1
|
Lim HS, Yim IHW. The golden ratio in the pulmonary circulation in patients with heart failure and cardiogenic shock. Physiol Rep 2025; 13:e70287. [PMID: 40156120 PMCID: PMC11953056 DOI: 10.14814/phy2.70287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 04/01/2025] Open
Abstract
The consistent relationship between pulmonary artery systolic (PASP), diastolic (PADP), mean (mPAP), and pulse (PP) pressures has led to the proposal of the golden ratio (Φ) hypothesis. This study tested the Φ hypothesis in the pulmonary circulation of patients with advanced heart failure (HF) and cardiogenic shock (CS). PASP:mPAP, mPAP:PADP, and PP:mPAP ratios were evaluated in 20 patients with advanced HF (high-fidelity measurements) and 93 patients with CS (fluid-filled system). Twelve of 20 patients with advanced HF had PASP:mPAP and mPAP:PADP ratios from high-fidelity measurements that were consistent with the Φ hypothesis. The eight patients with low PASP:mPAP and mPAP:PADP ratios had lower PP: mPAP ratio (0.72 (0.71-0.73) vs. 0.94 (0.92-0.99), p = 0.002). In patients with CS, 76 patients (82%) had PASP:mPAP and mPAP:PADP ratios that were consistent with the Φ hypothesis. The 17 patients with CS and "low ratios" also had lower PP:mPAP (0.53 (0.48-0.57) vs. 0.74 (0.68-0.87), p < 0.001). Lower PP:mPAP ratio was related to higher filling pressures and lower cardiac power output. The pulmonary circulation deviated from the Φ hypothesis in patients with more severe HF and CS. Low PP:mPAP ratio identifies patients with HF and CS with more severe hemodynamic compromise.
Collapse
Affiliation(s)
- Hoong Sern Lim
- University Hospitals Birmingham NHS Foundation TrustBirminghamUK
- Institute of Cardiovascular SciencesUniversity of BirminghamBirminghamUK
| | - Ivan H. W. Yim
- University Hospitals Birmingham NHS Foundation TrustBirminghamUK
| |
Collapse
|
2
|
Matsushita H, Saku K, Nishikawa T, Unoki T, Yokota S, Sato K, Morita H, Yoshida Y, Fukumitsu M, Uemura K, Kawada T, Kikuchi A, Yamaura K. Impact of right ventricular and pulmonary vascular characteristics on Impella hemodynamic support in biventricular heart failure: A simulation study. J Cardiol 2025; 85:100-107. [PMID: 39097144 DOI: 10.1016/j.jjcc.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/23/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
BACKGROUND Impella (Abiomed, Danvers, MA, USA) is a percutaneous ventricular assist device commonly used in cardiogenic shock, providing robust hemodynamic support, improving the systemic circulation, and relieving pulmonary congestion. Maintaining adequate left ventricular (LV) filling is essential for optimal hemodynamic support by Impella. This study aimed to investigate the impact of pulmonary vascular resistance (PVR) and right ventricular (RV) function on Impella-supported hemodynamics in severe biventricular failure using cardiovascular simulation. METHODS We used Simulink® (Mathworks, Inc., Natick, MA, USA) for the simulation, incorporating pump performance of Impella CP determined using a mock circulatory loop. Both systemic and pulmonary circulation were modeled using a 5-element resistance-capacitance network. The four cardiac chambers were represented by time-varying elastance with unidirectional valves. In the scenario of severe LV dysfunction (LV end-systolic elastance set at a low level of 0.4 mmHg/mL), we compared the changes in right (RAP) and left atrial pressures (LAP), total systemic flow, and pressure-volume loop relationship at varying degrees of RV function, PVR, and Impella flow rate. RESULTS The simulation results showed that under low PVR conditions, an increase in Impella flow rate slightly reduced RAP and LAP and increased total systemic flow, regardless of RV function. Under moderate RV dysfunction and high PVR conditions, an increase in Impella flow rate elevated RAP and excessively reduced LAP to induce LV suction, which limited the increase in total systemic flow. CONCLUSIONS PVR is the primary determinant of stable and effective Impella hemodynamic support in patients with severe biventricular failure.
Collapse
Affiliation(s)
- Hiroki Matsushita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Keita Saku
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan.
| | - Takuya Nishikawa
- Department of Research Promotion and Management, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Takashi Unoki
- Department of Cardiology and Intensive Care Unit, Saiseikai Kumamoto Hospital, Kumamoto, Japan
| | - Shohei Yokota
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Kei Sato
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hidetaka Morita
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yuki Yoshida
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Masafumi Fukumitsu
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Kazunori Uemura
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan; NTTR-NCVC Bio Digital Twin Center, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Toru Kawada
- Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Atsushi Kikuchi
- Department of Cardiology, Osaka General Medical Center, Suita, Japan
| | - Ken Yamaura
- Department of Anesthesiology and Critical Care Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
3
|
Sandeep B, Cheng H, Yan Y, Huang X, Wu Q, Gao K, Xiao Z. Right ventricle-pulmonary artery coupling in pulmonary artery hypertension its measurement and pharmacotherapy. Curr Probl Cardiol 2024; 49:102425. [PMID: 38311275 DOI: 10.1016/j.cpcardiol.2024.102425] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 01/29/2024] [Indexed: 02/09/2024]
Abstract
The right ventricular (RV) function correlates with prognosis in severe pulmonary artery hypertension (PAH) but which metric of it is most clinically relevant is still uncertain. Clinical methods to estimate RV function from simplified pressure volume loops correlate with disease severity but the clinical relevance has not been assessed. Evaluation of right ventricle pulmonary artery coupling in pulmonary hypertensive patients may help to elucidate the mechanisms of right ventricular failure and may also help to identify patients at risk or guide the timing of therapeutic interventions in pulmonary hypertension. Complete evaluation of RV failure requires echocardiographic or magnetic resonance imaging, and right heart catheterization measurements. Treatment of RV failure in PAH relies on decreasing afterload with drugs targeting pulmonary circulation; fluid management to optimize ventricular diastolic interactions; and inotropic interventions to reverse cardiogenic shock. The ability to relate quantitative metrics of RV function in pulmonary artery hypertension to clinical outcomes can provide a powerful tool for management. Such metrics could also be utilized in the future as surrogate endpoints for outcomes and evaluation of response to therapies. This review of literature gives an insight on RV-PA coupling associated with PAH, its types of measurement and pharmacological treatment.
Collapse
Affiliation(s)
- Bhushan Sandeep
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Han Cheng
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Yifan Yan
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Xin Huang
- Department of Anesthesiology, West China Hospital of Medicine, Sichuan University, Sichuan 610017, China
| | - Qinghui Wu
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| | - Ke Gao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China.
| | - Zongwei Xiao
- Department of Cardio-Thoracic Surgery, Chengdu Second People's Hospital, Chengdu, Sichuan 610017, China
| |
Collapse
|
4
|
Tello K, Naeije R, de Man F, Guazzi M. Pathophysiology of the right ventricle in health and disease: an update. Cardiovasc Res 2023; 119:1891-1904. [PMID: 37463510 DOI: 10.1093/cvr/cvad108] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/14/2023] [Accepted: 05/02/2023] [Indexed: 07/20/2023] Open
Abstract
The contribution of the right ventricle (RV) to cardiac output is negligible in normal resting conditions when pressures in the pulmonary circulation are low. However, the RV becomes relevant in healthy subjects during exercise and definitely so in patients with increased pulmonary artery pressures both at rest and during exercise. The adaptation of RV function to loading rests basically on an increased contractility. This is assessed by RV end-systolic elastance (Ees) to match afterload assessed by arterial elastance (Ea). The system has reserve as the Ees/Ea ratio or its imaging surrogate ejection fraction has to decrease by more than half, before the RV undergoes an increase in dimensions with eventual increase in filling pressures and systemic congestion. RV-arterial uncoupling is accompanied by an increase in diastolic elastance. Measurements of RV systolic function but also of diastolic function predict outcome in any cause pulmonary hypertension and heart failure with or without preserved left ventricular ejection fraction. Pathobiological changes in the overloaded RV include a combination of myocardial fibre hypertrophy, fibrosis and capillary rarefaction, a titin phosphorylation-related displacement of myofibril tension-length relationships to higher pressures, a metabolic shift from mitochondrial free fatty acid oxidation to cytoplasmic glycolysis, toxic lipid accumulation, and activation of apoptotic and inflammatory signalling pathways. Treatment of RV failure rests on the relief of excessive loading.
