1
|
Chen L, Lin X, Yu X, Yang C, Li R, Guo Q, Shi J, Liao X, Chen X, Ma Z, Lin J. Decoy receptor 3 as a prognostic biomarker for sepsis and septic shock according to the Sepsis-3 definitions. Front Cell Infect Microbiol 2025; 15:1529917. [PMID: 40125518 PMCID: PMC11925903 DOI: 10.3389/fcimb.2025.1529917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/12/2025] [Indexed: 03/25/2025] Open
Abstract
Objectives The present study was conducted to reappraise the prognostic value of decoy receptor 3 (DcR3) for patients with sepsis and septic shock according to the latest Sepsis-3 definitions. Methods Subjects suffering from sepsis or septic shock were enrolled within 6 h of admission. The Sequential Organ Failure Assessment (SOFA) score and the plasma levels of DcR3, C-reactive protein, procalcitonin, and interleukin-6 were measured. Group comparisons were made based on the survival status on day 28 after onset. Predictors of mortality were assessed using the Cox proportional hazard models, and survival curves were plotted with the Kaplan-Meier method. Discriminative performances of single and combined indicators were evaluated via the areas under receiver operating characteristic curves. Results Among 143 eligible sepsis cases, 77 developed septic shock, and the 28-day mortality rates were 32.2% and 45.5%, respectively. Regardless of the population (all sepsis or septic shock), non-survivors exhibited significantly higher DcR3 levels compared to survivors (median 4.19 vs. 2.64 ng/mL and 4.37 vs. 3.18 ng/mL, respectively; p < 0.001 and p = 0.002, respectively). DcR3 levels were most correlated with organ dysfunction presented by SOFA scores (correlation coefficient = 0.347 and 0.308, respectively; p = 0.001 and 0.016, respectively) but did not differ among the various pathogenic microbes of infection. Multivariate Cox regression identified DcR3 as an independent predictor of mortality [hazard ratio (95% confidence interval): 1.570 (1.048-2.352) and 1.828 (1.047-3.194), respectively; p = 0.029 and 0.034, respectively]. Kaplan-Meier analysis showed that elevated DcR3 concentrations were associated with significantly lower survival rates (p = 0.001 and 0.013, respectively). The areas under receiver operating characteristic curves of DcR3 alone for predicting outcome were superior to that of the other three biomarkers (0.731 and 0.711, respectively) and could be further improved when coupled with SOFA scores (0.803 and 0.784, respectively). Conclusions DcR3 is a valuable prognostic biomarker for sepsis and septic shock, offering the potential to predict 28-day mortality in clinical settings.
Collapse
Affiliation(s)
- Long Chen
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiao Lin
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xing Yu
- Department of Gastroenterology, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Chunxia Yang
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Rui Li
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingqing Guo
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Jingshi Shi
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiuyu Liao
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaoli Chen
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| | - Zengyi Ma
- Department of Neurosurgery & Neurocritical Care, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiandong Lin
- Intensive Care Unit, the First Affiliated Hospital, Fujian Medical University, Fuzhou, China
| |
Collapse
|
2
|
Theobald V, Schmitt FCF, Middel CS, Gaissmaier L, Brenner T, Weigand MA. Triggering receptor expressed on myeloid cells-1 in sepsis, and current insights into clinical studies. Crit Care 2024; 28:17. [PMID: 38191420 PMCID: PMC10775509 DOI: 10.1186/s13054-024-04798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/04/2024] [Indexed: 01/10/2024] Open
Abstract
Triggering receptor expressed on myeloid cells-1 (TREM-1) is a pattern recognition receptor and plays a critical role in the immune response. TREM-1 activation leads to the production and release of proinflammatory cytokines, chemokines, as well as its own expression and circulating levels of the cleaved soluble extracellular portion of TREM-1 (sTREM-1). Because patients with sepsis and septic shock show elevated sTREM-1 levels, TREM-1 has attracted attention as an important contributor to the inadequate immune response in this often-deadly condition. Since 2001, when the first blockade of TREM-1 in sepsis was performed, many potential TREM-1 inhibitors have been established in animal models. However, only one of them, nangibotide, has entered clinical trials, which have yielded promising data for future treatment of sepsis, septic shock, and other inflammatory disease such as COVID-19. This review discusses the TREM-1 pathway and important ligands, and highlights the development of novel inhibitors as well as their clinical potential for targeted treatment of various inflammatory conditions.
Collapse
Affiliation(s)
- Vivienne Theobald
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Felix Carl Fabian Schmitt
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Chiara Simone Middel
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Lena Gaissmaier
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Thorsten Brenner
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Markus Alexander Weigand
- Department of Anesthesiology, Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany.
| |
Collapse
|
3
|
François B, Lambden S, Garaud JJ, Derive M, Grouin JM, Asfar P, Darreau C, Mira JP, Quenot JP, Lemarié J, Mercier E, Lacherade JC, Vinsonneau C, Fivez T, Helms J, Badie J, Levy M, Cuvier V, Salcedo-Magguilli M, Laszlo-Pouvreau AL, Laterre PF, Gibot S. Evaluation of the efficacy and safety of TREM-1 inhibition with nangibotide in patients with COVID-19 receiving respiratory support: the ESSENTIAL randomised, double-blind trial. EClinicalMedicine 2023; 60:102013. [PMID: 37350989 PMCID: PMC10231876 DOI: 10.1016/j.eclinm.2023.102013] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/03/2023] [Accepted: 05/03/2023] [Indexed: 06/05/2023] Open
Abstract
Background Activation of the TREM-1 pathway is associated with outcome in life threatening COVID-19. Data suggest that modulation of this pathway with nangibotide, a TREM-1 modulator may improve survival in TREM-1 activated patients (identified using the biomarker sTREM-1). Methods Phase 2 double-blind randomized controlled trial assessing efficacy, safety, and optimum treatment population of nangibotide (1.0 mg/kg/h) compared to placebo. Patients aged 18-75 years were eligible within 7 days of SARS-CoV-2 documentation and within 48 h of the onset of invasive or non-invasive respiratory support because of COVID-19-related ARDS. Patients were included from September 2020 to April 2022, with a pause in recruitment between January and August 2021. Primary outcome was the improvement in clinical status defined by a seven-point ordinal scale in the overall population with a planned sensitivity analysis in the subgroup of patients with a sTREM-1 level above the median value at baseline (high sTREM-1 group). Secondary endpoints included safety and all-cause 28-day and day 60 mortality. The study was registered in EudraCT (2020-001504-42) and ClinicalTrials.gov (NCT04429334). Findings The study was stopped after 220 patients had been recruited. Of them, 219 were included in the mITT analysis. Nangibotide therapy was associated with an improved clinical status at day 28. Fifty-two (52.0%) of patients had improved in the placebo group compared to 77 (64.7%) of the nangibotide treated population, an odds ratio (95% CI) for improvement of 1.79 (1.02-3.14), p = 0.043. In the high sTREM-1 population, 18 (32.7%) of placebo patients had improved by day 28 compared to 26 (48.1%) of treated patients, an odds ratio (95% CI) of 2.17 (0.96-4.90), p = 0.063 was observed. In the overall population, 28 (28.0%) of placebo treated patients were not alive at the day 28 visit compared to 19 (16.0%) of nangibotide treated patients, an absolute improvement (95% CI) in all-cause mortality at day 28, adjusted for baseline clinical status of 12.1% (1.18-23.05). In the high sTREM-1 population (n = 109), 23 (41.8%) of patients in the placebo group and 12 (22.2%) of patients in the nangibotide group were not alive at day 28, an adjusted absolute reduction in mortality of 19.9% (2.78-36.98). The rate of treatment emergent adverse events was similar in both placebo and nangibotide treated patients. Interpretation Whilst the study was stopped early due to low recruitment rate, the ESSENTIAL study demonstrated that TREM-1 modulation with nangibotide is safe in COVID-19, and results in a consistent pattern of improved clinical status and mortality compared to placebo. The relationship between sTREM-1 and both risk of death and treatment response merits further evaluation of nangibotide using precision medicine approaches in life threatening viral pneumonitis. Funding The study was sponsored by Inotrem SA.
