1
|
Wang X, Wang Q, Xia Z, Yang Y, Dai X, Zhang C, Wang J, Xu Y. Mesenchymal stromal cell therapies for traumatic neurological injuries. J Transl Med 2024; 22:1055. [PMID: 39578845 PMCID: PMC11583761 DOI: 10.1186/s12967-024-05725-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/01/2024] [Indexed: 11/24/2024] Open
Abstract
Improved treatment options are urgently needed for neurological injuries resulting from trauma or iatrogenic events causing long-term disabilities that severely impact patients' quality of life. In vitro and animal studies have provided promising proof-of-concept examples of regenerative therapies using mesenchymal stromal cells (MSC) for a wide range of pathological conditions. Over the previous decade, various MSC-based therapies have been investigated in clinical trials to treat traumatic neurological injuries. However, while the safety and feasibility of MSC treatments has been established, the patient outcomes in these studies have not demonstrated significant success in the translation of MSC regenerative therapy for the treatment of human brain and spinal cord injuries. Herein, we have reviewed the literature and ongoing registered trials on the application of MSC for the treatment of traumatic brain injury, traumatic spinal cord injury, and peripheral nerve injury. We have focused on the shortcomings and technological hurdles that must be overcome to further advance clinical research to phase 3 trials, and we discuss recent advancements that represent potential solutions to these obstacles to progress.
Collapse
Affiliation(s)
- Xiujuan Wang
- Technology Department, Tianjin Everunion Biotechnology Co., Ltd, SOHO Nexus Center, No. 19A East 3rd Ring North Road, Chaoyang District, Beijing, 100020, China
| | - Qian Wang
- HELP Therapeutics Co., Ltd, No. 568 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, E12 Avenida da Universidade, Macau, 519000, SAR, China
| | - Ziyao Xia
- Department of Ophthalmology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Ying Yang
- Technology Department, Tianjin Everunion Biotechnology Co., Ltd, SOHO Nexus Center, No. 19A East 3rd Ring North Road, Chaoyang District, Beijing, 100020, China
| | - Xunan Dai
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China
| | - Chun Zhang
- Department of Ophthalmology, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| | - Jiaxian Wang
- HELP Therapeutics Co., Ltd, No. 568 Longmian Avenue, Jiangning District, Nanjing, 211166, Jiangsu Province, China.
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, E12 Avenida da Universidade, Macau, 519000, SAR, China.
| | - Yongsheng Xu
- Technology Department, Tianjin Everunion Biotechnology Co., Ltd, SOHO Nexus Center, No. 19A East 3rd Ring North Road, Chaoyang District, Beijing, 100020, China.
- Beijing Key Laboratory of Restoration of Damaged Ocular Nerve, Peking University Third Hospital, No. 49 North Garden Road, Haidian District, Beijing, 100191, China.
| |
Collapse
|
2
|
Patry C, Doniga T, Lenz F, Viergutz T, Weiss C, Tönshoff B, Kalenka A, Yard B, Krebs J, Schaible T, Beck G, Rafat N. Increased mobilization of mesenchymal stem cells in patients with acute respiratory distress syndrome undergoing extracorporeal membrane oxygenation. PLoS One 2020; 15:e0227460. [PMID: 31986159 PMCID: PMC6984734 DOI: 10.1371/journal.pone.0227460] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/18/2019] [Indexed: 01/31/2023] Open
Abstract
Background The acute respiratory distress syndrome (ARDS) is characterized by pulmonary epithelial and endothelial barrier dysfunction and injury. In severe forms of ARDS, extracorporeal membrane oxygenation (ECMO) is often the last option for life support. Endothelial progenitor (EPC) and mesenchymal stem cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. However, we still lack sufficient knowledge about how ECMO might affect EPC- and MSC-mediated regenerative pathways in ARDS. Therefore, we investigated if ECMO impacts EPC and MSC numbers in ARDS patients. Methods Peripheral blood mononuclear cells from ARDS patients undergoing ECMO (n = 16) and without ECMO support (n = 12) and from healthy volunteers (n = 16) were isolated. The number and presence of circulating EPC and MSC was detected by flow cytometry. Serum concentrations of vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang2) were determined. Results In the ECMO group, MSC subpopulations were higher by 71% compared to the non-ECMO group. Numbers of circulating EPC were not significantly altered. During ECMO, VEGF and Ang2 serum levels remained unchanged compared to the non-ECMO group (p = 0.16), but Ang2 serum levels in non-survivors of ARDS were significantly increased by 100% (p = 0.02) compared to survivors. Conclusions ECMO support in ARDS is specifically associated with an increased number of circulating MSC, most likely due to enhanced mobilization, but not with a higher numbers of EPC or serum concentrations of VEGF and Ang2.