Collapse
Affiliation(s)
- Khodr Tello
- Internal Medicine, Universities of Giessen and Marburg Lung Center (UGMLC), Klinikstrasse 36, 35392 Giessen, Germany
| | - Robert Naeije
- Pathophysiology, Faculty of Medicine, Free University of Brussels, Brussels, Belgium
| | - Frances de Man
- Pulmonary Medicine, Amsterdam Medical Center, Amsterdam, The Netherlands
| | - Marco Guazzi
- Cardiology Division, San Paolo University Hospital, University of Milano, Milano, Italy
| |
Collapse
|
5
|
Doyle M, Rayarao G, Biederman RWW. The sine transform is the sine qua non of the pulmonary and systemic pressure relationship. Front Cardiovasc Med 2023; 10:1120330. [PMID: 37304951 PMCID: PMC10250723 DOI: 10.3389/fcvm.2023.1120330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 05/09/2023] [Indexed: 06/13/2023] Open
Abstract
Assessment of therapeutic interventions in patients with pulmonary arterial hypertension (PAH) suffers from several commonly encountered limitations: (1) patient studies are often too small and short-term to provide definitive conclusions, (2) there is a lack of a universal set of metrics to adequately assess therapy and (3) while clinical treatments focus on management of symptoms, there remain many cases of early loss of life in a seemingly arbitrary distribution. Here we provide a unified approach to assess right and left pressure relationships in PAH and pulmonary hypertension (PH) patients by developing linear models informed by the observation of Suga and Sugawa that pressure generation in the ventricle (right or left) approximately follows a single lobe of a sinusoid. We sought to identify a set of cardiovascular variables that either linearly or via a sine transformation related to systolic pulmonary arterial pressure (PAPs) and systemic systolic blood pressure (SBP). Importantly, both right and left cardiovascular variables are included in each linear model. Using non-invasively obtained cardiovascular magnetic resonance (CMR) image metrics the approach was successfully applied to model PAPs in PAH patients with an r2 of 0.89 (p < 0.05) and SBP with an r2 of 0.74 (p < 0.05). Further, the approach clarified the relationships that exist between PAPs and SBP separately for PAH and PH patients, and these relationships were used to distinguish PAH vs. PH patients with good accuracy (68%, p < 0.05). An important feature of the linear models is that they demonstrate that right and left ventricular conditions interact to generate PAPs and SBP in PAH patients, even in the absence of left-sided disease. The models predicted a theoretical right ventricular pulsatile reserve that in PAH patients was shown to be predictive of the 6 min walk distance (r2 = 0.45, p < 0.05). The linear models indicate a physically plausible mode of interaction between right and left ventricles and provides a means of assessing right and left cardiac status as they relate to PAPs and SBP. The linear models have potential to allow assessment of the detailed physiologic effects of therapy in PAH and PH patients and may thus permit cross-over of knowledge between PH and PAH clinical trials.
Collapse
Affiliation(s)
- Mark Doyle
- Department Cardiology, Cardiovascular MRI, Cardiovascular Institute, Allegheny Health Network, Pittsburgh, PA, United States
| | | | | |
Collapse
|
6
|
Rieth AJ, Rivinius R, Lühring T, Grün D, Keller T, Grinninger C, Schüttler D, Bara CL, Helmschrott M, Frey N, Sandhaus T, Schulze C, Kriechbaum S, Vietheer J, Sindermann J, Welp H, Lichtenberg A, Choi YH, Richter M, Tello K, Richter MJ, Hamm CW, Boeken U. Hemodynamic markers of pulmonary vasculopathy for prediction of early right heart failure and mortality after heart transplantation. J Heart Lung Transplant 2022; 42:512-521. [PMID: 36333208 DOI: 10.1016/j.healun.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Elevated pulmonary vascular resistance (PVR) is broadly accepted as an imminent risk factor for mortality after heart transplantation (HTx). However, no current HTx recipient risk score includes PVR or other hemodynamic parameters. This study examined the utility of various hemodynamic parameters for risk stratification in a contemporary HTx population. METHODS Patients from seven German HTx centers undergoing HTx between 2011 and 2015 were included retrospectively. Established risk factors and complete hemodynamic datasets before HTx were analyzed. Outcome measures were overall all-cause mortality, 12-month mortality, and right heart failure (RHF) after HTx. RESULTS The final analysis included 333 patients (28% female) with a median age of 54 (IQR 46-60) years. The median mean pulmonary artery pressure was 30 (IQR 23-38) mm Hg, transpulmonary gradient 8 (IQR 5-10) mm Hg, and PVR 2.1 (IQR 1.5-2.9) Wood units. Overall mortality was 35.7%, 12-month mortality was 23.7%, and the incidence of early RHF was 22.8%, which was significantly associated with overall mortality (log-rank HR 4.11, 95% CI 2.47-6.84; log-rank p < .0001). Pulmonary arterial elastance (Ea) was associated with overall mortality (HR 1.74, 95% CI 1.25-2.30; p < .001) independent of other non-hemodynamic risk factors. Ea values below a calculated cutoff represented a significantly reduced mortality risk (HR 0.38, 95% CI 0.19-0.76; p < .0001). PVR with the established cutoff of 3.0 WU was not significant. Ea was also significantly associated with 12-month mortality and RHF. CONCLUSIONS Ea showed a strong impact on post-transplant mortality and RHF and should become part of the routine hemodynamic evaluation in HTx candidates.
Collapse
Affiliation(s)
- Andreas J Rieth
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany.
| | - Rasmus Rivinius
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany, German Center for Cardiovascular Research (DZHK), Heidelberg/Mannheim, Germany
| | - Tom Lühring
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Dimitri Grün
- Department of Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Till Keller
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany; Department of Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Carola Grinninger
- Department of Cardiac Surgery, Ludwig Maximilian University Munich, Munich, Germany
| | - Dominik Schüttler
- Department of Cardiac Surgery, Ludwig Maximilian University Munich, Munich, Germany
| | - Christoph L Bara
- Department of Cardiac, Thorax, Transplantation and Vascular Surgery, Hannover Medical School, Hannover, Germany
| | - Matthias Helmschrott
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany, German Center for Cardiovascular Research (DZHK), Heidelberg/Mannheim, Germany
| | - Norbert Frey
- Department of Cardiology, Heidelberg University Hospital, Heidelberg, Germany, German Center for Cardiovascular Research (DZHK), Heidelberg/Mannheim, Germany
| | - Tim Sandhaus
- Department of Cardiac Surgery, University Hospital Jena, Jena, Germany
| | | | - Steffen Kriechbaum
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Julia Vietheer
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany
| | - Jürgen Sindermann
- Department of Cardiology, Münster University Hospital, Münster, Germany; Department of Rehabilitation, Schüchtermann Clinic, Bad Rothenfelde, Germany
| | - Henryk Welp
- Department of Cardiac Surgery, Münster University Hospital, Münster, Germany
| | - Artur Lichtenberg
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany
| | - Yeong-Hoon Choi
- Department of Cardiac Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Manfred Richter
- Department of Cardiac Surgery, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Khodr Tello
- Department of Internal Medicine, Justus Liebig University Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany
| | - Manuel J Richter
- Department of Internal Medicine, Justus Liebig University Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Giessen, Germany; Department of Pneumology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany
| | - Christian W Hamm
- Department of Cardiology, Kerckhoff Heart and Thorax Center, Bad Nauheim, Germany, German Center for Cardiovascular Research (DZHK), Frankfurt am Main, Germany; Department of Cardiology, Justus Liebig University Giessen, Giessen, Germany
| | - Udo Boeken
- Department of Cardiac Surgery, Düsseldorf University Hospital, Düsseldorf, Germany
| |
Collapse
|
7
|
Rubino F, Scarsini R, Piccoli A, San Biagio L, Tropea I, Pighi M, Prati D, Tavella D, Pesarini G, Benfari G, Onorati F, Gottin L, Faggian G, Ribichini FL. Comparative Prognostic Value of Parameters of Pulsatile Right Ventricular Afterload in Patients With Advanced Heart Failure Awaiting Heart Transplantation. Am J Cardiol 2022; 183:55-61. [PMID: 36109208 DOI: 10.1016/j.amjcard.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/06/2022] [Indexed: 11/01/2022]
Abstract
Right ventricular pulsatile afterload (RVPA) demonstrated a strong impact on survival of patients with advanced heart failure (HF) with reduced ejection fraction. The best prognostic parameter of RVPA is unknown. The aim of this work was to examine the prognostic relevance of pulmonary artery compliance (PAC), pulmonary artery elastance (PAE), and pulmonary artery pulsatile index (PAPi) in a consecutive cohort of patients with advanced HF evaluated for heart transplantation (HT). A total of 149 patients with end-stage HF underwent right-sided cardiac catheterization and were clinically followed up until death or any censoring events, including HT, left ventricular assist device, and hospitalization for acute HF. The primary endpoint occurred in 29 patients (19.5%) during a median follow-up time of 12 (interquartile range 3 to 34) months. This cohort presented a worse hemodynamic profile than event-free survivors. PAC <1.9 mL/mm Hg (hazard ratio 3, 95% confidence interval 1.3 to 6.0, p= 0.007) and PAE >0.9 mmHg/mL (hazard ratio 2.5, 95% confidence interval 1.1 to 5.2, p= 0.02) were associated with the adverse outcome. On the contrary, PAPi was not associated with the outcome. PAC demonstrated a superior predictive value for the composite adverse outcome compared with pulmonary vascular resistance (area under the curve comparison p= 0.019) and PAPi (p= 0.03) but similar compared with PAE (p= 0.19) and mean pulmonary arterial pressure (p= 0.51). PAC, but not PAE, showed incremental prognostic value compared with cardiac index (p= 0.02). In conclusion, hemodynamic indexes of RVPA are associated with worse survival in patients with end-stage HF. PAC and PAE demonstrated superior prognostic value compared with PAPi and pulmonary vascular resistance. Moreover, PAC showed incremental prognostic value compared with cardiac index in patients awaiting HT.