Collapse
Affiliation(s)
- Bruno François
- Medical-Surgical ICU Department and Inserm CIC1435 & UMR1092, CHU Dupuytren, Limoges, France
| | - Simon Lambden
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Inotrem SA, Paris, France
| | | | | | | | - Pierre Asfar
- Department of Intensive Care, CHU d’Angers, France
| | | | - Jean-Paul Mira
- Department of Intensive Care, Groupe Hospitalier Cochin, Paris, France
| | - Jean-Pierre Quenot
- Department of Intensive Care, Burgundy University Hospital, Dijon, France
| | | | - Emmanuelle Mercier
- Department of Intensive Care, CHRU Tours Hôpital Bretonneau, Tours, France
| | - Jean-Claude Lacherade
- Department of Intensive Care, Centre Hospitalier Départemental de Vendée, La Roche-Sur-Yon, France
| | | | - Tom Fivez
- Department of Intensive Care, Ziekenhuis Oost-Limburg, Genk, Belgium
| | - Julie Helms
- Department of Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine and Inserm UMR 1260, RNM, FMTS, Strasbourg, France
| | - Julio Badie
- Department of Intensive Care, Hôpital Nord Franche-Comté, Trevenans, France
| | - Mitchell Levy
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
| | | | | | | | | | - Sébastien Gibot
- Intensive Care Unit, Centre Hospitalier Regional Universitaire (CHRU), 54000 Nancy, France
| | - ESSENTIAL investigators
- Medical-Surgical ICU Department and Inserm CIC1435 & UMR1092, CHU Dupuytren, Limoges, France
- Victor Phillip Dahdaleh Heart and Lung Research Institute, University of Cambridge, Cambridge, UK
- Inotrem SA, Paris, France
- Université de Rouen, 76821 Mont Saint-Aignan, France
- Department of Intensive Care, CHU d’Angers, France
- Department of Intensive Care, CHU Le Mans, France
- Department of Intensive Care, Groupe Hospitalier Cochin, Paris, France
- Department of Intensive Care, Burgundy University Hospital, Dijon, France
- Department of Intensive Care, Hôtel Dieu, Nantes, France
- Department of Intensive Care, CHRU Tours Hôpital Bretonneau, Tours, France
- Department of Intensive Care, Centre Hospitalier Départemental de Vendée, La Roche-Sur-Yon, France
- Department of Intensive Care, Centre Hospitalier de Béthune, France
- Department of Intensive Care, Ziekenhuis Oost-Limburg, Genk, Belgium
- Department of Intensive Care, Hôpitaux Universitaires de Strasbourg, Nouvel Hôpital Civil, Université de Strasbourg (UNISTRA), Faculté de Médecine and Inserm UMR 1260, RNM, FMTS, Strasbourg, France
- Department of Intensive Care, Hôpital Nord Franche-Comté, Trevenans, France
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Warren Alpert School of Medicine at Brown University, Providence, RI, USA
- Department of Critical Care Medicine, CHR Mons-Hainaut, Mons, Belgium
- Intensive Care Unit, Centre Hospitalier Regional Universitaire (CHRU), 54000 Nancy, France
| |
Collapse
|
4
|
Wu NL, Huang DY, Hsieh SL, Dai YS, Lin WW. Decoy receptor 3 is involved in epidermal keratinocyte commitment to terminal differentiation via EGFR and PKC activation. Exp Mol Med 2022; 54:542-551. [PMID: 35478210 PMCID: PMC9076855 DOI: 10.1038/s12276-022-00762-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 11/04/2021] [Accepted: 01/09/2022] [Indexed: 11/30/2022] Open
Abstract
Decoy receptor 3 (DcR3) is a soluble receptor for Fas ligand, LIGHT and TL1A, but it also exerts effector functions. Previously, we found that DcR3 is upregulated in the serum and lesional skin of patients with psoriasis and is upregulated by EGFR activation in proliferating primary human epidermal keratinocytes. However, the functional role of intracellular DcR3 in keratinocyte differentiation is still incompletely defined. Herein, primary cultured human epidermal keratinocytes were differentiated by phorbol 12-myristate 13-acetate (PMA) treatment, calcium treatment and cell confluence, which are three standard in vitro differentiation models. We found that the constitutive expression of the DcR3 gene and protein was progressively suppressed during terminal differentiation of keratinocytes. These changes were correlated with downregulation of EGFR activation during keratinocyte differentiation. EGFR inhibition by gefitinib further decreased confluence-induced suppression of DcR3 mRNA expression, and, vice versa, knocking down DcR3 expression attenuated EGFR and EGFR ligand expression as well as EGFR activation. Under conditions without a change in cell growth, DcR3 silencing reduced the expression of involucrin and transglutaminase 1 but enhanced the induction of the terminal differentiation markers keratin 10 and loricrin. Of note, DcR3 interacted with PKCα and PKCδ and enhanced PKC activity. In keratinocytes with PKCα and PKCδ silencing, differentiation markers were differentially affected. In conclusion, DcR3 expression in keratinocytes is regulated by EGFR and forms a positive feedback loop to orchestrate constitutive EGFR and PKC activity. During differentiation, DcR3 is downregulated and involved in modulating the pattern of terminal differentiation. A protein linked to cancer and various inflammatory diseases may also be an important driver for the skin condition in psoriasis. The outer surface of the skin is formed by cells called keratinocytes, which transition from a highly proliferative state to a fully mature state where they no longer divide. This developmental process is disrupted in psoriasis. Researchers led by Wan-Wan Lin at National Taiwan University, Taipei, have now identified a prominent role for a protein called decoy receptor 3 (DcR3), which is a biomarker for a variety of disorders and is also abnormally expressed in keratinocytes in psoriatic lesions. Lin and colleagues demonstrated that DcR3 interacts with multiple cellular signaling pathways that coordinate cell differentiation. These findings reveal how aberrant DcR3 activity might lead to the abnormal keratinocyte developmental behavior observed in psoriasis.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Dermatology, MacKay Memorial Hospital, Taipei, Taiwan, ROC.,Department of Medicine, MacKay Medical College, New Taipei City, Taiwan, ROC.,MacKay Junior College of Medicine, Nursing, and Management, Taipei, Taiwan, ROC.,Institute of Biomedical Sciences, Mackay Medical College, New Taipei, Taiwan, ROC
| | - Duen-Yi Huang
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | - Yang-Shia Dai
- Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan, ROC
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC. .,Graduate Institute of Medical Sciences, Taipei Medical University, Taipei, Taiwan, ROC. .,Department of Pharmacology, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
5
|
Sathe NA, Bhatraju PK, Mikacenic C, Morrell ED, Mabrey FL, Liles WC, Wurfel MM. Relationships Between Age, Soluble Triggering Receptor Expressed on Myeloid Cells-1 (sTREM-1), and Mortality Among Critically Ill Adults: A Cohort Study. Shock 2022; 57:205-211. [PMID: 34812186 PMCID: PMC8969235 DOI: 10.1097/shk.0000000000001888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Innate immune dysregulation may contribute to age-related differences in outcomes among critically ill adults. Soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) is an important innate immune marker with prognostic value in sepsis, but age-related differences have not been studied. METHODS This was a prospective cohort from a large tertiary care hospital enrolling adults from both medical and trauma-surgical intensive care units (ICUs). Plasma sTREM-1 was measured in participants within 24 h of ICU admission. We analyzed associations between age (≤50 and >50 years) and sTREM-1 using linear regression. We then examined associations between sTREM-1 and both 28-day mortality and persistent organ dysfunction (defined as need for dialysis, vasopressors, or invasive mechanical ventilation) 7 days following admission using relative risk regression. RESULTS Of 231 critically ill adults, older patients (n = 122) had higher prevalence of chronic disease and sepsis on enrollment than younger patients, but acute illness severity was similar. Age over 50 was associated with 27% higher sTREM-1 concentrations (95% CI 6%-53%), adjusted for sex and Charlson comorbidity index (CCI). Two-fold higher sTREM-1 was associated with 2.42-fold higher risk for mortality (95% CI 1.57, 3.73) and 1.86-fold higher risk for persistent organ dysfunction (95% CI 1.45, 2.39), adjusted for sex, CCI, and age. CONCLUSIONS sTREM-1 was elevated among critically ill older adults, and strongly associated with both death and persistent organ dysfunction. Immune responses associated with sTREM-1 may contribute to age-related differences in ICU outcomes, warranting further study as a potential therapeutic target in older adults.
Collapse
Affiliation(s)
- Neha A. Sathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - Pavan K. Bhatraju
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Sepsis Center of Research Excellence-University of Washington (SCORE-UW)
| | - Carmen Mikacenic
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Benaroya Research Institute, Seattle, WA
| | - Eric D. Morrell
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Sepsis Center of Research Excellence-University of Washington (SCORE-UW)
| | - F. Linzee Mabrey
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
| | - W. Conrad Liles
- Sepsis Center of Research Excellence-University of Washington (SCORE-UW)
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA
| | - Mark M. Wurfel
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, University of Washington, Seattle, WA
- Sepsis Center of Research Excellence-University of Washington (SCORE-UW)
| |
Collapse
|
6
|
Schranz D, Molnar T, Erdo‐Bonyar S, Simon D, Berki T, Nagy C, Czeiter E, Buki A, Lenzser G, Csecsei P. Increased level of LIGHT/TNFSF14 is associated with survival in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 2021; 143:530-537. [PMID: 33492677 DOI: 10.1111/ane.13394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/18/2020] [Accepted: 12/28/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVES Multiple cytokines have been implicated in aneurysmal subarachnoid hemorrhage (aSAH), but tumor necrosis factor superfamily 14 (LIGHT/TNFSF14) and oncostatin-M (OSM) have not been previously explored. AIMS OF THE STUDY The primary objective of this study was to examine the relationship between TNFSF14 and OSM levels and survival. Our secondary goal was to investigate a potential association between these markers and the incidence of delayed cerebral ischemia (DCI). MATERIALS & METHODS We consecutively recruited 60 patients with a clinical diagnosis of aSAH. LIGHT/TNFSF14 and OSM serum concentrations were determined by ELISA. The primary endpoint was survival at Day 30, while development of DCI was assessed as secondary outcome. RESULTS Patients had significantly higher levels of both markers than the control group (median of LIGHT: 18.1 pg/ml vs. 7 pg/ml; p = 0.01; median of OSM: 10.3 pg/ml vs. 2.8 pg/ml, p < 0.001). Significantly lower serum level of LIGHT/TNFSF14 was found in nonsurviving patients (n = 9) compared with survivors (n = 51; p = 0.011). Based on ROC analysis, serum LIGHT/TNFSF14 with a cutoff value of >7.95 pg/ml predicted 30-day survival with a sensitivity of 71% and specificity of 78% (Area: 0.763; 95% CI: 0.604-0.921, p = 0.013). In addition, it was also a predictor of DCI with a sensitivity of 72.7% and a specificity of 62.5% (AUC: 0.702; 95% CI: 0.555-0.849, p = 0.018). Based on binary logistic regression analysis, LIGHT/TNFSF14 was found to be independently associated with 30-day mortality, but not with DCI. CONCLUSION In this cohort, a higher serum level of LIGHT/TNFSF14 was associated with increased survival of patients with aSAH.