Collapse
Affiliation(s)
- Christian Patry
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Thalia Doniga
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Franziska Lenz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Christel Weiss
- Department of Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Armin Kalenka
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Anaesthesiology and Intensive Care Medicine, Hospital Bergstraße, Heppenheim, Germany
| | - Benito Yard
- Department of Medicine V, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Jörg Krebs
- Department of Anaesthesiology and Intensive Care Medicine, University Medical Center Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anaesthesiology and Intensive Care Medicine, Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Neysan Rafat
- Department of Pediatrics I, University Children’s Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany
- Department of Neonatology, University Children’s Hospital Mannheim, University of Heidelberg, Heidelberg, Germany
- Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
- * E-mail:
| |
Collapse
|
3
|
Rafat N, Patry C, Sabet U, Viergutz T, Weiss C, Tönshoff B, Beck G, Schaible T. Endothelial Progenitor and Mesenchymal Stromal Cells in Newborns With Congenital Diaphragmatic Hernia Undergoing Extracorporeal Membrane Oxygenation. Front Pediatr 2019; 7:490. [PMID: 31824902 PMCID: PMC6882772 DOI: 10.3389/fped.2019.00490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Accepted: 11/07/2019] [Indexed: 02/03/2023] Open
Abstract
Background: Endothelial progenitor (EPC) and mesenchymal stromal cells (MSC) can regenerate damaged endothelium and thereby improve pulmonary endothelial dysfunction. We do not know, how extracorporeal membrane oxygenation (ECMO) might affect EPC- and MSC-mediated regenerative pathways in patients with congenital diaphragmatic hernia (CDH). Therefore, we investigated, if ECMO support impacts EPC and MSC numbers in CDH patients. Methods: Peripheral blood mononuclear cells from newborns with ECMO-dependent (n = 18) and ECMO-independent CDH (n = 12) and from healthy controls (n = 12) were isolated. The numbers of EPC and MSC were identified by flowcytometry. Serum levels of vascular endothelial growth factor (VEGF) and angiopoietin (Ang)-2 were determined. Results: EPC and MSC were elevated in newborns with CDH. ECMO-dependent infants had higher EPC subpopulation counts (2,1-7,6-fold) before treatment compared to ECMO-independent infants. In the disease course, EPC and MSC subpopulation counts in ECMO-dependent infants were lower than before ECMO initiation. During ECMO, VEGF serum levels were significantly reduced (by 90.5%) and Ang2 levels significantly increased (by 74.8%). Conclusions: Our data suggest that ECMO might be associated with a rather impaired mobilization of EPC and MSC and with a depression of VEGF serum levels in newborns with CDH.
Collapse
Affiliation(s)
- Neysan Rafat
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany.,Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany.,Department of Pharmaceutical Sciences, Bahá'í Institute of Higher Education (BIHE), Teheran, Iran
| | - Christian Patry
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Ursula Sabet
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Tim Viergutz
- Department of Anesthesiology and Critical Care Medicine, University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | - Christel Weiss
- Department for Medical Statistics and Biomathematics, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Burkhard Tönshoff
- Department of Pediatrics I, University Children's Hospital Heidelberg, Heidelberg, Germany
| | - Grietje Beck
- Department of Anesthesiology, Helios Dr. Horst-Schmidt Clinic, Wiesbaden, Germany
| | - Thomas Schaible
- Department of Neonatology, University Children's Hospital Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
4
|
Pieper IL, Smith R, Bishop JC, Aldalati O, Chase AJ, Morgan G, Thornton CA. Isolation of Mesenchymal Stromal Cells From Peripheral Blood of ST Elevation Myocardial Infarction Patients. Artif Organs 2017; 41:654-666. [DOI: 10.1111/aor.12829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/16/2016] [Accepted: 06/30/2016] [Indexed: 12/18/2022]
Affiliation(s)
| | - Rachel Smith
- Swansea University Medical School, Institute of Life Science
| | | | - Omar Aldalati
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Alex J. Chase
- Regional Cardiac Centre, Morriston Hospital; Swansea Wales UK
| | - Gareth Morgan
- Swansea University Medical School, Institute of Life Science
| | | |
Collapse
|
5
|
Wang SJ, Yin MH, Jiang D, Zhang ZZ, Qi YS, Wang HJ, Yu JK. The Chondrogenic Potential of Progenitor Cells Derived from Peripheral Blood: A Systematic Review. Stem Cells Dev 2016; 25:1195-207. [PMID: 27353075 DOI: 10.1089/scd.2016.0055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Shao-Jie Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
- Department of Joint Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Meng-Hong Yin
- Department of Sports Medicine, Dalian Medical University, Liaoning, China
| | - Dong Jiang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Zheng-Zheng Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Yan-Song Qi
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Hai-Jun Wang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| | - Jia-Kuo Yu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injuries, Peking University Third Hospital, Beijing, China
| |
Collapse
|
6
|
|
7
|
Kort EJ, Croskey L, Scibienski T, Rajasekaran S, Jovinge S. Circulating Progenitor Cells and Childhood Cardiovascular Disease. Pediatr Cardiol 2016; 37:225-31. [PMID: 26554720 DOI: 10.1007/s00246-015-1300-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 10/20/2015] [Indexed: 12/18/2022]
Abstract
Circulating progenitor cells have been extensively studied in the context of heart disease in adults. In these patients, they have been demonstrated to be markers of myocardial injury and recovery as well as potential therapeutic agents. However, studies in children are much more limited. Here we review current knowledge pertaining to circulating progenitor cells in the context of childhood cardiovascular disease. Priorities for further research are also highlighted.