Collapse
Affiliation(s)
- Francesca Rubino
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Roberto Scarsini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy.
| | - Anna Piccoli
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Livio San Biagio
- Division of Cardiac Surgery, Department of Cardio-Thoracic Surgery, University of Verona, Verona, Italy
| | - Ilaria Tropea
- Division of Cardiac Surgery, Department of Cardio-Thoracic Surgery, University of Verona, Verona, Italy
| | - Michele Pighi
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Daniele Prati
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Domenico Tavella
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Gabriele Pesarini
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Giovanni Benfari
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, Department of Cardio-Thoracic Surgery, University of Verona, Verona, Italy
| | - Leonardo Gottin
- Department of Anesthesiology and Intensive care, University of Verona, Verona, Italy
| | - Giuseppe Faggian
- Division of Cardiac Surgery, Department of Cardio-Thoracic Surgery, University of Verona, Verona, Italy
| | | |
Collapse
|
8
|
Tsarova K, Morgan AE, Melendres-Groves L, Ibrahim MM, Ma CL, Pan IZ, Hatton ND, Beck EM, Ferrel MN, Selzman CH, Ingram D, Alamri AK, Ratcliffe MB, Wilson BD, Ryan JJ. Imaging in Pulmonary Vascular Disease-Understanding Right Ventricle-Pulmonary Artery Coupling. Compr Physiol 2022; 12:3705-3730. [PMID: 35950653 DOI: 10.1002/cphy.c210017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The right ventricle (RV) and pulmonary arterial (PA) tree are inextricably linked, continually transferring energy back and forth in a process known as RV-PA coupling. Healthy organisms maintain this relationship in optimal balance by modulating RV contractility, pulmonary vascular resistance, and compliance to sustain RV-PA coupling through life's many physiologic challenges. Early in states of adaptation to cardiovascular disease-for example, in diastolic heart failure-RV-PA coupling is maintained via a multitude of cellular and mechanical transformations. However, with disease progression, these compensatory mechanisms fail and become maladaptive, leading to the often-fatal state of "uncoupling." Noninvasive imaging modalities, including echocardiography, magnetic resonance imaging, and computed tomography, allow us deeper insight into the state of coupling for an individual patient, providing for prognostication and potential intervention before uncoupling occurs. In this review, we discuss the physiologic foundations of RV-PA coupling, elaborate on the imaging techniques to qualify and quantify it, and correlate these fundamental principles with clinical scenarios in health and disease. © 2022 American Physiological Society. Compr Physiol 12: 1-26, 2022.
Collapse
Affiliation(s)
- Katsiaryna Tsarova
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ashley E Morgan
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Lana Melendres-Groves
- Division of Pulmonary and Critical Care Medicine, University of New Mexico, Albuquerque, New Mexico, USA
| | - Majd M Ibrahim
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Christy L Ma
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Irene Z Pan
- Department of Pharmacy, University of Utah Health, Salt Lake City, Utah, USA
| | - Nathan D Hatton
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Emily M Beck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Meganne N Ferrel
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Craig H Selzman
- Division of Cardiothoracic Surgery, Department of Surgery, University of Utah, Salt Lake City, Utah, USA
| | - Dominique Ingram
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Ayedh K Alamri
- Department of Medicine, University of Utah, Salt Lake City, Utah, USA
| | | | - Brent D Wilson
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - John J Ryan
- Division of Cardiovascular Medicine, Department of Medicine, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
9
|
Scott JV, Tembulkar TU, Lee ML, Faliks BT, Koch KL, Vonk-Nordegraaf A, Cook KE. Right ventricular myocardial energetic model for evaluating right heart function in pulmonary arterial hypertension. Physiol Rep 2022; 10:e15136. [PMID: 35582996 PMCID: PMC9115705 DOI: 10.14814/phy2.15136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/10/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
Background Pulmonary arterial hypertension (PAH) increases right ventricular (RV) workload and decreases myocardial oxygen reserve, eventually leading to poor cardiac output. This study created and assessed a novel model of RV work output based on RV hemodynamics and oxygen supply, allowing new insight into causal mechanisms of RV dysfunction. Methods The RV function model was built upon an earlier, left ventricular model and further adjusted for more accurate clinical use. The model assumes that RV total power output (1) is the sum of isovolumic and stroke power and (2) is linearly related to its right coronary artery oxygen supply. Thus, when right coronary artery flow is limited or isovolumic power is elevated, less energy is available for producing cardiac output. The original and adjusted models were validated via data from patients with idiopathic PAH (n = 14) and large animals (n = 6) that underwent acute pulmonary banding with or without hypoxia. Results Both models demonstrated strong, significant correlations between RV oxygen consumption rate and RV total power output for PAH patients (original model, R2 = 0.66; adjusted model, R2 = 0.78) and sheep (original, R2 = 0.85; adjusted, R2 = 0.86). Furthermore, the models demonstrate a significant inverse relationship between required oxygen consumption and RV efficiency (stroke power/total power) (p < 0.001). Lastly, higher NYHA class was indicative of lower RV efficiency and higher oxygen consumption (p = 0.013). Conclusion Right ventricular total power output can be accurately estimated directly from pulmonary hemodynamics and right coronary perfusion during PAH. This model highlights the increased vulnerability of PAH patients with compromised right coronary flow coupled with high afterload.
Collapse
Affiliation(s)
- Jacqueline V Scott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Tanuf U Tembulkar
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Meng-Lin Lee
- Division of Cardiovascular Surgery, Department of Surgery, Cathay General Hospital, Taipei, Taiwan
| | - Bradley T Faliks
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Kelly L Koch
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Anton Vonk-Nordegraaf
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Keith E Cook
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
10
|
Fukumitsu M, Groeneveldt JA, Braams NJ, Bayoumy AA, Marcus JT, Meijboom LJ, de Man FS, Bogaard HJ, Noordegraaf AV, Westerhof BE. When right ventricular pressure meets volume: the impact of arrival time of reflected waves on right ventricle load in pulmonary arterial hypertension. J Physiol 2022; 600:2327-2344. [PMID: 35421903 PMCID: PMC9321993 DOI: 10.1113/jp282422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/11/2022] [Indexed: 11/20/2022] Open
Abstract
Abstract Right ventricular (RV) wall tension in pulmonary arterial hypertension (PAH) is determined not only by pressure, but also by RV volume. A larger volume at a given pressure generates more wall tension. Return of reflected waves early after the onset of contraction, when RV volume is larger, may augment RV load. We aimed to elucidate: (1) the distribution of arrival times of peak reflected waves in treatment‐naïve PAH patients; (2) the relationship between time of arrival of reflected waves and RV morphology; and (3) the effect of PAH treatment on the arrival time of reflected waves. Wave separation analysis was conducted in 68 treatment‐naïve PAH patients. In the treatment‐naïve condition, 54% of patients had mid‐systolic return of reflected waves (defined as 34–66% of systole). Despite similar pulmonary vascular resistance (PVR), patients with mid‐systolic return had more pronounced RV hypertrophy compared to those with late‐systolic or diastolic return (RV mass/body surface area; mid‐systolic return 54.6 ± 12.6 g m–2, late‐systolic return 44.4 ± 10.1 g m–2, diastolic return 42.8 ± 13.1 g m–2). Out of 68 patients, 43 patients were further examined after initial treatment. At follow‐up, the stiffness of the proximal arteries, given as characteristic impedance, decreased from 0.12 to 0.08 mmHg s mL–1. Wave speed was attenuated from 13.3 to 9.1 m s–1, and the return of reflected waves was delayed from 64% to 71% of systole. In conclusion, reflected waves arrive at variable times in PAH. Early return of reflected waves was associated with more RV hypertrophy. PAH treatment not only decreased PVR, but also delayed the timing of reflected waves. Key points Right ventricular (RV) wall tension in pulmonary arterial hypertension (PAH) is determined not only by pressure, but also by RV volume. Larger volume at a given pressure causes larger RV wall tension. Early return of reflected waves adds RV pressure in early systole, when RV volume is relatively large. Thus, early return of reflected waves may increase RV wall tension. Wave reflection can provide a description of RV load. In PAH, reflected waves arrive back at variable times. In over half of PAH patients, the RV is exposed to mid‐systolic return of reflected waves. Mid‐systolic return of reflected waves is related to RV hypertrophy. PAH treatment acts favourably on the RV not only by reducing resistance, but also by delaying the return of reflected waves. Arrival timing of reflected waves is an important parameter for understanding the relationship between RV load and its function in PAH.
Collapse
Affiliation(s)
- Masafumi Fukumitsu
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Cardiovascular Dynamics, National Cerebral and Cardiovascular Center, Japan
| | - Joanne A Groeneveldt
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Natalia J Braams
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ahmed A Bayoumy
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Internal Medicine, Chest Unit, Suez Canal University Hospitals, Suez Canal University, Ismailia, Egypt
| | - J Tim Marcus
- Department of Radiology and Nuclear Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Lilian J Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Frances S de Man
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Berend E Westerhof
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Van De Bruaene A, Claessen G, Salaets T, Gewillig M. Late Fontan Circulatory Failure. What Drives Systemic Venous Congestion and Low Cardiac Output in Adult Fontan Patients? Front Cardiovasc Med 2022; 9:825472. [PMID: 35360011 PMCID: PMC8964135 DOI: 10.3389/fcvm.2022.825472] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 12/23/2022] Open
Abstract
The Fontan circulation provides definite palliation for children born with a single anatomical or functional ventricle by diverting systemic venous blood directly to the pulmonary arteries, effectively rendering systemic venous return into portal vessels to the lung. Although this restores pulmonary blood flow and avoids the mixture of oxygenated and deoxygenated blood, it also results in elevated systemic venous pressures and low cardiac output. These are the two hallmarks of any Fontan circulation and the cause of Fontan circulatory failure later in life. We highlight the determinants of systemic venous return, its changed relationship with the pulmonary circulation, how it affects preload, and the changed role of the heart (myocardium, valves, and heart rate). By critically evaluating the components of the Fontan circulation, we hope to give some clues in how to optimize the Fontan circulation and avenues for future research.