Collapse
Affiliation(s)
- Daniel Schranz
- Department of Neurology University of PecsMedical School Pecs Hungary
| | - Tihamer Molnar
- Department of Anaesthesiology and Intensive Care University of PecsMedical School Pecs Hungary
| | - Szabina Erdo‐Bonyar
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Diana Simon
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Tímea Berki
- Department of Immunology and Biotechnology University of PecsMedical School Pecs Hungary
| | - Csaba Nagy
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Endre Czeiter
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
- Neurotrauma Research Group Szentágothai Research Centre University of Pécs Pécs Hungary
- MTA‐PTE Clinical Neuroscience MR Research Group Pécs Hungary
| | - Andras Buki
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Gabor Lenzser
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| | - Peter Csecsei
- Department of Neurosurgery University of PecsMedical School Pecs Hungary
| |
Collapse
|
7
|
van der Zee P, Rietdijk W, Somhorst P, Endeman H, Gommers D. A systematic review of biomarkers multivariately associated with acute respiratory distress syndrome development and mortality. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2020; 24:243. [PMID: 32448370 PMCID: PMC7245629 DOI: 10.1186/s13054-020-02913-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 04/22/2020] [Indexed: 12/13/2022]
Abstract
Background Heterogeneity of acute respiratory distress syndrome (ARDS) could be reduced by identification of biomarker-based phenotypes. The set of ARDS biomarkers to prospectively define these phenotypes remains to be established. Objective To provide an overview of the biomarkers that were multivariately associated with ARDS development or mortality. Data sources We performed a systematic search in Embase, MEDLINE, Web of Science, Cochrane CENTRAL, and Google Scholar from inception until 6 March 2020. Study selection Studies assessing biomarkers for ARDS development in critically ill patients at risk for ARDS and mortality due to ARDS adjusted in multivariate analyses were included. Data extraction and synthesis We included 35 studies for ARDS development (10,667 patients at risk for ARDS) and 53 for ARDS mortality (15,344 patients with ARDS). These studies were too heterogeneous to be used in a meta-analysis, as time until outcome and the variables used in the multivariate analyses varied widely between studies. After qualitative inspection, high plasma levels of angiopoeitin-2 and receptor for advanced glycation end products (RAGE) were associated with an increased risk of ARDS development. None of the biomarkers (plasma angiopoeitin-2, C-reactive protein, interleukin-8, RAGE, surfactant protein D, and Von Willebrand factor) was clearly associated with mortality. Conclusions Biomarker data reporting and variables used in multivariate analyses differed greatly between studies. Angiopoeitin-2 and RAGE in plasma were positively associated with increased risk of ARDS development. None of the biomarkers independently predicted mortality. Therefore, we suggested to structurally investigate a combination of biomarkers and clinical parameters in order to find more homogeneous ARDS phenotypes. PROSPERO identifier PROSPERO, CRD42017078957
Collapse
Affiliation(s)
- Philip van der Zee
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| | - Wim Rietdijk
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Peter Somhorst
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Henrik Endeman
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Diederik Gommers
- Department of Adult Intensive Care, Erasmus Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
8
|
Ghobadi H, Hosseini N, Aslani MR. Correlations Between Serum Decoy Receptor 3 and Airflow Limitation and Quality of Life in Male Patients with Stable Stage and Acute Exacerbation of COPD. Lung 2020; 198:515-523. [PMID: 32211977 DOI: 10.1007/s00408-020-00348-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/16/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE Serum decoy receptor 3 (DcR3) level increases in chronic inflammatory diseases. The present study aimed to examine serum DcR3 and IL-6 levels in male patients with stable chronic obstructive pulmonary disease (COPD) and acute exacerbation of the disease and correlations between these markers and airflow limitation. METHODS We measured serum DcR3 and IL-6 levels in 60 COPD patients [30 stable COPD (SCOPD), and 30 acute exacerbation of COPD (AECOPD)], and 30 control subjects and assessed their correlations with airflow limitation according to the COPD stage indicated by the global initiative for chronic obstructive pulmonary disease (GOLD) criteria, peripheral O2 saturation (SpO2), and COPD assessment test (CAT) score. We also tested associations between serum DcR3 levels and COPD patients' clinical parameters. RESULTS Both serum DcR3 and IL-6 levels increased with increasing severity of airflow limitation in SCOPD and AECOPD groups (P < 0.01 to 0.001). These markers also increased in patients with AECOPD compared with subjects in SCOPD group in GOLD stages III-IV (P < 0.05 to 0.001). In addition, there was a significant positive correlation between serum DcR3 level and IL-6, CAT score and smoking history (per year). CONCLUSION The study revealed that serum DcR3 level elevated with increasing severity of airflow limitation in male COPD patients, particularly in acute exacerbation phase. This increase was associated with a reduced quality of life and increased severity of hypoxia. These results suggest that DcR3 may be associated with the underlying pathophysiology of COPD in male patients.
Collapse
Affiliation(s)
- Hassan Ghobadi
- Internal Medicine Department (Pulmonary Division), Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Nima Hosseini
- Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Mohammad Reza Aslani
- Lung Inflammatory Diseases Research Center, Faculty of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran. .,Neurogenetic Inflammation Research Centre, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
9
|
Hou Y, Liang D, Liu Y, Chen H, Lou X. Up-regulation of DcR3 in microbial toxins-stimulated HUVECs involves NF-κB signalling. BMC BIOCHEMISTRY 2018; 19:13. [PMID: 30587127 PMCID: PMC6307204 DOI: 10.1186/s12858-018-0102-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/05/2018] [Indexed: 12/11/2022]
Abstract
Background Sepsis is a severe condition characterised by the body’s systemic inflammatory response to infection. The specific sepsis-related biomarkers should be used in clinical diagnosis, therapeutic response monitoring, rational use of antibiotics, and prognosis (risk stratification), etc. Results In this study, we investigated the expression level of Decoy Receptor 3 (DcR3) and the mechanism of high expression in sepsis patients. Septic cell model experiments were performed by treating human umbilical vein endothelial cells (HUVECs) and Jurkat cells with lipopolysaccharide (LPS), lipoteichoic acid (LTA) and zymosan, respectively. SP600125, SB203580 and ammonium pyrrolidinedithiocarbamate (PDTC) were used to inhibit JNK1/2, p38MAPK and NF-κB signalling pathways in septic cell model, respectively. These results showed that DcR3 levels were higher in sepsis group than control. DcR3 mRNA and protein levels in HUVECs were increased following treatment with LPS, LTA and zymosan, and also increased in Jurkat cells treated by LPS, but not by LTA or zymosan. When HUVECs were treated with the NF-κB inhibitor PDTC, DcR3 expression was decreased compared with controls. However, SP600125 and SB203580 had no effect on DcR3 mRNA or protein levels. Conclusions The results indicated that DcR3 secretion proceeded through the NF-κB signalling pathway in HUVECs.
Collapse
Affiliation(s)
- Yanqiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO.748 Middle Zhongshan Road, Songjiang District, Shanghai, 201600, China.
| | - Dongyu Liang
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO.748 Middle Zhongshan Road, Songjiang District, Shanghai, 201600, China
| | - Yang Liu
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO.748 Middle Zhongshan Road, Songjiang District, Shanghai, 201600, China
| | - Hongwei Chen
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO.748 Middle Zhongshan Road, Songjiang District, Shanghai, 201600, China
| | - Xiaoli Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, NO.748 Middle Zhongshan Road, Songjiang District, Shanghai, 201600, China
| |
Collapse
|
10
|
Li XY, Hou HT, Chen HX, Wang ZQ, He GW. Increased circulating levels of tumor necrosis factor-like cytokine 1A and decoy receptor 3 correlate with SYNTAX score in patients undergoing coronary surgery. J Int Med Res 2018; 46:5167-5175. [PMID: 30213220 PMCID: PMC6300958 DOI: 10.1177/0300060518793787] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Accepted: 07/16/2018] [Indexed: 12/25/2022] Open
Abstract
OBJECTIVE Chronic inflammation of the arteries is a critical mechanism responsible for coronary atherosclerosis. We aimed to determine if tumor necrosis factor (TNF)-like cytokine 1A (TL1A) and decoy receptor 3 (DcR3) were involved in promoting atherosclerosis. METHODS We compared plasma levels of TL1A and DcR3 in patients with coronary artery disease (CAD) undergoing coronary artery bypass grafting (n=40) and patients without CAD group (n=37, normal coronary artery angiogram) by enzyme-linked immunosorbent assay. We also analyzed the correlation between CAD and SYNTAX scores. RESULTS Plasma levels of TL1A and DcR3 were significantly higher in the CAD compared with the no-CAD group. Multivariate analysis showed that TL1A and DcR3 were significantly correlated with the presence of CAD, and receiver operating characteristic curve analysis indicated that both TL1A and DcR3 showed high sensitivity and specificity for diagnosing CAD. Furthermore, TL1A was positively and significantly correlated with SYNTAX score in CAD patients. CONCLUSIONS CAD patients requiring coronary artery bypass grafting have high circulating levels of both TL1A and DcR3, which may thus be useful biomarkers for diagnosing severe CAD. Furthermore, plasma levels of TL1A correlate with SYNTAX score, supporting its potential use as an indicator of the severity of CAD.