Collapse
Affiliation(s)
- Eric J Kort
- DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI, 49503, USA.
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA.
- Helen DeVos Children's Hospital, 100 Michigan Street NE, Grand Rapids, MI, USA.
| | - Lacey Croskey
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
| | - Taryn Scibienski
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
| | - Surender Rajasekaran
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
- Helen DeVos Children's Hospital, 100 Michigan Street NE, Grand Rapids, MI, USA
| | - Stefan Jovinge
- DeVos Cardiovascular Research Program of Spectrum Health and Van Andel Research Institute, 100 Michigan Street NE, Grand Rapids, MI, 49503, USA
- Michigan State University, College of Human Medicine, 15 Michigan Street NE, Grand Rapids, MI, USA
- Cardiovascular Institute, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
8
|
Im D, Shi W, Driscoll B. Pediatric Acute Respiratory Distress Syndrome: Fibrosis versus Repair. Front Pediatr 2016; 4:28. [PMID: 27066462 PMCID: PMC4811965 DOI: 10.3389/fped.2016.00028] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/15/2016] [Indexed: 01/11/2023] Open
Abstract
Clinical and basic experimental approaches to pediatric acute lung injury (ALI), including acute respiratory distress syndrome (ARDS), have historically focused on acute care and management of the patient. Additional efforts have focused on the etiology of pediatric ALI and ARDS, clinically defined as diffuse, bilateral diseases of the lung that compromise function leading to severe hypoxemia within 7 days of defined insult. Insults can include ancillary events related to prematurity, can follow trauma and/or transfusion, or can present as sequelae of pulmonary infections and cardiovascular disease and/or injury. Pediatric ALI/ARDS remains one of the leading causes of infant and childhood morbidity and mortality, particularly in the developing world. Though incidence is relatively low, ranging from 2.9 to 9.5 cases/100,000 patients/year, mortality remains high, approaching 35% in some studies. However, this is a significant decrease from the historical mortality rate of over 50%. Several decades of advances in acute management and treatment, as well as better understanding of approaches to ventilation, oxygenation, and surfactant regulation have contributed to improvements in patient recovery. As such, there is a burgeoning interest in the long-term impact of pediatric ALI/ARDS. Chronic pulmonary deficiencies in survivors appear to be caused by inappropriate injury repair, with fibrosis and predisposition to emphysema arising as irreversible secondary events that can severely compromise pulmonary development and function, as well as the overall health of the patient. In this chapter, the long-term effectiveness of current treatments will be examined, as will the potential efficacy of novel, acute, and long-term therapies that support repair and delay or even impede the onset of secondary events, including fibrosis.