Collapse
Affiliation(s)
- Alexander Van De Bruaene
- Division of Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
- *Correspondence: Alexander Van De Bruaene
| | - Guido Claessen
- Division of Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Thomas Salaets
- Division of Pediatric Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Marc Gewillig
- Division of Pediatric Cardiology, Department of Cardiovascular Sciences, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
12
|
Boulate D, Loisel F, Coblence M, Provost B, Todesco A, Decante B, Beurnier A, Herve P, Perros F, Humbert M, Fadel E, Mercier O, Chemla D. Pulsatile pulmonary artery pressure in a large animal model of chronic thromboembolic pulmonary hypertension: Similarities and differences with human data. Pulm Circ 2022; 12:e12017. [PMID: 35506099 PMCID: PMC9052967 DOI: 10.1002/pul2.12017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 10/27/2021] [Accepted: 11/20/2021] [Indexed: 11/20/2022] Open
Abstract
A striking feature of the human pulmonary circulation is that mean (mPAP) and systolic (sPAP) pulmonary artery pressures (PAPs) are strongly related and, thus, are essentially redundant. According to the empirical formula documented under normotensive and hypertensive conditions (mPAP = 0.61 sPAP + 2 mmHg), sPAP matches ~160%mPAP on average. This attests to the high pulsatility of PAP, as also witnessed by the near equality of PA pulse pressure and mPAP. Our prospective study tested if pressure redundancy and high pulsatility also apply in a piglet model of chronic thromboembolic pulmonary hypertension (CTEPH). At baseline (Week‐0, W0), Sham (n = 8) and CTEPH (n = 27) had similar mPAP and stroke volume. At W6, mPAP increased in CTEPH only, with a two‐ to three‐fold increase in PA stiffness and total pulmonary resistance. Seven CTEPH piglets were also studied at W16 at baseline, after volume loading, and after acute pulmonary embolism associated with dobutamine infusion. There was a strong linear relationship between sPAP and mPAP (1) at W0 and W6 (n = 70 data points, r² = 0.95); (2) in the subgroup studied at W16 (n = 21, r² = 0.97); and (3) when all data were pooled (n = 91, r² = 0.97, sPAP range 9–112 mmHg). The PA pulsatility was lower than that expected based on observations in humans: sPAP matched ~120%mPAP only and PA pulse pressure was markedly lower than mPAP. In conclusion, the redundancy between mPAP and sPAP seems a characteristic of the pulmonary circulation independent of the species. However, it is suggested that the sPAP thresholds used to define PH in animals are species‐ and/or model‐dependent and thus must be validated.
Collapse
Affiliation(s)
- David Boulate
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Fanny Loisel
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Mathieu Coblence
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Bastien Provost
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Alban Todesco
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Benoit Decante
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Antoine Beurnier
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Philippe Herve
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Frédéric Perros
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
| | - Marc Humbert
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
- Service de Pneumologie, Hôpital Bicêtre DMU‐THORINO, AP‐HP Le Kremlin‐Bicêtre France
| | - Elie Fadel
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
- Pôle Thoracique, Vasculaire et Transplantations Hôpital Marie Lannelongue Le Plessis Robinson France
| | - Olaf Mercier
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
- Pôle Thoracique, Vasculaire et Transplantations Hôpital Marie Lannelongue Le Plessis Robinson France
| | - Denis Chemla
- Hôpital Marie Lannelongue INSERM UMR_S 999 Le Plessis Robinson France
- Service d'Explorations Fonctionnelles Multidisciplinaires Bi‐site, Hôpitaux Antoine Béclère–Kremlin Bicêtre, Faculté de médecine‐Université Paris Saclay DMU‐CORREVE, AP‐HP Le Kremlin‐Bicêtre France
| |
Collapse
|
13
|
Yoshida T, Uejima T, Komeda S, Matsuura K, Uemura A, Hayama H, Yamashita T, Yilmaz Z, Tanaka R. Estimation of Pulmonary Arterial Wave Reflection by Echo-Doppler: A Preliminary Study in Dogs With Experimentally-Induced Acute Pulmonary Embolism. Front Physiol 2021; 12:752550. [PMID: 34955877 PMCID: PMC8692872 DOI: 10.3389/fphys.2021.752550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/15/2021] [Indexed: 11/21/2022] Open
Abstract
Background: Pulmonary arterial (PA) wave reflection provides additional information for assessing right ventricular afterload, but its applications is hampered by the need for invasive pressure and flow measurements. We tested the hypothesis that PA pressure and flow waveforms estimated by Doppler echocardiography could be used to quantify PA wave reflection. Methods: Doppler echocardiographic images of tricuspid regurgitation and right ventricular outflow tract flow used to estimate PA pressure and flow waveforms were acquired simultaneously with direct measurements with a dual sensor-tipped catheter under various hemodynamic conditions in a canine model of pulmonary hypertension (n = 8). Wave separation analysis was performed on echo-Doppler derived as well as catheter derived waveforms to separate PA pressure into forward (Pf) and backward (Pb) pressures and derive wave reflection coefficient (RC) defined as the ratio of peak Pb to peak Pf. Results: Wave reflection indices by echo-Doppler agreed well with corresponding indices by catheter (Pb: mean difference = 0.4 mmHg, 95% limits of agreement = −4.3 to 5.0 mmHg; RC: bias = 0.13, 95% limits of agreement = −0.25 to 0.26). RC correlated negatively with PA compliance. Conclusion: This echo-Doppler method yields reasonable measurement of reflected wave in the pulmonary circulation, paving the way to a more integrative assessment of pulmonary hemodynamics in the clinical setting.
Collapse
Affiliation(s)
- Tomohiko Yoshida
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | | | - Syunta Komeda
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Katsuhiro Matsuura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Akiko Uemura
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Hiromasa Hayama
- Department of Cardiology, National Center for Global Health and Medicine, Tokyo, Japan
| | | | - Zeki Yilmaz
- Department of Veterinary Internal Medicine, Bursa Uludag University, Bursa, Turkey
| | - Ryou Tanaka
- Department of Veterinary Surgery, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
14
|
Umemoto S, Abe K, Hosokawa K, Horimoto K, Saku K, Sakamoto T, Tsutsui H. Increased Pulmonary Arterial Compliance after Balloon Pulmonary Angioplasty Predicts Exercise Tolerance Improvement in Inoperable CTEPH Patients with Lower Pulmonary Arterial Pressure. Heart Lung 2021; 52:8-15. [PMID: 34801772 DOI: 10.1016/j.hrtlng.2021.11.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Balloon pulmonary angioplasty (BPA) improved pulmonary arterial compliance (CPA) and exercise tolerance in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH). OBJECTIVES To investigate whether CPA is a useful index to indicate exercise tolerance improvement by BPA in CTEPH patients. METHODS The correlation between changes in CPA and improvements in 6-minute walk distance (6MWD) by BPA was retrospectively analyzed in 70 patients (Analysis 1), and it was sequentially analyzed in 46 symptomatic patients who achieved mean pulmonary arterial pressure (mPAP)<30mmHg (Analysis 2). RESULTS We enrolled 70 patients (female/male:57/13, mean age:59 years) who underwent a total of 352 BPA sessions which significantly increased CPA (1.5±0.8 vs. 3.0±1.0 mL/mmHg) and decreased pulmonary vascular resistance (PVR) (8.0 ± 3.9 vs. 3.6 ± 1.7 wood units). The correlation coefficient between improvement in 6MWD and changes in PVR and CPA were r=0.21 (p=0.09) and r=0.14 (p=0.26) (Analysis 1). In Analysis 2, those were r=0.32 (p=0.06) and r=0.38 (p=0.02), respectively. CONCLUSIONS CPA can be a useful index to indicate the improvement in exercise tolerance by BPA in symptomatic patients with lower mPAP.
Collapse
Affiliation(s)
- Shintaro Umemoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Kohtaro Abe
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan.
| | - Kazuya Hosokawa
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Koshin Horimoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Cardiology, Matsuyama Red Cross Hospital, Ehime, Japan
| | - Keita Saku
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takafumi Sakamoto
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Hiroyuki Tsutsui
- Department of Cardiovascular Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan; Department of Cardiovascular Medicine, Research Institute of Angiocardiology, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
15
|
Naeije R, Richter MJ, Rubin LJ. The physiologic basis of pulmonary arterial hypertension. Eur Respir J 2021; 59:13993003.02334-2021. [PMID: 34737219 PMCID: PMC9203839 DOI: 10.1183/13993003.02334-2021] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/18/2021] [Indexed: 11/05/2022]
Abstract
Pulmonary arterial hypertension (PAH) is a rare dyspnea-fatigue syndrome caused by a progressive increase in pulmonary vascular resistance (PVR) and eventual right ventricular (RV) failure. In spite of extensive pulmonary vascular remodeling, lung function in PAH is generally well preserved, with hyperventilation and increased physiologic dead space, but minimal changes in lung mechanics and only mild to moderate hypoxemia and hypocapnia. Hypoxemia is mainly caused by a low mixed venous PO2 from a decreased cardiac output. Hypocapnia is mainly caused by an increased chemosensitivity. Exercise limitation in PAH is cardiovascular rather than ventilatory or muscular. The extent of pulmonary vascular disease in PAH is defined by multipoint pulmonary vascular pressure-flow relationships with a correction for hematocrit. Pulsatile pulmonary vascular pressure-flow relationships in PAH allow for the assessment of RV hydraulic load. This analysis is possible either in the frequency-domain or in the time-domain. The RV in PAH adapts to increased afterload by an increased contractility to preserve its coupling to the pulmonary circulation. When this homeometric mechanism is exhausted, the RV dilates to preserve flow output by an additional heterometric mechanism. Right heart failure is then diagnosed by imaging of increased right heart dimensions and clinical systemic congestion signs and symptoms. The coupling of the RV to the pulmonary circulation is assessed by the ratio of end-systolic to arterial elastances, but these measurements are difficult. Simplified estimates of RV-PA coupling can be obtained by magnetic resonance or echocardiographic imaging of ejection fraction.