Collapse
Affiliation(s)
- Xin-Ya Li
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Hai-Tao Hou
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Huan-Xin Chen
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Zheng-Qing Wang
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
| | - Guo-Wei He
- Department of Cardiovascular Surgery & Center for Basic Medical Research, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- The Affiliated Hospital of Hangzhou Normal University & Zhejiang University, Tianjin, China
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
11
|
Abstract
Early diagnosis of sepsis is critical for successful treatment. The clinical value of DcR3 in early diagnosis of sepsis was determined in a dynamic follow-up study. Alterations in plasma levels of DcR3, PCT, CRP, and IL-6 were measured by ELISA and compared among patients with sepsis (n = 134), SIRS (n = 60) and normal adults (n = 50). Correlations and dynamic patterns among the biomarkers, APACHE II scores, clinical outcomes, and pathogens were also examined. Plasma DcR3 was significantly increased in sepsis compared to SIRS and normal adults (median 3.87 vs. 1.28 and 0.17 ng/ml). The elevated DcR3 could be detected in 97.60% sepsis patients 1–2 days prior to the result of blood culture reported. For diagnosis of sepsis, the sensitivity was 97.69% and specificity 98.04%; and for differential diagnosis of sepsis from SIRS, the sensitivity was 90.77% and specificity 98.40%. DcR3 level was positively correlated with severity of sepsis (rs = 0.82). In 41 patients who died of sepsis, DcR3 elevated as early as 1–2 days before blood culture and peaked on day 3 after blood culture performed. In 90% of sepsis patients, the dynamic alteration pattern of DcR3 was identical to that of PCT, while pattern of 10% patients differed in which clinical data was consistent with DcR3. In 13% sepsis patients, while PCT remained normal, DcR3 levels were at a high level. DcR3 levels had no difference among various pathogens infected. DcR3, a new biomarker, will aid in early diagnosis of sepsis and monitoring its outcome, especially when sepsis patients were PCT negative.
Collapse
|
12
|
Wei Y, Tejera P, Wang Z, Zhang R, Chen F, Su L, Lin X, Bajwa EK, Thompson BT, Christiani DC. A Missense Genetic Variant in LRRC16A/CARMIL1 Improves Acute Respiratory Distress Syndrome Survival by Attenuating Platelet Count Decline. Am J Respir Crit Care Med 2017; 195:1353-1361. [PMID: 27768389 DOI: 10.1164/rccm.201605-0946oc] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
RATIONALE Platelets are believed to contribute to acute respiratory distress syndrome (ARDS) pathogenesis through inflammatory coagulation pathways. We recently reported that leucine-rich repeat-containing 16A (LRRC16A) modulates baseline platelet counts to mediate ARDS risk. OBJECTIVES To examine the role of LRRC16A in ARDS survival and its mediating effect through platelets. METHODS A total of 414 cases with ARDS from intensive care units (ICUs) were recruited who had exome-wide genotyping data, detailed platelet counts, and follow-up data during ICU hospitalization. Association of LRRC16A single-nucleotide polymorphisms (SNPs) and ARDS prognosis, and the mediating effect of SNPs through platelet counts were analyzed. LRRC16A mRNA expression levels for 39 cases with ARDS were also evaluated. MEASUREMENTS AND MAIN RESULTS Missense SNP rs9358856G>A within LRRC16A was associated with favorable survival within 28 days (hazard ratio [HR], 0.57; 95% confidence interval [CI], 0.38-0.87; P = 0.0084) and 60 days (P = 0.0021) after ICU admission. Patients with ARDS who carried the variant genotype versus the wild-type genotype showed an attenuated platelet count decline (∆PLT) within 28 days (difference of ∆PLT, -27.8; P = 0.025) after ICU admission. Patients with ∆PLT were associated with favorable ARDS outcomes. Mediation analysis indicated that the SNP prognostic effect was mediated through ∆PLT within 28 days (28-day survival: HRIndirect, 0.937; 95% CI, 0.918-0.957; P = 0.0009, 11.53% effects mediated; 60-day survival: HRIndirect, 0.919; 95% CI, 0.901-0.936; P = 0.0001, 14.35% effects mediated). Functional exploration suggested that this SNP reduced LRRC16A expression at ICU admission, which was associated with a lesser ∆PLT during ICU hospitalization. CONCLUSIONS LRRC16A appears to mediate ∆PLT after ICU admission to affect the prognosis in patients with ARDS.
Collapse
Affiliation(s)
- Yongyue Wei
- 1 Department of Environmental Health and.,2 Department of Biostatistics, School of Public Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and
| | | | | | - Ruyang Zhang
- 1 Department of Environmental Health and.,2 Department of Biostatistics, School of Public Health and
| | - Feng Chen
- 2 Department of Biostatistics, School of Public Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and
| | - Li Su
- 1 Department of Environmental Health and
| | - Xihong Lin
- 4 Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts
| | - Ednan K Bajwa
- 5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - B Taylor Thompson
- 5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - David C Christiani
- 1 Department of Environmental Health and.,3 China International Cooperation Center for Environment and Human Health, Nanjing Medical University, Nanjing, China; and.,5 Division of Pulmonary and Critical Care, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
13
|
Abstract
Decoy receptor 3 (DcR3), also known as tumor necrosis factor receptor (TNFR) superfamily member 6b (TNFRSF6B), is a soluble decoy receptor which can neutralize the biological functions of three members of tumor necrosis factor superfamily (TNFSF): Fas ligand (FasL), LIGHT, and TL1A. In addition to ‘decoy’ function, recombinant DcR3.Fc is able to modulate the activation and differentiation of dendritic cells (DCs) and macrophages via ‘non-decoy’ action. DcR3-treated DCs skew T cell differentiation into Th2 phenotype, while DcR3-treated macrophages behave M2 phenotype. DcR3 is upregulated in various cancer cells and several inflammatory tissues, and is regarded as a potential biomarker to predict inflammatory disease progression and cancer metastasis. However, whether DcR3 is a pathogenic factor or a suppressor to attenuate inflammatory reactions, has not been discussed comprehensively yet. Because mouse genome does not have DcR3, it is not feasible to investigate its physiological functions by gene-knockout approach. However, DcR3-mediated effects in vitro are determined via overexpressing DcR3 or addition of recombinant DcR3.Fc fusion protein. Moreover, CD68-driven DcR3 transgenic mice are used to investigate DcR3-mediated systemic effects in vivo. Upregulation of DcR3 during inflammatory reactions exerts negative-feedback to suppress inflammation, while tumor cells hijack DcR3 to prevent apoptosis and promote tumor growth and invasion. Thus, ‘switch-on’ of DcR3 expression may be feasible for the treatment of inflammatory diseases and enhance tissue repairing, while ‘switch-off’ of DcR3 expression can enhance tumor apoptosis and suppress tumor growth in vivo.
Collapse
Affiliation(s)
- Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, 128 Academia Road, Section 2, Nankang, Taipei, 115, Taiwan. .,Institute of Clinical Medicine & Immunology Research Center, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan. .,Institute of Immunology, College of Medicine, National Taiwan University Taipei, Taipei, Taiwan. .,Institute for Cancer Biology and Drug Discovery, Taipei Medical University, Taipei, Taiwan.
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, No. 1 Section 1, Jen Ai Road, Taipei, 10001, Taiwan.
| |
Collapse
|
14
|
Abstract
OBJECTIVES Several studies have investigated the prognostic value of soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) in patients with infection. However, the result was controversial. Thus, the purpose of the present meta-analysis was to determine the prognostic value of the sTREM-1 level in predicting mortality at the initial stage of infection. METHODS The literature was searched in the PubMed, EMBASE, Web of Knowledge and Cochrane databases. A 2×2 contingency table was constructed on the basis of mortality and sTREM-1 levels in patients with infection. 2 authors independently judged study eligibility and extracted data. The prognostic value of sTREM-1 in predicting mortality was determined using a bivariate meta-analysis model. Q-test and I(2) index were used to test heterogeneity. RESULTS 9 studies were selected from 803 studies. An elevated sTREM-1 level was associated with a higher risk of death in infection, with pooled risk ratio (RR) was 2.54 (95% CI 1.77 to 3.65) using a random-effects model (I(2)=53.8%). With the bivariate random-effects regression model, the pooled sensitivity and specificity of sTREM-1 to predict mortality in infection were 0.75 (95% CI 0.61 to 0.86) and 0.66 (95% CI 0.54 to 0.75), respectively. The diagnostic OR was 6 (95% CI 3 to 10). The overall area under the summary receiver operator characteristic (SROC) curve was 0.76 (95% CI 0.72 to 0.79). When we calculated the sepsis subgroup, the pooled RR was 2.98 (95% CI 2.19 to 4.40). The pooled sensitivity and specificity were 0.74 (95% CI 0.58 to 0.85) and 0.72 (95% CI 0.62 to 0.80), respectively. The overall area under the SROC curve was 0.78 (95% CI 0.74 to 0.81). CONCLUSIONS Elevated sTREM-1 concentrations had a moderate prognostic significance in assessing the mortality of infection in adult patients. However, sTREM-1 alone is insufficient to predict mortality as a biomarker.
