesthetized, ventilated rats. Alveolar recruitment was accomplished using positive end-expiratory pressure and exogenous surfactant administration. MEASUREMENTS AND MAIN RESULTS Airspace dimensions were estimated by measuring the apparent diffusion coefficient of He, using diffusion-weighted hyperpolarized gas magnetic resonance imaging. Atelectasis was demonstrated using computerized tomography and by measuring oxygenation. Saline lavage increased atelectasis (increase in nonaerated tissue from 1.2% to 13.8% of imaged area, p < 0.001), and produced a concomitant increase in mean apparent diffusion coefficient (~33%, p < 0.001) vs. baseline; the heterogeneity of the computerized tomography signal and the variance of apparent diffusion coefficient were also increased. Application of positive end-expiratory pressure and surfactant reduced the mean apparent diffusion coefficient (~23%, p < 0.001), and its variance, in parallel to alveolar recruitment (i.e., less computerized tomography densities and heterogeneity, increased oxygenation). CONCLUSIONS Overdistension of aerated lung occurs during atelectasis is detectable using clinically relevant magnetic resonance imaging technology, and could be a key factor in the generation of lung injury during mechanical ventilation. Lung recruitment by higher positive end-expiratory pressure and surfactant administration reduces airspace distension.
Collapse
Affiliation(s)
- Maurizio Cereda
- Department of Anesthesiology and Critical Care and Stavropoulos Sepsis Research Program, University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Retamal J, Libuy J, Jiménez M, Delgado M, Besa C, Bugedo G, Bruhn A. Preliminary study of ventilation with 4 ml/kg tidal volume in acute respiratory distress syndrome: feasibility and effects on cyclic recruitment - derecruitment and hyperinflation. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2013; 17:R16. [PMID: 23351488 PMCID: PMC4056568 DOI: 10.1186/cc12487] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Accepted: 01/14/2013] [Indexed: 02/07/2023]
Abstract
Introduction Cyclic recruitment-derecruitment and overdistension contribute to ventilator-induced lung injury. Tidal volume (Vt) may influence both, cyclic recruitment-derecruitment and overdistension. The goal of this study was to determine if decreasing Vt from 6 to 4 ml/kg reduces cyclic recruitment-derecruitment and hyperinflation, and if it is possible to avoid severe hypercapnia. Methods Patients with pulmonary acute respiratory distress syndrome (ARDS) were included in a crossover study with two Vt levels: 6 and 4 ml/kg. The protocol had two parts: one bedside and other at the CT room. To avoid severe hypercapnia in the 4 ml/kg arm, we replaced the heat and moisture exchange filter by a heated humidifier, and respiratory rate was increased to keep minute ventilation constant. Data on lung mechanics and gas exchange were taken at baseline and after 30 minutes at each Vt (bedside). Thereafter, a dynamic CT (4 images/sec for 8 sec) was taken at each Vt at a fixed transverse region between the middle and lower third of the lungs. Afterward, CT images were analyzed and cyclic recruitment-derecruitment was determined as non-aerated tissue variation between inspiration and expiration, and hyperinflation as maximal hyperinflated tissue at end-inspiration, expressed as % of lung tissue weight. Results We analyzed 10 patients. Decreasing Vt from 6 to 4 ml/kg consistently decreased cyclic recruitment-derecruitment from 3.6 (2.5 to 5.7) % to 2.9 (0.9 to 4.7) % (P <0.01) and end-inspiratory hyperinflation from 0.7 (0.3 to 2.2) to 0.6 (0.2 to 1.7) % (P = 0.01). No patient developed severe respiratory acidosis or severe hypercapnia when decreasing Vt to 4 ml/kg (pH 7.29 (7.21 to 7.46); PaCO2 48 (26 to 51) mmHg). Conclusions Decreasing Vt from 6 to 4 ml/kg reduces cyclic recruitment-derecruitment and hyperinflation. Severe respiratory acidosis may be effectively prevented by decreasing instrumental dead space and by increasing respiratory rate.