Collapse
Affiliation(s)
| | - Manuel J Richter
- Department of Internal Medicine, Justus Liebig-University, Universities of Giessen and Marburg Lung Center (UGMLC), Giessen, Germany
| | - Lewis J Rubin
- University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
16
|
Pewowaruk RJ, Forouzan O, Raza F, Gepner AD, Chesler NC. Non-invasive estimation of pulmonary hemodynamics from 2D-PC MRI with an arterial mechanics method. J Biomech 2021; 129:110856. [PMID: 34794040 DOI: 10.1016/j.jbiomech.2021.110856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/29/2021] [Accepted: 10/30/2021] [Indexed: 10/19/2022]
Abstract
Pulmonary Hypertension (PH) is a challenging cardiopulmonary disease diagnosed when the mean pulmonary artery pressure (mPAP) is greater than 20 mmHg. Unfortunately, mPAP can only be measured through invasive right heart catheterization (RHC) motivating the development of novel non-invasive estimates. Pulmonary hypertension patients (n = 7) and control subjects (n = 8) had 2D phase contrast (PC) MRI of the main pulmonary artery during rest and moderate exercise. A novel method utilizing arterial mechanics was used to estimate mPAP and other pulmonary hemodynamics measures from the 2D PC images. mPAP estimated from MRI was greater in the PH group than the control group at both rest (24 ± 10 vs 12 ± 5 mmHg) and exercise (40 ± 8 vs 17 ± 9 mmHg). Area under the curve (AUC) calculated from receiver operator curve (ROC) analysis showed MRI estimated mPAP had excellent diagnostic ability to diagnose PH patients vs control subjects at rest and exercise (rest AUC = 0.91 [0.76 - 1.0], exercise AUC = 0.96 [0.88 - 1.0]). These are promising proof-of-concept results that pulmonary hemodynamics could be non-invasively estimated from an MRI and arterial mechanics approach. Future studies to determine the clinical utility of this method are needed.
Collapse
Affiliation(s)
- Ryan J Pewowaruk
- Cardiovascular Research Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Medicine - Division of Cardiology, William S. Middleton Memorial Veteran's Hospital, Madison, WI, United States.
| | | | - Farhan Raza
- Department of Medicine - Division of Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Adam D Gepner
- Department of Medicine - Division of Cardiology, William S. Middleton Memorial Veteran's Hospital, Madison, WI, United States; Department of Medicine - Division of Cardiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Naomi C Chesler
- Edwards Lifesciences Foundation Cardiovascular Innovation and Research Center and Department of Biomedical Engineering, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
17
|
Baroreflex responses to activity at different temperatures in the South American rattlesnake, Crotalus durissus. J Comp Physiol B 2021; 191:917-925. [PMID: 34363512 DOI: 10.1007/s00360-021-01396-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/30/2021] [Indexed: 10/20/2022]
Abstract
In humans, physical exercise imposes narrower limits for the heart rate (fH) response of the baroreflex, and vascular modulation becomes largely responsible for arterial pressure regulation. In undisturbed reptiles, the baroreflex-related fH alterations at the operating point (Gop) decreases at elevated body temperatures (Tb) and the vascular regulation changes accordingly. We investigated how the baroreflex of rattlesnakes, Crotalus durissus, is regulated during an activity at different Tb, expecting that activity would reduce the capacity of the cardiac baroreflex neural pathway to buffer arterial pressure fluctuations while being compensated by the vascular neural pathway regulation. Snakes were catheterized for blood pressure assessment at three different Tb: 15, 20 and 30 °C. Data were collected before and after activity at each Tb. Baroreflex gain (Gop) was assessed with the sequence method; the vascular limb, with the time constant of pressure decay (τ), using the two-element Windkessel equation. Both Gop and τ reduced when Tb increased. Activity also reduced Gop and τ in all Tb. The relationship between τ and pulse interval (τ/PI) was unaffected by the temperature at resting snakes, albeit it reduced after activity at 20 °C and 30 °C. The unchanged τ/PI and normalized Gop at different Tb indicated those variables are actively adjusted to work at different fH and pressure conditions at rest. Our data suggest that during activity, the baroreflex-related fH response is attenuated and hypertension is buffered by a disproportional increase in the rate which pressure decays during diastole. This compensation seems especially important at higher Tb where Gop is already low.
Collapse
|
18
|
Li Y, Guo D, Gong J, Wang J, Huang Q, Yang S, Zhang X, Hu H, Jiang Z, Yang Y, Lu X. Right Ventricular Function and Its Coupling With Pulmonary Circulation in Precapillary Pulmonary Hypertension: A Three-Dimensional Echocardiographic Study. Front Cardiovasc Med 2021; 8:690606. [PMID: 34277739 PMCID: PMC8282926 DOI: 10.3389/fcvm.2021.690606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: To assess right ventricular (RV) function and RV-pulmonary arterial (PA) coupling by three-dimensions echocardiography and investigate the ability of RV-PA coupling to predict adverse clinical outcomes in patients with precapillary pulmonary hypertension (PH). Methods: We retrospectively collected a longitudinal cohort of 203 consecutive precapillary PH patients. RV volume, RV ejection fraction (RVEF), and RV longitudinal strain (RVLS) were quantitatively determined offline by 3D echocardiography. RV-PA coupling parameters including the RVEF/PA systolic pressure (PASP) ratio, pulmonary arterial compliance (PAC), and total pulmonary resistance (TPR) were recorded. Results: Over a median follow-up period of 20.9 months (interquartile range, 0.1-67.4 months), 87 (42.9%) of 203 patients experienced adverse clinical outcomes. With increasing World Health Organization functional class (WHO-FC), significant trends were observed in increasing RV volume, decreasing RVEF, and worsening RVLS. RV arterial coupling (RVAC) and PAC were lower and TPR was higher for WHO-FC III+IV than WHO-FC I or II. The RVEF/PASP ratio showed a significant correlation with RVLS. RVAC had a stronger correlation with the RVEF/PASP ratio than other indices. Multivariate Cox proportional-hazard analysis identified a lower 3D RVEF and worse RVLS as strong predictors of adverse clinical events. RVAC, TPR, and PAC had varying degrees of predictive value, with optimal cutoff values of 0.74, 11.64, and 1.18, respectively. Conclusions: Precapillary-PH with RV-PA uncoupling as expressed by a RVEF/PASP ratio <0.44 was associated with adverse clinical outcomes. PAC decreased and TPR increased with increasing WHO-FC, with TPR showing better independent predictive value.
Collapse
Affiliation(s)
- Yidan Li
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Dichen Guo
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Juanni Gong
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jianfeng Wang
- Department of Intervention, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qiang Huang
- Department of Intervention, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Shu Yang
- Philips (China) Investment Co. Ltd., Beijing, China
| | - Xinyuan Zhang
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Huimin Hu
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Zhe Jiang
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yuanhua Yang
- Department of Respiratory and Critical Care Medicine, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiuzhang Lu
- Department of Echocardiography, Heart Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
19
|
Nair N. Invasive Hemodynamics in Heart Failure with Preserved Ejection Fraction: Importance of Detecting Pulmonary Vascular Remodeling and Right Heart Function. Heart Fail Clin 2021; 17:415-422. [PMID: 34051973 DOI: 10.1016/j.hfc.2021.03.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Heart failure (HF) is an ongoing crisis reaching epidemic proportions worldwide. About 50% of HF patients have a preserved ejection fraction. Invasive hemodynamics have shown varied results in patients who have HF with preserved ejection fraction (HFpEF). This article attempts to summarize the importance of detecting pulmonary vascular remodeling in HFpEF using invasive hemodynamics. Incorporating newer invasive hemodynamic parameters such as diastolic pulmonary gradient, pulmonary arterial compliance, pulmonary vascular resistance, and pulmonary arterial pulsatility index may improve patient selection for studies used in defining advanced therapies and clinical outcomes. Profiling of patients using invasive hemodynamic parameters may lead to better patient selection for clinical research.
Collapse
Affiliation(s)
- Nandini Nair
- Department of Medicine, Texas Tech University Health Sciences Center, 3601, 4th Street, Lubbock, TX 79430, USA.
| |
Collapse
|
20
|
Exercise hemodynamics in heart failure patients with preserved and mid-range ejection fraction: key role of the right heart. Clin Res Cardiol 2021; 111:393-405. [PMID: 34110459 DOI: 10.1007/s00392-021-01884-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 05/27/2021] [Indexed: 02/06/2023]
Abstract
OBJECTIVE We sought to explore whether classification of patients with heart failure and mid-range (HFmrEF) or preserved ejection fraction (HFpEF) according to their left ventricular ejection fraction (LVEF) identifies differences in their exercise hemodynamic profile, and whether classification according to an index of right ventricular (RV) function improves differentiation. BACKGROUND Patients with HFmrEF and HFpEF have hemodynamic compromise on exertion. The classification according to LVEF implies a key role of the left ventricle. However, RV involvement in exercise limitation is increasingly recognized. The tricuspid annular plane systolic excursion/systolic pulmonary arterial pressure (TAPSE/PASP) ratio is an index of RV and pulmonary vascular function. Whether exercise hemodynamics differ more between HFmrEF and HFpEF than between TAPSE/PASP tertiles is unknown. METHODS We analyzed 166 patients with HFpEF (LVEF ≥ 50%) or HFmrEF (LVEF 40-49%) who underwent basic diagnostics (laboratory testing, echocardiography at rest, and cardiopulmonary exercise testing [CPET]) and exercise with right heart catheterization. Hemodynamics were compared according to echocardiographic left ventricular or RV function. RESULTS Exercise hemodynamics (e.g. pulmonary arterial wedge pressure/cardiac output [CO] slope, CO increase during exercise, and maximum total pulmonary resistance) showed no difference between HFpEF and HFmrEF, but significantly differed across TAPSE/PASP tertiles and were associated with CPET results. N-terminal pro-brain natriuretic peptide concentration also differed significantly across TAPSE/PASP tertiles but not between HFpEF and HFmrEF. CONCLUSION In patients with HFpEF or HFmrEF, TAPSE/PASP emerged as a more appropriate stratification parameter than LVEF to predict clinically relevant impairment of exercise hemodynamics. Stratification of exercise hemodynamics in patients with HFpEF or HFmrEF according to LVEF or TAPSE/PASP, showing significant distinctions only with the RV-based strategy. All data are shown as median [upper limit of interquartile range] and were calculated using the independent-samples Mann-Whitney U test or Kruskal-Wallis test. PVR pulmonary vascular resistance; max maximum level during exercise.