Collapse
Affiliation(s)
- Longxiang Su
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dan Liu
- Department of Respiratory Medicine, Tianjin Medical University General Hospital, Tianjin, China
| | - Wenzhao Chai
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
15
|
Chang TY, Hsu CY, Huang PH, Chiang CH, Leu HB, Huang CC, Chen JW, Lin SJ. Usefulness of Circulating Decoy Receptor 3 in Predicting Coronary Artery Disease Severity and Future Major Adverse Cardiovascular Events in Patients With Multivessel Coronary Artery Disease. Am J Cardiol 2015; 116:1028-33. [PMID: 26254707 DOI: 10.1016/j.amjcard.2015.06.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 06/18/2015] [Accepted: 06/18/2015] [Indexed: 11/30/2022]
Abstract
Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an antiapoptotic soluble receptor considered to play an important role in immune modulation and has pro-inflammatory functions. This study was designed to test whether circulating DcR3 levels are associated with coronary artery disease (CAD) severity and predict future major adverse cardiovascular events (MACEs) in patients with CAD. Circulating DcR3 levels and the Syntax score (SXscore) were determined in patients with multivessel CAD. The primary end point was the MACE within 12 months. In total, 152 consecutive patients with angiographically confirmed multivessel CAD who had received percutaneous coronary intervention were enrolled and were divided into 3 groups according to CAD lesion severity. Group 1 was defined as low SXscore (≤13), group 2 as intermediate SXscore (>13 and ≤22), and group 3 as high SXscore (>22). DcR3 levels were significantly higher in the high SXscore group than the other 2 groups (13,602 ± 7,256 vs 8,025 ± 7,789 vs 4,637 ± 4,403 pg/ml, p <0.001). By multivariate analysis, circulating DcR3 levels were identified as an independent predictor for high SXscore (adjusted odds ratio 1.15, 95% confidence interval 1.09 to 1.21; p <0.001). The Kaplan-Meier analysis showed that increased circulating DcR3 levels are associated with enhanced 1-year MACE in patients with multivessel CAD (log-rank p <0.001). In conclusion, increased circulating DcR3 levels are associated with CAD severity and predict future MACE in patients with multivessel CAD.
Collapse
Affiliation(s)
- Ting-Yung Chang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Chien-Yi Hsu
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medicine, Taipei Veterans General Hospital Yuli Branch, Hualien, Taiwan
| | - Po-Hsun Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.
| | - Chia-Hung Chiang
- Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsin-Bang Leu
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Healthcare and Management Center, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Chin-Chou Huang
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Department of Medical Education, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Jaw-Wen Chen
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Pharmacology, National Yang-Ming University, Taipei, Taiwan; Division of Clinical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shing-Jong Lin
- Division of Cardiology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan; Cardiovascular Research Center, National Yang-Ming University, Taipei, Taiwan; Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan; Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan; Taipei Medical University, Taipei, Taiwan
| |
Collapse
|
16
|
Dong Y, Shi D, Li M, Dai P, Wang X, Xie M. Elevated serum levels of decoy receptor 3 are associated with disease severity in patients with hemorrhagic fever with renal syndrome. Intern Emerg Med 2015; 10:567-73. [PMID: 25647584 PMCID: PMC7101622 DOI: 10.1007/s11739-015-1195-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 01/12/2015] [Indexed: 12/17/2022]
Abstract
Hemorrhagic fever with renal syndrome (HFRS) is an acute viral infectious disease characterized by fever, hemorrhage and renal failure. HFRS has become a serious public health problem in China. Unfortunately, the pathogenesis of HFRS has not been completely clarified. The aim of this study is to investigate the changes of decoy receptor 3 (DcR3) and to further explore its potential roles in HFRS. The levels of serum DcR3 were measured by sandwich ELISA. We found serum DcR3 levels increased significantly, which reached peak value during the oliguric phase and in the critical group. Moreover, serum DcR3 levels were closely related to the levels of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and parameters reflecting kidney injury including BUN, creatinine (Cr) and proteinuria. This study indicates that high levels of serum DcR3 have associations with the disease stages, severity and degree of kidney damage. Meanwhile, our results suggest that DcR3 may play a dual role in HFRS pathogenesis. First, DcR3 is involved in the inflammatory cascade response resulting in capillary permeability and kidney injury in the early stage. Secondly, HTNV infection induced DcR3 expression at the convalescent phase may act as a feed-back mechanism in anti-inflammatory response. Thus, a study of DcR3 is essential for a better understanding of HFRS pathogenesis.
Collapse
Affiliation(s)
- Yanying Dong
- grid.43169.390000000105991243Department of Immunology and Pathogenic Biology, School of Medicine, Xi’an Jiaotong University, 76 West Yanta Street, Xi’an, 710061 China
| | - Dongsha Shi
- grid.43169.390000000105991243Department of Immunology and Pathogenic Biology, School of Medicine, Xi’an Jiaotong University, 76 West Yanta Street, Xi’an, 710061 China
| | - Man Li
- grid.43169.390000000105991243Department of Immunology and Pathogenic Biology, School of Medicine, Xi’an Jiaotong University, 76 West Yanta Street, Xi’an, 710061 China
| | - Pengfei Dai
- Department of Ophthalmology, Xi’an No. 4 Hospital, No. 21 Jiefang Road, Xi’an, 710004 Shaanxi China
| | - Xiangling Wang
- grid.452672.0Clinical Laboratory, The Second Affiliated Hospital of Xi’an Jiaotong University, No.157 Xiwu Road, Xi’an, 710004 Shaanxi China
| | - Ming Xie
- grid.43169.390000000105991243Department of Immunology and Pathogenic Biology, School of Medicine, Xi’an Jiaotong University, 76 West Yanta Street, Xi’an, 710061 China
| |
Collapse
|
17
|
Chen W, Ware LB. Prognostic factors in the acute respiratory distress syndrome. Clin Transl Med 2015; 4:65. [PMID: 26162279 PMCID: PMC4534483 DOI: 10.1186/s40169-015-0065-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 06/19/2015] [Indexed: 01/11/2023] Open
Abstract
Despite improvements in critical care, acute respiratory distress syndrome (ARDS) remains a devastating clinical problem with high rates of morbidity and mortality. A better understanding of the prognostic factors associated with ARDS is crucial for facilitating risk stratification and developing new therapeutic interventions that aim to improve clinical outcomes. In this article, we present an up-to-date summary of factors that predict mortality in ARDS in four categories: (1) clinical characteristics; (2) physiological parameters and oxygenation; (3) genetic polymorphisms and biomarkers; and (4) scoring systems. In addition, we discuss how a better understanding of clinical and basic pathogenic mechanisms can help to inform prognostication, decision-making, risk stratification, treatment selection, and improve study design for clinical trials.
Collapse
Affiliation(s)
- Wei Chen
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, Vanderbilt University School of Medicine, Nashville, USA,
| | | |
Collapse
|
18
|
Liang D, Hou Y, Lou X, Chen H. Decoy Receptor 3 Improves Survival in Experimental Sepsis by Suppressing the Inflammatory Response and Lymphocyte Apoptosis. PLoS One 2015; 10:e0131680. [PMID: 26121476 PMCID: PMC4488266 DOI: 10.1371/journal.pone.0131680] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/04/2015] [Indexed: 11/25/2022] Open
Abstract
Purpose Unbalanced inflammatory response and lymphocyte apoptosis is associated with high mortality in septic patients. Decoy receptor 3 (DcR3), a member of the tumor necrosis factor receptor superfamily, is an anti-inflammatory and anti-apoptotic factor. Recently, DcR3 expression was found to be increased in septic patients. This study evaluated the therapeutic effect and mechanisms of DcR3 on cecal ligation and puncture (CLP)-induced sepsis in mice. Methods C57BL/6 mice were subjected to CLP-induced polymicrobial sepsis. DcR3 Fc was intravenously injected 30 min before and 6 h after CLP. Bacterial clearance, cytokine production, histology, lymphocyte apoptosis and survival were evaluated. Furthermore, we investigated the systemic effects of DcR3 in in vitro lymphocyte apoptosis regulation. Results Our results demonstrated that DcR3 protein treatments significantly improved survival in septic mice (p <0.05). Treatment with DcR3 protein significantly reduced the inflammatory response and decreased lymphocyte apoptosis in the thymus and spleen. Histopathological findings of the lung and liver showed milder impairment after DcR3 administration. In vitro experiments showed that DcR3 Fc inhibited Fas-FasL mediated lymphocyte apoptosis. Conclusions Treatment with the DcR3 protein protects mice from sepsis by suppressing the inflammatory response and lymphocyte apoptosis. DcR3 protein may be useful in treatment of sepsis.
Collapse
Affiliation(s)
- DongYu Liang
- Department of Central Laboratory, Songjiang Hospital Affiliated First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - YanQiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
- * E-mail:
| | - XiaoLi Lou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - HongWei Chen
- Department of Central Laboratory, Songjiang Hospital Affiliated First People’s Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Parlato M, Cavaillon JM. Host response biomarkers in the diagnosis of sepsis: a general overview. Methods Mol Biol 2015; 1237:149-211. [PMID: 25319788 DOI: 10.1007/978-1-4939-1776-1_15] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Critically ill patients who display a systemic inflammatory response syndrome (SIRS) are prone to develop nosocomial infections. The challenge remains to distinguish as early as possible among SIRS patients those who are developing sepsis. Following a sterile insult, damage-associated molecular patterns (DAMPs) released by damaged tissues and necrotic cells initiate an inflammatory response close to that observed during sepsis. During sepsis, pathogen-associated molecular patterns (PAMPs) trigger the release of host mediators involved in innate immunity and inflammation through identical receptors as DAMPs. In both clinical settings, a compensatory anti-inflammatory response syndrome (CARS) is concomitantly initiated. The exacerbated production of pro- or anti-inflammatory mediators allows their detection in biological fluids and particularly within the bloodstream. Some of these mediators can be used as biomarkers to decipher among the patients those who developed sepsis, and eventually they can be used as prognosis markers. In addition to plasma biomarkers, the analysis of some surface markers on circulating leukocytes or the study of mRNA and miRNA can be helpful. While there is no magic marker, a combination of few biomarkers might offer a high accuracy for diagnosis.