Collapse
|
48
|
Bodenstein M, Bierschock S, Boehme S, Wang H, Vogt A, Kwiecien R, David M, Markstaller K. Influence of fluid and volume state on PaO2oscillations in mechanically ventilated pigs. Exp Lung Res 2013; 39:80-90. [DOI: 10.3109/01902148.2012.758192] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Chen R, Hahn CEW, Farmery AD. A flowing liquid test system for assessing the linearity and time-response of rapid fibre optic oxygen partial pressure sensors. Respir Physiol Neurobiol 2012; 183:100-7. [PMID: 22688018 DOI: 10.1016/j.resp.2012.06.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 05/31/2012] [Accepted: 06/02/2012] [Indexed: 11/16/2022]
Abstract
The development of a methodology for testing the time response, linearity and performance characteristics of ultra fast fibre optic oxygen sensors in the liquid phase is presented. Two standard medical paediatric oxygenators are arranged to provide two independent extracorporeal circuits. Flow from either circuit can be diverted over the sensor under test by means of a system of rapid cross-over solenoid valves exposing the sensor to an abrupt change in oxygen partial pressure, P O2. The system is also capable of testing the oxygen sensor responses to changes in temperature, carbon dioxide partial pressure P CO2 and pH in situ. Results are presented for a miniature fibre optic oxygen sensor constructed in-house with a response time ≈ 50 ms and a commercial fibre optic sensor (Ocean Optics Foxy), when tested in flowing saline and stored blood.
Collapse
Affiliation(s)
- R Chen
- Nuffield Division of Anaesthetics, Nuffield Department of Clinical Neurosciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | | | | |
Collapse
|
50
|
Hartmann EK, Boehme S, Bentley A, Duenges B, Klein KU, Elsaesser A, Baumgardner JE, David M, Markstaller K. Influence of respiratory rate and end-expiratory pressure variation on cyclic alveolar recruitment in an experimental lung injury model. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:R8. [PMID: 22248044 PMCID: PMC3396238 DOI: 10.1186/cc11147] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 12/04/2011] [Accepted: 01/16/2012] [Indexed: 01/11/2023]
Abstract
Introduction Cyclic alveolar recruitment/derecruitment (R/D) is an important mechanism of ventilator-associated lung injury. In experimental models this process can be measured with high temporal resolution by detection of respiratory-dependent oscillations of the paO2 (ΔpaO2). A previous study showed that end-expiratory collapse can be prevented by an increased respiratory rate in saline-lavaged rabbits. The current study compares the effects of increased positive end-expiratory pressure (PEEP) versus an individually titrated respiratory rate (RRind) on intra-tidal amplitude of Δ paO2 and on average paO2 in saline-lavaged pigs. Methods Acute lung injury was induced by bronchoalveolar lavage in 16 anaesthetized pigs. R/D was induced and measured by a fast-responding intra-aortic probe measuring paO2. Ventilatory interventions (RRind (n = 8) versus extrinsic PEEP (n = 8)) were applied for 30 minutes to reduce Δ paO2. Haemodynamics, spirometry and Δ paO2 were monitored and the Ventilation/Perfusion distributions were assessed by multiple inert gas elimination. The main endpoints average and Δ paO2 following the interventions were analysed by Mann-Whitney-U-Test and Bonferroni's correction. The secondary parameters were tested in an explorative manner. Results Both interventions reduced Δ paO2. In the RRind group, ΔpaO2 was significantly smaller (P < 0.001). The average paO2 continuously decreased following RRind and was significantly higher in the PEEP group (P < 0.001). A sustained difference of the ventilation/perfusion distribution and shunt fractions confirms these findings. The RRind application required less vasopressor administration. Conclusions Different recruitment kinetics were found compared to previous small animal models and these differences were primarily determined by kinetics of end-expiratory collapse. In this porcine model, respiratory rate and increased PEEP were both effective in reducing the amplitude of paO2 oscillations. In contrast to a recent study in a small animal model, however, increased respiratory rate did not maintain end-expiratory recruitment and ultimately resulted in reduced average paO2 and increased shunt fraction.
Collapse
Affiliation(s)
- Erik K Hartmann
- Department of Anaesthesiology, Medical Center of the Johannes Gutenberg-University, Mainz 55131, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|