Collapse
|
21
|
Bonnemain J, Ltaief Z, Liaudet L. The Right Ventricle in COVID-19. J Clin Med 2021; 10:jcm10122535. [PMID: 34200990 PMCID: PMC8230058 DOI: 10.3390/jcm10122535] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/15/2022] Open
Abstract
Infection with the novel severe acute respiratory coronavirus-2 (SARS-CoV2) results in COVID-19, a disease primarily affecting the respiratory system to provoke a spectrum of clinical manifestations, the most severe being acute respiratory distress syndrome (ARDS). A significant proportion of COVID-19 patients also develop various cardiac complications, among which dysfunction of the right ventricle (RV) appears particularly common, especially in severe forms of the disease, and which is associated with a dismal prognosis. Echocardiographic studies indeed reveal right ventricular dysfunction in up to 40% of patients, a proportion even greater when the RV is explored with strain imaging echocardiography. The pathophysiological mechanisms of RV dysfunction in COVID-19 include processes increasing the pulmonary vascular hydraulic load and others reducing RV contractility, which precipitate the acute uncoupling of the RV with the pulmonary circulation. Understanding these mechanisms provides the fundamental basis for the adequate therapeutic management of RV dysfunction, which incorporates protective mechanical ventilation, the prevention and treatment of pulmonary vasoconstriction and thrombotic complications, as well as the appropriate management of RV preload and contractility. This comprehensive review provides a detailed update of the evidence of RV dysfunction in COVID-19, its pathophysiological mechanisms, and its therapy.
Collapse
Affiliation(s)
- Jean Bonnemain
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (J.B.); (Z.L.)
| | - Zied Ltaief
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (J.B.); (Z.L.)
| | - Lucas Liaudet
- Department of Adult Intensive Care Medicine, Lausanne University Hospital, 1011 Lausanne, Switzerland; (J.B.); (Z.L.)
- Division of Pathophysiology, Faculty of Biology and Medicine, University of Lausanne, 1011 Lausanne, Switzerland
- Correspondence: ; Tel.: +41-79-556-4278
| |
Collapse
|
22
|
Abstract
The health burden of heart failure with preserved ejection fraction is increasingly recognized. Despite improvements in diagnostic algorithms and established knowledge on the clinical trajectory, effective treatment options for heart failure with preserved ejection fraction remain limited, mainly because of the high mechanistic heterogeneity. Diagnostic scores, big data, and phenomapping categorization are proposed as key steps needed for progress. In the meantime, advancements in imaging techniques combined to high-fidelity pressure signaling analysis have uncovered right ventricular dysfunction as a mediator of heart failure with preserved ejection fraction progression and as major independent determinant of poor outcome. This review summarizes the current understanding of the pathophysiology of right ventricular dysfunction in heart failure with preserved ejection fraction covering the different right heart phenotypes and offering perspectives on new treatments targeting the right ventricle in its function and geometry.
Collapse
Affiliation(s)
- Marco Guazzi
- Department of Biological Sciences, University of Milano, Italy (M.G.).,Cardiology Division, San Paolo Hospital, Italy (M.G.)
| | - Robert Naeije
- Erasme Hospital, Free University of Brussels, Belgium (R.N.)
| |
Collapse
|
23
|
Rajdev K, Lahan S, Wichman T. Role of pulmonary arterial capacitance in predicting mortality in patients with pulmonary hypertension: A systematic review and meta-analysis. Int J Cardiol 2021; 333:202-209. [PMID: 33621628 DOI: 10.1016/j.ijcard.2021.02.043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/29/2022]
Abstract
BACKGROUND Pulmonary arterial capacitance or compliance (PAC) has been reported as an independent predictor of mortality in patients with pulmonary arterial hypertension (PAH) and pulmonary hypertension secondary to left heart disease (PH-LHD). METHODS We conducted a literature search of PubMed/Medline, Google Scholar, and Cochrane library databases from July 30th to September 4th, 2020, and identified all the relevant studies reporting mortality outcomes in patients with PAH and PH-LHD. Pooled data from these studies were used to perform a meta-analysis to identify the role of PAC in predicting all-cause mortality in this subset of patients. RESULTS Pooled data on 4997 patients from 15 individual studies showed that the mortality risk in patients with PAH and PH-LHD varies significantly per unit change in PAC either from baseline or during follow-up. A reduction in PAC per 1 ml/mmHg was associated with a 4.25 times higher risk of all-cause mortality (95% CI 1.42-12.71; p = 0.021) in PAH patients. Among patients with PH-LHD, mortality risk increased by ~30% following a unit decrease in PAC (HR, 1.29; p = 0.019), whereas an increase in PAC by 1 ml/mmHg lowered the mortality risk by 30% (HR, 0.70). CONCLUSION PAC is a strong and independent predictor of all-cause mortality in both patients with PAH and PH-LHD. A decrease in PAC by 1 ml/mmHg from baseline or during follow-up significantly increases the risk of all-cause mortality among both patients with PAH and PH-LHD. Treatment modalities targeted at PAC improvement can affect the overall survival and quality of life in such patients.
Collapse
Affiliation(s)
- Kartikeya Rajdev
- Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Shubham Lahan
- University College of Medical Sciences, New Delhi, India
| | - Tammy Wichman
- Pulmonary, Critical Care & Sleep Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
24
|
Wright SP, Dawkins TG, Eves ND, Shave R, Tedford RJ, Mak S. Hemodynamic function of the right ventricular-pulmonary vascular-left atrial unit: normal responses to exercise in healthy adults. Am J Physiol Heart Circ Physiol 2020; 320:H923-H941. [PMID: 33356960 DOI: 10.1152/ajpheart.00720.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
With each heartbeat, the right ventricle (RV) inputs blood into the pulmonary vascular (PV) compartment, which conducts blood through the lungs at low pressure and concurrently fills the left atrium (LA) for output to the systemic circulation. This overall hemodynamic function of the integrated RV-PV-LA unit is determined by complex interactions between the components that vary over the cardiac cycle but are often assessed in terms of mean pressure and flow. Exercise challenges these hemodynamic interactions as cardiac filling increases, stroke volume augments, and cycle length decreases, with PV pressures ultimately increasing in association with cardiac output. Recent cardiopulmonary exercise hemodynamic studies have enriched the available data from healthy adults, yielded insight into the underlying mechanisms that modify the PV pressure-flow relationship, and better delineated the normal limits of healthy responses to exercise. This review will examine hemodynamic function of the RV-PV-LA unit using the two-element Windkessel model for the pulmonary circulation. It will focus on acute PV and LA responses that accommodate increased RV output during exercise, including PV recruitment and distension and LA reservoir expansion, and the integrated mean pressure-flow response to exercise in healthy adults. Finally, it will consider how these responses may be impacted by age-related remodeling and modified by sex-related cardiopulmonary differences. Studying the determinants and recognizing the normal limits of PV pressure-flow relations during exercise will improve our understanding of cardiopulmonary mechanisms that facilitate or limit exercise.
Collapse
Affiliation(s)
- S P Wright
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - T G Dawkins
- Cardiff School of Sport and Health Sciences, Cardiff Metropolitan University, Cardiff, Wales, United Kingdom
| | - N D Eves
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - R Shave
- Centre for Heart, Lung and Vascular Health, University of British Columbia-Okanagan, Kelowna, British Columbia, Canada
| | - R J Tedford
- Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - S Mak
- Division of Cardiology, Department of Medicine, Sinai Health, Toronto, Ontario, Canada.,Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Filogonio R, Orsolini KF, Oda GM, Malte H, Leite CAC. Baroreflex gain and time of pressure decay at different body temperatures in the tegu lizard, Salvator merianae. PLoS One 2020; 15:e0242346. [PMID: 33227002 PMCID: PMC7682859 DOI: 10.1371/journal.pone.0242346] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/01/2020] [Indexed: 12/20/2022] Open
Abstract
Ectotherms may experience large body temperature (Tb) variations. Higher Tb have been reported to increase baroreflex sensitivity in ectotherm tetrapods. At lower Tb, pulse interval (PI) increases and diastolic pressure decays for longer, possibly resulting in lower end-diastolic pressures and mean arterial pressures (Pm). Additionally, compensatory baroreflex-related heart rate modulation (i.e. the cardiac branch of the baroreflex response) is delayed due to increased PI. Thus, low Tb is potentially detrimental, leading to cardiovascular malfunctioning. This raises the question on how Pm is regulated in such an adverse condition. We investigated the baroreflex compensations that enables tegu lizards, Salvator merianae, to maintain blood pressure homeostasis in a wide Tb range. Lizards had their femoral artery cannulated and pressure signals recorded at 15°C, 25°C and 35°C. We used the sequence method to analyse the heart rate baroreflex-related corrections to spontaneous pressure fluctuations at each temperature. Vascular adjustments (i.e. the peripheral branch) were assessed by calculating the time constant for arterial pressure decay (τ)—resultant from the action of both vascular resistance and compliance—by fitting the diastolic pressure descent to the two-element Windkessel equation. We observed that at lower Tb, lizards increased baroreflex gain at the operating point (Gop) and τ, indicating that the diastolic pressure decays at a slower rate. Gop normalized to Pm and PI, as well as the ratio τ/PI, did not change, indicating that both baroreflex gain and rate of pressure decay are adjusted according to PI lengthening. Consequently, pressure parameters and the oscillatory power fraction (an index of wasted cardiac energy) were unaltered by Tb, indicating that both Gop and τ modulation are crucial for cardiovascular homeostasis.