Collapse
Affiliation(s)
- Marianna Parlato
- Unit of Cytokines and Inflammation, Institut Pasteur, 28 rue du Dr Roux, 75724, Paris Cedex 15, France
| | | |
Collapse
|
20
|
Abstract
The unique characteristics of pulmonary circulation and alveolar-epithelial capillary-endothelial barrier allow for maintenance of the air-filled, fluid-free status of the alveoli essential for facilitating gas exchange, maintaining alveolar stability, and defending the lung against inhaled pathogens. The hallmark of pathophysiology in acute respiratory distress syndrome is the loss of the alveolar capillary permeability barrier and the presence of protein-rich edema fluid in the alveoli. This alteration in permeability and accumulation of fluid in the alveoli accompanies damage to the lung epithelium and vascular endothelium along with dysregulated inflammation and inappropriate activity of leukocytes and platelets. In addition, there is uncontrolled activation of coagulation along with suppression of fibrinolysis and loss of surfactant. These pathophysiological changes result in the clinical manifestations of acute respiratory distress syndrome, which include hypoxemia, radiographic opacities, decreased functional residual capacity, increased physiologic deadspace, and decreased lung compliance. Resolution of acute respiratory distress syndrome involves the migration of cells to the site of injury and re-establishment of the epithelium and endothelium with or without the development of fibrosis. Most of the data related to acute respiratory distress syndrome, however, originate from studies in adults or in mature animals with very few studies performed in children or juvenile animals. The lack of studies in children is particularly problematic because the lungs and immune system are still developing during childhood and consequently the pathophysiology of pediatric acute respiratory distress syndrome may differ in significant ways from that seen in acute respiratory distress syndrome in adults. This article describes what is known of the pathophysiologic processes of pediatric acute respiratory distress syndrome as we know it today while also presenting the much greater body of evidence on these processes as elucidated by adult and animal studies. It is also our expressed intent to generate enthusiasm for larger and more in-depth investigations of the mechanisms of disease and repair specific to children in the years to come.
Collapse
|
21
|
Liu YJ, Shao LH, Zhang J, Fu SJ, Wang G, Chen FZ, Zheng F, Ma RP, Liu HH, Dong XM, Ma LX. The combination of decoy receptor 3 and soluble triggering receptor expressed on myeloid cells-1 for the diagnosis of nosocomial bacterial meningitis. Ann Clin Microbiol Antimicrob 2015; 14:17. [PMID: 25857356 PMCID: PMC4373519 DOI: 10.1186/s12941-015-0078-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 03/12/2015] [Indexed: 11/10/2022] Open
Abstract
Background Early diagnosis and appropriate antibiotic treatment can significantly reduce mortality of nosocomial bacterial meningitis. However, it is a challenge for clinicians to make an accurate and rapid diagnosis of bacterial meningitis. This study aimed at determining whether combined biomarkers can provide a useful tool for the diagnosis of bacterial meningitis. Methods A retrospective study was carried out. Cerebrospinal fluid (CSF) levels of decoy receptor 3 (DcR3) and soluble triggering receptor expressed on myeloid cells-1 (sTREM-1) were detected by enzyme-linked immunosorbent assay (ELISA). Results The patients with bacterial meningitis had significantly elevated levels of the above mentioned biomarkers. The two biomarkers were all risk factors with bacterial meningitis. The biomarkers were constructed into a “bioscore”. The discriminative performance of the bioscore was better than that of each biomarker, with an area under the receiver operating characteristic (ROC) curve (AUC) of 0.842 (95% confidence intervals (CI) 0.770–0.914; p< 0.001). Conclusions Combined measurement of CSF DcR3 and sTREM-1 concentrations improved the prediction of nosocomial bacterial meningitis. The combined strategy is of interest and the validation of that improvement needs further studies.
Collapse
|
22
|
Predictive value of decoy receptor 3 in postoperative nosocomial bacterial meningitis. Int J Mol Sci 2014; 15:19962-70. [PMID: 25372942 PMCID: PMC4264149 DOI: 10.3390/ijms151119962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 09/28/2014] [Accepted: 10/22/2014] [Indexed: 11/28/2022] Open
Abstract
Nosocomial bacterial meningitis requires timely treatment, but what is difficult is the prompt and accurate diagnosis of this disease. The aim of this study was to assess the potential role of decoy receptor 3 (DcR3) levels in the differentiation of bacterial meningitis from non-bacterial meningitis. A total of 123 patients were recruited in this study, among them 80 patients being with bacterial meningitis and 43 patients with non-bacterial meningitis. Bacterial meningitis was confirmed by bacterial culture of cerebrospinal fluid (CSF) culture and enzyme-linked immunosorbent assay (ELISA) was used to detect the level of DcR3 in CSF. CSF levels of DcR3 were statistically significant between patients with bacterial meningitis and those with non-bacterial meningitis (p < 0.001). A total of 48.75% of patients with bacterial meningitis received antibiotic >24 h before CSF sampling, which was much higher than that of non-bacterial meningitis. CSF leucocyte count yielded the highest diagnostic value, with an area under the receiver operating characteristic curve (ROC) of 0.928, followed by DcR3. At a critical value of 0.201 ng/mL for DcR3, the sensitivity and specificity were 78.75% and 81.40% respectively. DcR3 in CSF may be a valuable predictor for differentiating patients with bacterial meningitis from those with non-bacterial meningitis. Further studies are needed for the validation of this study.
Collapse
|
23
|
Aiba Y, Harada K, Komori A, Ito M, Shimoda S, Nakamura H, Nagaoka S, Abiru S, Migita K, Ishibashi H, Nakanuma Y, Nishida N, Kawashima M, Tokunaga K, Yatsuhashi H, Nakamura M. Systemic and local expression levels of TNF-like ligand 1A and its decoy receptor 3 are increased in primary biliary cirrhosis. Liver Int 2014; 34:679-88. [PMID: 24016146 DOI: 10.1111/liv.12296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 07/24/2013] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS Through a genome-wide association study of a Japanese population, we recently identified TNFSF15, a gene encoding TNF-like ligand 1A (TL1A), as a susceptibility gene for primary biliary cirrhosis (PBC). We investigated the clinical significance of TL1A and one of its receptors, decoy receptor 3 (DcR3), in PBC. METHODS We analysed the systemic and local expression of TL1A and DcR3 in 110 PBC patients and 46 healthy controls using enzyme-linked immunosorbent assay, quantitative polymerase chain reaction and immunohistochemical staining. RESULTS Serum TL1A levels were significantly increased in PBC patients at both early and late stages as compared with healthy controls, and its levels were significantly decreased in early-stage PBC patients after ursodeoxycholic acid (UDCA) treatment. TL1A was immunohistochemically localized to biliary epithelial cells, Kupffer cells, blood vessels and infiltrating mononuclear cells in the PBC liver. In addition, TL1A messenger RNA expression was increased in the PBC liver as compared with the non-diseased liver. Serum DcR3 levels were also significantly increased in PBC patients, and were significantly decreased after UDCA treatment in early-stage PBC patients. CONCLUSIONS These results indicate that TL1A and DcR3 may play an important role in the pathogenesis of PBC.
Collapse
Affiliation(s)
- Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization Nagasaki Medical Center, Omura, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Plasma biomarkers for acute respiratory distress syndrome: a systematic review and meta-analysis*. Crit Care Med 2014; 42:691-700. [PMID: 24158164 DOI: 10.1097/01.ccm.0000435669.60811.24] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Numerous studies have focused on biomarkers for acute lung injury and acute respiratory distress syndrome. Although several biomarkers have been identified, their relative performance is unclear. We aim to provide a quantitative overview of plasma-derived biomarkers associated with acute respiratory distress syndrome diagnosis or mortality. DATA SOURCES MEDLINE (inception to January 2012) and personal databases. STUDY SELECTION English-language studies on plasma biomarkers associated with acute respiratory distress syndrome diagnosis or mortality. DATA EXTRACTION Demographic variables, plasma levels of biomarker, statistical data, acute respiratory distress syndrome occurrence, and mortality rates were retrieved. The methodological quality was assessed with the Quality Assessment of Diagnostic Accuracy Studies score. Clinical outcomes included 1) diagnosis of acute respiratory distress syndrome in the at-risk population and 2) mortality in acute respiratory distress syndrome patients. For each biomarker, pooled odds ratios for clinical outcome were calculated by meta-analysis, and biomarkers were ranked according to pooled odds ratio. DATA SYNTHESIS Fifty-four studies appeared eligible for meta-analysis, together including 3,753 patients. We identified 20 biomarkers for diagnosis of acute respiratory distress syndrome in the at-risk population and 19 biomarkers for mortality of acute respiratory distress syndrome patients. The biomarkers most strongly associated with acute respiratory distress syndrome diagnosis in the at-risk population, when increased, were Krebs von den Lungen-6 (odds ratio [95% CI], 6.1 [3.0-12.1]), lactate dehydrogenase (5.7 [1.7-19.1]), soluble receptor for advanced glycation end products (3.5 [1.7-7.2]), and von Willebrand Factor (3.1 [2.0-5.2]). The biomarkers most strongly associated with acute respiratory distress syndrome mortality, when increased, were interleukin-4 (18.0 [6.0-54.2]), interleukin-2 (11.8 [4.3-32.2]), angiopoietin-2 (6.4 [1.3-30.4]), and Krebs von den Lungen-6 (5.1 [3.0-12.2]). Decreased levels of Protein C were associated with increased odds for acute respiratory distress syndrome diagnosis and mortality. CONCLUSIONS This meta-analysis provides a unique ranking of plasma biomarkers according to their strength of association with acute respiratory distress syndrome diagnosis or acute respiratory distress syndrome mortality. The relative performance of biomarkers among studies shown in this ranking may help to improve acute respiratory distress syndrome diagnosis and outcome prediction.