Collapse
Affiliation(s)
- Daniel Im
- Pediatric Critical Care Medicine, Department of Pediatrics, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Wei Shi
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| | - Barbara Driscoll
- Developmental Biology and Regenerative Medicine Program, Department of Surgery, The Saban Research Institute, Children's Hospital Los Angeles, University of Southern California , Los Angeles, CA , USA
| |
Collapse
|
9
|
Mirones I, Angel Rodríguez-Milla M, Cubillo I, Mariñas-Pardo L, de la Cueva T, Zapata A, González C, Ramírez M, García-Castro J. Dopamine mobilizes mesenchymal progenitor cells through D2-class receptors and their PI3K/AKT pathway. Stem Cells 2015; 32:2529-38. [PMID: 24806705 DOI: 10.1002/stem.1745] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 03/24/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
As the nervous system exerts direct and indirect effects on stem cells mobilization and catecholamines mobilize hematopoietic stem cells, we hypothesized that dopamine might induce mesenchymal progenitor cells (MPCs) mobilization. We show that dopamine induced in vitro MPCs migration through D2-class receptors, and their alternative phosphoinositide 3-kinase/Akt pathways. Also, administration of catecholamines induced in vivo mobilization of colony-forming unit-fibroblast in mice. In contrast, in vitro and in vivo MPCs migration was suppressed by D2-class receptors antagonists and blocking antibodies, consistent with dopamine signaling pathway implication. In humans, patients treated with L-dopa or catecholaminergic agonists showed a significant increase of a MPC-like population (CD45-CD31-CD34-CD105+) in their peripheral blood. These findings reveal a new link between catecholamines and MPCs mobilization and suggest the potential use of D2-class receptors agonists for mobilization of MPCs in clinical settings.
Collapse
|
10
|
Lehle K, Friedl L, Wilm J, Philipp A, Müller T, Lubnow M, Schmid C. Accumulation of Multipotent Progenitor Cells on Polymethylpentene Membranes During Extracorporeal Membrane Oxygenation. Artif Organs 2015; 40:577-85. [PMID: 26510997 DOI: 10.1111/aor.12599] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multipotent progenitor cells were mobilized during pediatric extracorporeal membrane oxygenation (ECMO). We hypothesize that these cells also adhered onto polymethylpentene (PMP) fibers within the membrane oxygenator (MO) during adult ECMO support. Mononuclear cells were removed from the surface of explanted PMP-MOs (n = 16). Endothelial-like outgrowth and mesenchymal-like cells were characterized by flow cytometric analysis using different surface markers. Spindle-shaped attaching cells were identified early, but without proliferative activity. After long-term cultivation palisading type or cobblestone-type outgrowth cells with high proliferative activity appeared and were characterized as (i) leukocytoid CD45+/CD31+ (CD133+/VEGFR-II+/CD90+/CD14+/CD146dim/CD105dim); (ii) endothelial-like CD45-/CD31+ (VEGF-RII+/CD146+/CD105+/CD133-/CD14-/CD90-); and (iii) mesenchymal-like cells CD45-/CD31- (CD105+/CD90+/CD133dim/VEGFR-II-/CD146-/CD14-). The distribution of the cell populations depended on the MO and cultivation time. Endothelial-like cells formed capillary-like structures and did uptake Dil-acetylated low-density lipoprotein. Endothelial- and mesenchymal-like cells adhered on the surface of PMP-MOs. Further research is needed to identify the clinical relevance of these cells.
Collapse
Affiliation(s)
- Karla Lehle
- Department of Cardiothoracic Surgery, University Medical Center, Regensburg, Germany
| | - Lucas Friedl
- Department of Cardiothoracic Surgery, University Medical Center, Regensburg, Germany
| | - Julius Wilm
- Department of Cardiothoracic Surgery, University Medical Center, Regensburg, Germany
| | - Alois Philipp
- Department of Cardiothoracic Surgery, University Medical Center, Regensburg, Germany
| | - Thomas Müller
- Department of Internal Medicine II, University Medical Center, Regensburg, Germany
| | - Matthias Lubnow
- Department of Internal Medicine II, University Medical Center, Regensburg, Germany
| | - Christof Schmid
- Department of Cardiothoracic Surgery, University Medical Center, Regensburg, Germany
| |
Collapse
|
11
|
[Extracorporeal membrane oxygenation in children]. Med Klin Intensivmed Notfmed 2015; 110:438-44. [PMID: 26267893 DOI: 10.1007/s00063-015-0062-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/13/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Children who require mechanical ventilation represent a high-risk population with significant morbidity and mortality. Experienced handling of conventional therapies including high frequency oscillation ventilation and initiation of newer treatment options such as surfactant or nitric oxide has led to some improvements. Nevertheless, extracorporeal membrane oxygenation (ECMO) is a life-saving technology in patients with respiratory failure refractory to maximal medical therapy. OBJECTIVE This article shows the therapeutic management and the selection criteria for ECMO in neonates and children based on the clinical signs of acquired and congenital diseases that can lead to respiratory failure. RESULTS The distribution of diagnoses, survival rates, and demographic change of ECMO in newborns since the beginning of documentation in 1986 by the Extracorporeal Life Support Organization (ELSO) registry and the largest German ECMO Center Mannheim are described. Despite a changed diagnostic distribution in the direction of congenital pulmonary disease, the survival rate of ECMO in the neonates has remained well above 70 %. In pediatric ECMO, the survival rate has also remained constant despite a more complex patient population. The highest values are seen in the youngest patients without underlying disease. CONCLUSION Despite limited evidence and relatively few randomized trials in children, ECMO remains the safety net for patients with severe respiratory failure. Experience as measured by the annual number of cases plays an important role for the quality of results.