Collapse
Affiliation(s)
- Renato Filogonio
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- * E-mail:
| | - Karina F. Orsolini
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo M. Oda
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Hans Malte
- Section for Zoophysiology, Department of Bioscience, Aarhus University, Aarhus C, Denmark
| | - Cléo A. C. Leite
- Department of Physiological Sciences, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
26
|
Fukumitsu M, Westerhof BE, Ruigrok D, Braams NJ, Groeneveldt JA, Bayoumy AA, Marcus JT, Meijboom LJ, de Man FS, Westerhof N, Bogaard HJ, Vonk Noordegraaf A. Early return of reflected waves increases right ventricular wall stress in chronic thromboembolic pulmonary hypertension. Am J Physiol Heart Circ Physiol 2020; 319:H1438-H1450. [PMID: 33035435 DOI: 10.1152/ajpheart.00442.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Pulmonary vascular resistance (PVR) and compliance are comparable in proximal and distal chronic thromboembolic pulmonary hypertension (CTEPH). However, proximal CTEPH is associated with inferior right ventricular (RV) adaptation. Early wave reflection in proximal CTEPH may be responsible for altered RV function. The aims of the study are as follows: 1) to investigate whether reflected pressure returns sooner in proximal than in distal CTEPH and 2) to elucidate whether the timing of reflected pressure is related to RV dimensions, ejection fraction (RVEF), hypertrophy, and wall stress. Right heart catheterization and cardiac MRI were performed in 17 patients with proximal CTEPH and 17 patients with distal CTEPH. In addition to the determination of PVR, compliance, and characteristic impedance, wave separation analysis was performed to determine the magnitude and timing of the peak reflected pressure (as %systole). Findings were related to RV dimensions and time-resolved RV wall stress. Proximal CTEPH was characterized by higher RV volumes, mass, and wall stress, and lower RVEF. While PVR, compliance, and characteristic impedance were similar, proximal CTEPH was related to an earlier return of reflected pressure than distal CTEPH (proximal 53 ± 8% vs. distal 63 ± 15%, P < 0.05). The magnitude of the reflected pressure waves did not differ. RV volumes, RVEF, RV mass, and wall stress were all related to the timing of peak reflected pressure. Poor RV function in patients with proximal CTEPH is related to an early return of reflected pressure wave. PVR, compliance, and characteristic impedance do not explain the differences in RV function between proximal and distal CTEPH.NEW & NOTEWORTHY In chronic thromboembolic pulmonary hypertension (CTEPH), proximal localization of vessel obstructions is associated with poor right ventricular (RV) function compared with distal localization, though pulmonary vascular resistance, vascular compliance, characteristic impedance, and the magnitude of wave reflection are similar. In proximal CTEPH, the RV is exposed to an earlier return of the reflected wave. Early wave reflection may increase RV wall stress and compromise RV function.
Collapse
Affiliation(s)
- Masafumi Fukumitsu
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Berend E Westerhof
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Cardiovascular and Respiratory Physiology, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Enschede, The Netherlands
| | - Dieuwertje Ruigrok
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Natalia J Braams
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Joanne A Groeneveldt
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Ahmed A Bayoumy
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Internal Medicine, Chest Unit, Suez Canal University Hospitals, Suez Canal University, Ismailia, Egypt
| | - J Tim Marcus
- Department of Radiology and Nuclear Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Lilian J Meijboom
- Department of Radiology and Nuclear Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Frances S de Man
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Nico Westerhof
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Anton Vonk Noordegraaf
- Department of Pulmonary Medicine, Amsterdam Universitair Medische Centra, Vrije Universiteit Amsterdam, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Bernardo RJ, Haddad F, Couture EJ, Hansmann G, de Jesus Perez VA, Denault AY, de Man FS, Amsallem M. Mechanics of right ventricular dysfunction in pulmonary arterial hypertension and heart failure with preserved ejection fraction. Cardiovasc Diagn Ther 2020; 10:1580-1603. [PMID: 33224775 PMCID: PMC7666917 DOI: 10.21037/cdt-20-479] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/04/2020] [Indexed: 12/12/2022]
Abstract
Right ventricular (RV) dysfunction is the most important determinant of survival in patients with pulmonary hypertension (PH). The manifestations of RV dysfunction not only include changes in global RV systolic function but also abnormalities in the pattern of contraction and synchrony. The effects of PH on the right ventricle have been mainly studied in patients with pulmonary arterial hypertension (PAH). However, with the demographic shift towards an aging population, heart failure with preserved ejection fraction (HFpEF) has become an important etiology of PH in recent years. There are significant differences in RV mechanics, function and adaptation between patients with PAH and HFpEF (with or without PH), which are related to different patterns of remodeling and dysfunction. Due to the unique features of the RV chamber, its connection with the main pulmonary artery and the pulmonary circulation, an understanding of the mechanics of RV function and its clinical significance is mandatory for both entities. In this review, we describe the mechanics of the pressure overloaded right ventricle. We review the different mechanical components of RV dysfunction and ventricular dyssynchrony, followed by insights via analysis of pressure-volume loop, energetics and novel blood flow patterns, such as vortex imaging. We conduct an in-depth comparison of prevalence and characteristics of RV dysfunction in HFpEF and PAH, and summarize key outcome studies. Finally, we provide a perspective on needed and expected future work in the field of RV mechanics.
Collapse
Affiliation(s)
- Roberto J. Bernardo
- Division of Pulmonary, Allergy and Critical Care, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - Francois Haddad
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| | - Etienne J. Couture
- Department of Anesthesiology, Quebec Heart and Lung Institute, Quebec, Canada
- Intensive Care Medicine Division, Department of Medicine, Quebec Heart and Lung Institute, Quebec, Canada
- Research Center, Quebec Heart and Lung Institute, Quebec, Canada
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
| | - Vinicio A. de Jesus Perez
- Division of Pulmonary, Allergy and Critical Care, Stanford University School of Medicine, Stanford, CA, USA
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
| | - André Y. Denault
- Department of Anesthesiology and Division of Critical Care, Montreal Heart Institute, Université de Montréal, Montreal, Canada
- Division of Critical Care, Centre Hospitalier de l’Université de Montréal, Montreal, Canada
| | - Frances S. de Man
- Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Department of Pulmonary Medicine, PHEniX laboratory, Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Myriam Amsallem
- Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA, USA
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cardiovascular Institute, Stanford, CA, USA
| |
Collapse
|
28
|
Amsallem M, Tedford RJ, Denault A, Sweatt AJ, Guihaire J, Hedman K, Peighambari S, Kim JB, Li X, Miller RJH, Mercier O, Fadel E, Zamanian R, Haddad F. Quantifying the Influence of Wedge Pressure, Age, and Heart Rate on the Systolic Thresholds for Detection of Pulmonary Hypertension. J Am Heart Assoc 2020; 9:e016265. [PMID: 32419583 PMCID: PMC7428994 DOI: 10.1161/jaha.119.016265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Background The strong linear relation between mean (MPAP) and systolic (SPAP) pulmonary arterial pressure (eg, SPAP=1.62×MPAP) has been mainly reported in precapillary pulmonary hypertension. This study sought to quantify the influence of pulmonary arterial wedge pressure (PAWP), heart rate, and age on the MPAP-SPAP relation. Methods and Results An allometric equation relating invasive MPAP and SPAP was developed in 1135 patients with pulmonary arterial hypertension, advanced lung disease, chronic thromboembolic pulmonary hypertension, or left heart failure. The equation was validated in 60 885 patients from the United Network for Organ Sharing (UNOS) database referred for heart and/or lung transplant. The MPAP/SPAP longitudinal stability was assessed in pulmonary arterial hypertension with repeated right heart catheterization. The equation obtained was SPAP=1.39×MPAP×PAWP-0.07×(60/heart rate)0.12×age0.08 (P<0.001). It was validated in the UNOS cohort (R2=0.93, P<0.001), regardless of the type of organ(s) patients were listed for (mean bias [-1.96 SD; 1.96 SD] was 0.94 [-8.00; 9.88] for heart, 1.34 [-7.81; 10.49] for lung and 0.25 [-16.74; 17.24] mm Hg for heart-lung recipients). Thresholds of SPAP for MPAP=25 and 20 mm Hg were lower in patients with higher PAWP (37.2 and 29.8 mm Hg) than in those with pulmonary arterial hypertension (40.1 and 32.0 mm Hg). In 186 patients with pulmonary arterial hypertension, the predicted MPAP/SPAP was stable over time (0.63±0.03 at baseline and follow-up catheterization, P=0.43). Conclusions This study quantifies the impact of PAWP, and to a lesser extent heart rate and age, on the MPAP-SPAP relation, supporting lower SPAP thresholds for pulmonary hypertension diagnosis in patients with higher PAWP for echocardiography-based epidemiological studies.