Collapse
|
25
|
Abstract
Acute lung injury is a complex clinical syndrome involving acute inflammation, microvascular damage, and increased pulmonary vascular and epithelial permeability, frequently resulting in acute respiratory failure culminating in often-fatal acute respiratory distress syndrome. Interleukin 8 (IL-8), a potent neutrophil attractant and activator, plays a significant role in acute lung injury via the formation of anti-IL-8 autoantibody:IL-8 complexes and those complexes' interaction with FcγRIIa receptors, leading to the development of acute lung injury by, among other possible mechanisms, effecting neutrophil apoptosis. These complexes may also interact with lung endothelial cells in patients with acute respiratory distress syndrome. Continuing research of the role of neutrophils, IL-8, anti-IL-8 autoantibody:IL-8 complexes, and FcγRIIa receptors may ultimately provide molecular therapies that could lower acute respiratory distress syndrome mortality, as well as reduce or even prevent the development of acute lung injury altogether.
Collapse
Affiliation(s)
- Timothy Craig Allen
- From the Departments of Pathology (Dr Allen) and Biochemistry (Dr Kurdowska), University of Texas Health Science Center at Tyler. Dr Allen is now located at the University of Texas Medical Branch at Galveston, Texas
| | | |
Collapse
|
26
|
Wu NL, Huang DY, Hsieh SL, Hsiao CH, Lee TA, Lin WW. EGFR-driven up-regulation of decoy receptor 3 in keratinocytes contributes to the pathogenesis of psoriasis. Biochim Biophys Acta Mol Basis Dis 2013; 1832:1538-48. [PMID: 23707413 DOI: 10.1016/j.bbadis.2013.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2013] [Revised: 05/13/2013] [Accepted: 05/16/2013] [Indexed: 02/07/2023]
Abstract
Decoy receptor 3 (DcR3) is a soluble receptor of Fas ligand (FasL), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A) and plays pleiotropic roles in many inflammatory and autoimmune disorders and malignant diseases. In cutaneous biology, DcR3 is expressed in primary human epidermal keratinocytes and is upregulated in skin lesions in psoriasis, which is characterized by chronic inflammation and angiogenesis. However, the regulatory mechanisms of DcR3 over-expression in skin lesions of psoriasis are unknown. Here, we demonstrate that DcR3 can be detected in both dermal blood vessels and epidermal layers of psoriatic skin lesions. Analysis of serum samples showed that DcR3 was elevated, but FasL was downregulated in psoriatic patients compared with normal individuals. Additional cell studies revealed a central role of epidermal growth factor receptor (EGFR) in controlling the basal expression of DcR3 in keratinocytes. Activation of EGFR by epidermal growth factor (EGF) and transforming growth factor (TGF)-α strikingly upregulated DcR3 production. TNF-αenhanced DcR3 expression in both keratinocytes and endothelial cells compared with various inflammatory cytokines involved in psoriasis. Additionally, TNF-α-enhanced DcR3 expression in keratinocytes was inhibited when EGFR was knocked down or EGFR inhibitor was used. The NF-κB pathway was critically involved in the molecular mechanisms underlying the action of EGFR and inflammatory cytokines. Collectively, the novel regulatory mechanisms of DcR3 expression in psoriasis, particularly in keratinocytes and endothelial cells, provides new insight into the pathogenesis of psoriasis and may also contribute to the understanding of other diseases that involve DcR3 overexpression.
Collapse
Affiliation(s)
- Nan-Lin Wu
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan
| | | | | | | | | | | |
Collapse
|
27
|
Siakavellas SI, Bamias G. Decoy receptor 3: Its role as biomarker for chronic inflammatory diseases. World J Immunol 2013; 3:44. [DOI: 10.5411/wji.v3.i3.44] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 07/29/2013] [Accepted: 09/13/2013] [Indexed: 02/05/2023] Open
|
28
|
Kim S, Mi L, Zhang L. Specific elevation of DcR3 in sera of sepsis patients and its potential role as a clinically important biomarker of sepsis. Diagn Microbiol Infect Dis 2012; 73:312-7. [PMID: 22647538 PMCID: PMC3396789 DOI: 10.1016/j.diagmicrobio.2012.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 04/23/2012] [Accepted: 04/26/2012] [Indexed: 01/11/2023]
Abstract
Because of its potentially important role in the pathogenesis of sepsis, the expression of soluble decoy receptor 3 (DcR3) was investigated in sera of sepsis patients. The serum levels of DcR3 and its tumor necrosis factor-like ligand TL1A and homologous decoy receptor OPG were quantified by ELISA. The values of DcR3 to diagnose sepsis were analyzed by receiver-operating characteristic (ROC) curves. The results showed that DcR3 was significantly elevated in sepsis compared to systemic inflammatory response syndrome (SIRS), a condition similar to sepsis but resulting from noninfectious insults. DcR3 showed superior area under the ROC curve (AUC, 0.958) compared to poor AUCs of TL1A and OPG. At a cut-off of 3.24 ng/mL, DcR3 predicted sepsis from SIRS with 96% sensitivity and 82.6% specificity. DcR3 also predicted sepsis from cancer and inflammatory bowel disease with equally excellent values. Therefore, DcR3 serum level has the potential to serve as a reliable biomarker of sepsis.
Collapse
|
29
|
Hung SC, Hsu TW, Lin YP, Tarng DC. Decoy receptor 3, a novel inflammatory marker, and mortality in hemodialysis patients. Clin J Am Soc Nephrol 2012; 7:1257-65. [PMID: 22626963 DOI: 10.2215/cjn.08410811] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND AND OBJECTIVES Inflammation is closely associated with cardiovascular disease, the leading cause of mortality in patients with CKD. Serum decoy receptor 3 (DcR3) is a member of the TNF receptor superfamily. CKD patients have higher levels of DcR3 than the general population, but whether DcR3 predicts mortality in CKD patients on hemodialysis has not been explored. DESIGN, SETTING, PARTICIPANTS, & MEASUREMENTS DcR3 levels were measured in 316 prevalent hemodialysis patients who were followed up from November 1, 2004, to June 30, 2009, for cardiovascular and all-cause mortality. RESULTS The baseline DcR3 concentration showed a strong positive correlation with inflammatory markers including high-sensitivity C-reactive protein, IL-6, intercellular adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1). During a follow-up period of 54 months, 90 patients died (34 cardiovascular deaths). Kaplan-Meier survival analysis showed higher cardiovascular and all-cause mortality in patients with higher DcR3 levels. The hazard ratios (95% confidence intervals) of the highest versus lowest tertiles of DcR3 were 2.8 (1.1-7.3; P for trend=0.04) for cardiovascular mortality and 2.1 (1.1-3.7; P for trend=0.02) for all-cause mortality, respectively. Based on the minimal increase in the area under the receiver operating characteristic curve from 0.79 to 0.80, the addition of DcR3 to established risk factors including VCAM-1, albumin, and IL-6 does not improve the prediction of mortality. CONCLUSIONS Higher DcR3 levels strongly correlate with inflammation and independently predict cardiovascular and all-cause mortality in CKD patients on hemodialysis.
Collapse
Affiliation(s)
- Szu-Chun Hung
- Division of Nephrology, Buddhist Tzu Chi General Hospital, Taipei Branch, Taiwan
| | | | | | | |
Collapse
|
30
|
Tai SK, Chang HC, Lan KL, Lee CT, Yang CY, Chen NJ, Chou TY, Tarng DC, Hsieh SL. Decoy receptor 3 enhances tumor progression via induction of tumor-associated macrophages. THE JOURNAL OF IMMUNOLOGY 2012; 188:2464-71. [PMID: 22287720 DOI: 10.4049/jimmunol.1101101] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Tumor-associated macrophages (TAMs) are the major component of tumor-infiltrating leukocytes. TAMs are heterogeneous, with distinct phenotypes influenced by the microenvironment surrounding tumor tissues. Decoy receptor 3 (DcR3), a member of the TNFR superfamily, is overexpressed in tumor cells and is capable of modulating host immunity as either a neutralizing decoy receptor or an effector molecule. Upregulation of DcR3 has been observed to correlate with a poor prognosis in various cancers. However, the mechanisms underlying the DcR3-mediated tumor-promoting effect remain unclear. We previously demonstrated that DcR3 modulates macrophage activation toward an M2-like phenotype in vitro and that DcR3 downregulates MHC class II expression in TAMs via epigenetic control. To investigate whether DcR3 promotes tumor growth, CT26-DcR3 stable transfectants were established. Compared with the vector control clone, DcR3-transfectants grew faster and resulted in TAM infiltration. We further generated CD68 promoter-driven DcR3 transgenic (Tg) mice to investigate tumor growth in vivo. Compared with wild-type mice, macrophages isolated from DcR3-Tg mice displayed higher levels of IL-10, IL-1ra, Ym1, and arginase activity, whereas the expression of IL-12, TNF-α, IL-6, NO, and MHC class II was downregulated. Significantly enhanced tumor growth and spreading were observed in DcR3-Tg mice, and the enhanced tumor growth was abolished by arginase inhibitor N-ω-hydroxy-l-norarginine and histone deacetylase inhibitor sodium valproate. These results indicated that induction of TAMs is an important mechanism for DcR3-mediated tumor progression. Our findings also suggest that targeting DcR3 might help in the development of novel treatment strategies for tumors with high DcR3 expression.