Collapse
|
12
|
Liu L, Hu K, Wang B, Huang H, Yu Q. Mobilization of endogenous stem cells: A new strategy for bone healing. Bone 2012; 51:633-4; author reply 635. [PMID: 22732330 DOI: 10.1016/j.bone.2012.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 06/14/2012] [Indexed: 01/13/2023]
|
13
|
Merkulova-Rainon T, Broquères-You D, Kubis N, Silvestre JS, Lévy BI. Towards the therapeutic use of vascular smooth muscle progenitor cells. Cardiovasc Res 2012; 95:205-14. [PMID: 22354897 DOI: 10.1093/cvr/cvs097] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Recent advances in the development of alternative proangiogenic and revascularization processes, including recombinant protein delivery, gene therapy, and cell therapy, hold the promise of greater efficacy in the management of cardiovascular disease in the coming years. In particular, vascular progenitor cell-based strategies have emerged as an efficient treatment approach to promote vessel formation and repair and to improve tissue perfusion. During the past decade, considerable progress has been achieved in understanding therapeutic properties of endothelial progenitor cells, while the therapeutic potential of vascular smooth muscle progenitor cells (SMPC) has only recently been explored; the number of the circulating SMPC being correlated with cardiovascular health. Several endogenous SMPC populations with varying phenotypes have been identified and characterized in the peripheral blood, bone marrow, and vascular wall. While the phenotypic entity of vascular SMPC is not fully defined and remains an evolving area of research, SMPC are increasingly recognized to play a special role in cardiovascular biology. In this review, we describe the current approaches used to define vascular SMPC. We further summarize the data on phenotype and functional properties of SMPC from various sources in adults. Finally, we discuss the role of SMPC in cardiovascular disease, including the contribution of SMPC to intimal proliferation, angiogenesis, and atherosclerotic plaque instability as well as the benefits resulting from the therapeutic use of SMPC.
Collapse
|
14
|
Extrakorporale Membranoxygenierung (ECMO). Monatsschr Kinderheilkd 2011. [DOI: 10.1007/s00112-011-2421-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
15
|
Otto WR, Wright NA. Mesenchymal stem cells: from experiment to clinic. FIBROGENESIS & TISSUE REPAIR 2011; 4:20. [PMID: 21902837 PMCID: PMC3182886 DOI: 10.1186/1755-1536-4-20] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Accepted: 09/08/2011] [Indexed: 02/07/2023]
Abstract
There is currently much interest in adult mesenchymal stem cells (MSCs) and their ability to differentiate into other cell types, and to partake in the anatomy and physiology of remote organs. It is now clear these cells may be purified from several organs in the body besides bone marrow. MSCs take part in wound healing by contributing to myofibroblast and possibly fibroblast populations, and may be involved in epithelial tissue regeneration in certain organs, although this remains more controversial. In this review, we examine the ability of MSCs to modulate liver, kidney, heart and intestinal repair, and we update their opposing qualities of being less immunogenic and therefore tolerated in a transplant situation, yet being able to contribute to xenograft models of human tumour formation in other contexts. However, such observations have not been replicated in the clinic. Recent studies showing the clinical safety of MSC in several pathologies are discussed. The possible opposing powers of MSC need careful understanding and control if their clinical potential is to be realised with long-term safety for patients.
Collapse
Affiliation(s)
- William R Otto
- Histopathology Laboratory, Cancer Research UK, London Research Institute, 44, Lincoln's Inn Fields, London WC2A 3LY, UK.
| | | |
Collapse
|
16
|
Vadász I, Sznajder JI. Update in acute lung injury and critical care 2010. Am J Respir Crit Care Med 2011; 183:1147-52. [PMID: 21531954 DOI: 10.1164/rccm.201102-0327up] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- István Vadász
- Department of Internal Medicine, University of Giessen Lung Center, Justus Liebig University, Klinikstrasse 36, 35392 Giessen, Germany.
| | | |
Collapse
|