Collapse
Affiliation(s)
- Shyh-Kuan Tai
- Department of Otolaryngology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hou YQ, Xu P, Zhang M, Han D, Peng L, Liang DY, Yang S, Zhang Z, Hong J, Lou XL, Zhang L, Kim S. Serum decoy receptor 3, a potential new biomarker for sepsis. Clin Chim Acta 2012; 413:744-8. [PMID: 22280900 DOI: 10.1016/j.cca.2012.01.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/01/2023]
Abstract
BACKGROUND Sepsis, a common deadly systemic infection caused by a variety of pathogens, has some clinical symptoms similar to the systemic inflammatory response syndrome (SIRS), a whole-body non-infectious inflammatory reaction to severe insults, such as burn, trauma, hypotensive shock and so on. Treatment of sepsis depends mainly on anti-microbial, while remedy for SIRS might require steroids that could possibly enhance the spread of microbes. Unfortunately, it is very difficult to distinguish these two completely different serious conditions without blood culture, which takes days to grow and identify causative pathogens. We examined a biomarker, serum decoy receptor 3 (DcR3), was evaluated for its utility in the differential diagnosis between sepsis and SIRS. METHODS Serum DcR3 level in 118 healthy controls, 24 sepsis patients and 43 SIRS patients, was quantitatively measured by enzyme-linked immunosorbent assay (ELISA). RESULTS The serum DcR3 was significantly increased in sepsis patients compared with SIRS patients and healthy controls (6.11±2.58 ng/ml vs 2.62±1.46 ng/ml, and 0.91±0.56 ng/ml, respectively, p<0.001). The areas under the receiver operating characteristic curve of DcR3 for the normal vs. SIRS, normal vs. sepsis and SIRS vs. sepsis were 0.910 (0.870-0.950), 0.992 (0.984-1.000) and 0.896 (0.820-0.973), respectively. In addition, the DcR3 exhibited a positive correlation coefficient with APACHE II score, a most commonly used index for the severity of sepsis (r=0.556, p=0.005). CONCLUSION The serum DcR3 has a potential to serve as a new biomarker for sepsis with its high specificity and sensitivity.
Collapse
Affiliation(s)
- Yan-Qiang Hou
- Department of Central Laboratory, Songjiang Hospital Affiliated First People's Hospital, Shanghai Jiao Tong University, Shanghai, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Abstract
This article reviews the state of the art regarding biomarkers for prediction, diagnosis, and prognosis in acute lung injury. Biomarkers and the goals of biomarker research are defined. Progress along 4 general routes is examined. First, the results of wide-ranging existing protein biomarkers are reported. Second, newer biomarkers awaiting or with strong potential for validation are described. Third, progress in the fields of genomics and proteomics is reported. Finally, given the complexity and number of potential biomarkers, the results of combining clinical predictors with protein and other biomarkers to produce better prognostic and diagnostic indices are examined.
Collapse
Affiliation(s)
- Nicolas Barnett
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232-2650, USA
| | | |
Collapse
|
33
|
Abstract
The acute respiratory distress syndrome (ARDS) is a complex disorder of heterogeneous etiologies characterized by a consistent, recognizable pattern of lung injury. Extensive epidemiologic studies and clinical intervention trials have been conducted to address the high mortality of this disorder and have provided significant insight into the complexity of studying new therapies for this condition. The existing clinical investigations in ARDS will be highlighted in this review. The limitations to current definitions, patient selection, and outcome assessment will be considered. While significant attention has been focused on the parenchymal injury that characterizes this disorder and the clinical support of gas exchange function, relatively limited focus has been directed to hemodynamic and pulmonary vascular dysfunction equally prominent in the disease. The limited available clinical information in this area will also be reviewed. The current standards for cardiopulmonary management of the condition will be outlined. Current gaps in our understanding of the clinical condition will be highlighted with the expectation that continued progress will contribute to a decline in disease mortality.
Collapse
Affiliation(s)
- Michael Donahoe
- Department of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
34
|
Lin WW, Hsieh SL. Decoy receptor 3: a pleiotropic immunomodulator and biomarker for inflammatory diseases, autoimmune diseases and cancer. Biochem Pharmacol 2011; 81:838-47. [PMID: 21295012 DOI: 10.1016/j.bcp.2011.01.011] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Revised: 01/19/2011] [Accepted: 01/24/2011] [Indexed: 12/28/2022]
Abstract
Recently, several decoy molecules belonging to tumor necrosis factor receptor superfamily (TNFRSF) have been identified, including decoy receptor 1 (DcR1), decoy receptor 2 (DcR2), and decoy receptor 3 (DcR3). One of the tumor necrosis factor superfamily (TNFSF) members, TNF-related apoptosis-inducing ligand (TRAIL), binds to DcR1 and DcR2, which are membranous receptors with a truncated cytoplasmic domain, thus unable to transduce TRAIL-mediated signaling. In contrast to DcR1 and DcR2, DcR3 is a soluble receptor capable of neutralizing the biological effects of three other TNFSF members: Fas ligand (FasL/TNFSF6/CD95L), LIGHT (TNFSF14) and TNF-like molecule 1A (TL1A/TNFSF15). Since FasL is a potent apoptosis- and inflammation-inducing factor, LIGHT is involved in apoptosis and inflammation, and TL1A is a T cell costimulator and is involved in gut inflammation, DcR3 can be defined as an immunomodulator on the basis of its neutralizing effects on FasL, LIGHT, and TL1A. Initial studies demonstrated that DcR3 expression is elevated in tumors cells; however, later work showed that DcR3 expression is also upregulated in inflammatory diseases, where serum DcR3 levels correlate with disease progression. In addition to its neutralizing effect, DcR3 also acts as an effector molecule to modulate cell function via 'non-decoy' activities. This review focuses on the immunomodulatory effects of DcR3 via 'decoy' and 'non-decoy' functions, and discusses the potential of DcR3 as a biomarker to predict cancer invasion and inflammation progression. We also discuss the possible utility of recombinant DcR3 as a therapeutic agent to control autoimmune diseases, as well as the potential to attenuate tumor progression by inhibiting DcR3 expression.
Collapse
Affiliation(s)
- Wan-Wan Lin
- Department of Pharmacology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
35
|
Plasma adiponectin and mortality in critically ill subjects with acute respiratory failure. Crit Care Med 2010; 38:2329-34. [PMID: 20890191 DOI: 10.1097/ccm.0b013e3181fa0561] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE : Adiponectin, an anti-inflammatory cytokine produced by adipose tissue, has been shown to modulate survival in animal models of critical illness. We examined the association between plasma adiponectin and clinical outcomes in critically ill patients with acute respiratory failure. DESIGN : Secondary analysis of a single-center, randomized controlled trial. SETTING : Medical intensive care unit of a university-based, tertiary medical center. PATIENTS : One hundred seventy-five subjects with acute respiratory failure enrolled in randomized, controlled pilot trial of Early versus Delayed Enternal Nutrition (EDEN pilot study). INTERVENTIONS : None. MEASUREMENTS AND MAIN RESULTS : Adiponectin measured within 48 hrs of respiratory failure (Apn1) was inversely correlated with body mass index (r=-0.25, p=.007) and was higher in females (median, 12.6 μg/mL; interquartile range, 7.6-17.1) than males (9.45 μg/mL; 6.2-14.2; p=.02). Adiponectin increased at day 6 (Apn1: 11.4 μg/mL [6.6-15.3] vs. Apn6: 14.1 μg/mL [10.3-18.6], p<.001). This increase was significant only in survivors (Δ adiponectin in survivors: 3.9±6 μg/mL, n=80, p<.001 vs. Δ in nonsurvivors: 1.69±4.6 μg/mL, n=14, p=.19). Higher Apn1 was significantly associated with 28-day mortality (odds ratio 1.59 per 5-μg/mL increase; 95% confidence interval 1.15-2.21; p=.006). No measured demographic, clinical, or cytokine covariates, including interleukin-6, interleukin-8, interleukin-10, interleukin-1β, interleukin-12, tumor necrosis factor-α, and interferon-γ, were confounders or effect modifiers of this association between adiponectin and mortality. CONCLUSIONS : Independent of measured covariates, increased plasma adiponectin levels measured within 48 hrs of respiratory failure are associated with mortality. This finding suggests that factors derived from adipose tissue play a role in modulating the response to critical illness.
Collapse
|
36
|
Matthay MA, Idell S. Update on acute lung injury and critical care medicine 2009. Am J Respir Crit Care Med 2010; 181:1027-32. [PMID: 20460547 PMCID: PMC3269230 DOI: 10.1164/rccm.201001-0074up] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/12/2010] [Indexed: 01/23/2023] Open
Affiliation(s)
- Michael A Matthay
- Department of Medicine, University of California-San Francisco, 505 Parnassus Avenue, San Francisco, CA 94143-0624, USA.
| | | |
Collapse
|
37
|
Mauri T, Masson S, Pradella A, Bellani G, Coppadoro A, Bombino M, Valentino S, Patroniti N, Mantovani A, Pesenti A, Latini R. Elevated Plasma and Alveolar Levels of Soluble Receptor for Advanced Glycation Endproducts Are Associated with Severity of Lung Dysfunction in ARDS Patients. TOHOKU J EXP MED 2010; 222:105-12. [DOI: 10.1620/tjem.222.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Tommaso Mauri
- Department of Experimental Medicine, University of Milan-Bicocca
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Serge Masson
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri
| | - Andrea Pradella
- Department of Experimental Medicine, University of Milan-Bicocca
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Giacomo Bellani
- Department of Experimental Medicine, University of Milan-Bicocca
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Andrea Coppadoro
- Department of Experimental Medicine, University of Milan-Bicocca
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Michela Bombino
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Sonia Valentino
- Research Laboratory in Immunology and Inflammation, Istituto Clinico Humanitas (ICH)
| | - Nicolo' Patroniti
- Department of Experimental Medicine, University of Milan-Bicocca
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Alberto Mantovani
- Research Laboratory in Immunology and Inflammation, Istituto Clinico Humanitas (ICH)
- Institute of General Pathology, University of Milan
| | - Antonio Pesenti
- Department of Experimental Medicine, University of Milan-Bicocca
- Department of Perioperative Medicine and Intensive Care, San Gerardo Hospital
| | - Roberto Latini
- Department of Cardiovascular Research, Istituto di Ricerche Farmacologiche Mario Negri
| |
Collapse
|