Collapse
Affiliation(s)
- Myriam Amsallem
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA.,Stanford Cardiovascular Institute Stanford University School of Medicine Stanford CA
| | - Ryan J Tedford
- Division of Cardiology Department of Medicine Medical University of South Carolina Charleston SC
| | - Andre Denault
- Department of Anesthesiology and Division of Critical Care Montreal Heart Institute Université de Montréal Quebec Canada
| | - Andrew J Sweatt
- Division of Pulmonary and Critical Care Medicine Stanford University School of Medicine Stanford CA.,Vera Moulton Wall Center for Pulmonary Disease at Stanford University Stanford CA
| | - Julien Guihaire
- Research and Innovation Unit INSERM U999 DHU TORINO Paris Sud University Marie Lannelongue Hospital Le Plessis Robinson France
| | - Kristofer Hedman
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA.,Department of Medical and Health Sciences Linköping University Linköping Sweden
| | - Shadi Peighambari
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Juyong Brian Kim
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA.,Stanford Cardiovascular Institute Stanford University School of Medicine Stanford CA
| | - Xiao Li
- Department of Genetics Stanford University School of Medicine Stanford CA
| | - Robert J H Miller
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA
| | - Olaf Mercier
- Research and Innovation Unit INSERM U999 DHU TORINO Paris Sud University Marie Lannelongue Hospital Le Plessis Robinson France
| | - Elie Fadel
- Research and Innovation Unit INSERM U999 DHU TORINO Paris Sud University Marie Lannelongue Hospital Le Plessis Robinson France
| | - Roham Zamanian
- Division of Pulmonary and Critical Care Medicine Stanford University School of Medicine Stanford CA.,Vera Moulton Wall Center for Pulmonary Disease at Stanford University Stanford CA
| | - Francois Haddad
- Division of Cardiovascular Medicine Stanford University School of Medicine Stanford CA.,Stanford Cardiovascular Institute Stanford University School of Medicine Stanford CA
| |
Collapse
|
29
|
|
30
|
Ting CT, Chen JW, Chang MS, Yin FC. Pulmonary hemodynamics and wave reflections in adults with atrial septal defects. Am J Physiol Heart Circ Physiol 2020; 318:H925-H936. [DOI: 10.1152/ajpheart.00534.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Using high-fidelity micromanometers and flow velocity sensors at right heart catheterization, we compared pulmonary hemodynamics and wave reflections in age-matched normal adults and those with atrial septal defects, separated into three subgroups based on levels of mean pulmonary artery pressure: low (<17 mmHg), intermediate (17–26 mmHg), high (>26 mmHg). We made baseline measurements in all groups and after intravenous sodium nitroprusside in the subgroups. All of the subgroups had higher than normal baseline pulmonary flows and corresponding power that did not differ among the subgroups. The pulmonary vascular resistance, input resistance, and characteristic impedance in the subgroups did not differ from normal. Aside from the elevated flow and power, the hemodynamics in the low subgroup did not differ from normal. The intermediate subgroup had significantly higher than normal right ventricular and pulmonary artery pressures, wave reflections, and shorter wave reflection time, which all reverted to normal after nitroprusside. The high subgroup had similar changes as the intermediate subgroup. Unlike that subgroup, however, the pressures, wave reflections, and reflection return time did not revert to normal after nitroprusside. Hence, elevated wave reflections, but not resistance or characteristic impedance, are the hallmark of pulmonary hypertension in adults with atrial septal defects. Our results demonstrate that detailed measurements of hemodynamics and assessment of responsiveness to vasodilators provide important information about the pulmonary circulation in atrial septal defect. Coupled with studies after defect closure, those results may be a better foundation than current ones for clinical decisions.
Collapse
Affiliation(s)
- Chih-Tai Ting
- Cardiovascular Center, Taichung Veterans General Hospital, Taichung, Taiwan
| | - Jaw-Wen Chen
- Department of Medical Research, Veterans General Hospital, Taipei, Taiwan
- Department of Medicine and Cardiovascular Research Center, National Yang Ming University School of Medicine, Taipei, Taiwan
- Cardiology Division, Department of Medicine, Veterans General Hospital, Taipei, Taiwan
| | - Mau-Song Chang
- Cardiology Division, Department of Medicine, Veterans General Hospital, Taipei, Taiwan
| | - Frank C.P. Yin
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| |
Collapse
|
31
|
Mulchrone A, Moulton H, Eldridge MW, Chesler NC. Susceptibility to high-altitude pulmonary edema is associated with increased pulmonary arterial stiffness during exercise. J Appl Physiol (1985) 2020; 128:514-522. [PMID: 31854245 DOI: 10.1152/japplphysiol.00153.2019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
High-altitude pulmonary edema (HAPE), a reversible form of capillary leak, is a common consequence of rapid ascension to high altitude and a major cause of death related to high-altitude exposure. Individuals with a prior history of HAPE are more susceptible to future episodes, but the underlying risk factors remain uncertain. Previous studies have shown that HAPE-susceptible subjects have an exaggerated pulmonary vasoreactivity to acute hypoxia, but incomplete data are available regarding their vascular response to exercise. To examine this, seven HAPE-susceptible subjects and nine control subjects (HAPE-resistant) were studied at rest and during incremental exercise at sea level and at 3,810 m altitude. Studies were conducted in both normoxic (inspired Po2 = 148 Torr) and hypoxic (inspired Po2 = 91 Torr) conditions at each location. Here, we report an expanded analysis of previously published data, including a distensible vessel model that showed that HAPE-susceptible subjects had significantly reduced small distal artery distensibility at sea level compared with HAPE-resistant control subjects [0.011 ± 0.001 vs. 0.021 ± 0.002 mmHg-1; P < 0.001). Moreover, HAPE-susceptible subjects demonstrated constant distensibility over all conditions, suggesting that distal arteries are maximally distended at rest. Consistent with having increased distal artery stiffness, HAPE-susceptible subjects had greater increases in pulmonary artery pulse pressure with exercise, which suggests increased proximal artery stiffness. In summary, HAPE-susceptible subjects have exercise-induced increases in proximal artery stiffness and baseline increases in distal artery stiffness, suggesting increased pulsatile load on the right ventricle.NEW & NOTEWORTHY In comparison to subjects who appear resistant to high-altitude pulmonary edema, those previously symptomatic show greater increases in large and small artery stiffness in response to exercise. These differences in arterial stiffness may be a risk factor for the development of high-altitude pulmonary edema or evidence that consequences of high-altitude pulmonary edema are long-lasting after return to sea level.
Collapse
Affiliation(s)
- A Mulchrone
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - H Moulton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin
| | - M W Eldridge
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin
| | - N C Chesler
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Pediatrics, University of Wisconsin-Madison, Madison, Wisconsin.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
32
|
Ghio S, Crimi G, Guida S, Valentini A, Celentano A, Pin M, Raineri C, Turco A, Scelsi L, Oltrona Visconti L, Naeije R, D'Armini AM. Magnetic resonance imaging of pulmonary arterial compliance after pulmonary endarterectomy. Eur Respir J 2020; 55:13993003.02171-2019. [PMID: 32029444 DOI: 10.1183/13993003.02171-2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/12/2020] [Indexed: 11/05/2022]
Affiliation(s)
- Stefano Ghio
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Gabriele Crimi
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Stefania Guida
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Adele Valentini
- Institute of Radiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Anna Celentano
- Division of Cardiac Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maurizio Pin
- Division of Cardiac Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Claudia Raineri
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Annalisa Turco
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Laura Scelsi
- Division of Cardiology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | | | | | - Andrea Maria D'Armini
- Division of Cardiac Surgery, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Dept of Surgical, Clinical, Diagnostic and Pediatric Sciences, University of Pavia School of Medicine, Pavia, Italy
| |
Collapse
|
33
|
Zorzi MF, Cancelli E, Rusca M, Kirsch M, Yerly P, Liaudet L. The prognostic value of pulmonary artery compliance in cardiogenic shock. Pulm Circ 2019; 9:2045894019877161. [PMID: 31555434 PMCID: PMC6753521 DOI: 10.1177/2045894019877161] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022] Open
Abstract
The aim of this study was to evaluate the pathophysiological role and the
prognostic significance of pulmonary artery compliance (CPA), a
measure of right ventricular pulsatile afterload, in cardiogenic shock. We
retrospectively included 91 consecutive patients with cardiogenic shock due to
primary left ventricular failure, monitored with a pulmonary artery catheter
within the first 24 h. CPA was calculated as the ratio of stroke
volume to pulmonary artery pulse pressure, and we determined whether
CPA predicted mortality and whether it performed better than
other pulmonary hemodynamic variables. The overall in-hospital mortality in our
cohort was 27%. Survivors and nonsurvivors had comparable left ventricular
ejection fraction, systolic, diastolic and mean pulmonary artery pressure,
transpulmonary gradient, diastolic pressure gradient, and pulmonary vascular
resistance at 24 h. In contrast, CPA was the only pulmonary artery
variable significantly associated with mortality in univariate and multivariate
analyses. Mortality increased from 4.5% at the highest quartile of
CPA (3.6–6.5 mL/mmHg) to 43.5% at the lowest quartile
(0.7–1.7 mL/mmHg). In 64 patients with a PAC inserted immediately upon
admission, we calculated the trend of CPA between admission and 24 h.
This trend was positive in survivors (+0.8 ± 1.3 ml/mmHg) but negative in
nonsurvivors (−0.1 ± 1.0 mL/mmHg). The lower CPA in nonsurvivors was
associated with more severe right ventricular systolic dysfunction. In
conclusion, a reduced compliance of the pulmonary artery promotes right
ventricular dysfunction and is independently associated with mortality in
cardiogenic shock. Future studies should evaluate the impact on pulmonary
arterial compliance and right ventricular afterload of therapies used in
cardiogenic shock.
Collapse
Affiliation(s)
- Maria F Zorzi
- Service of Adult Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Emmanuelle Cancelli
- Service of Adult Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | - Marco Rusca
- Service of Adult Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| | | | - Patrick Yerly
- Service of Cardiology, University Hospital Medical Center and Faculty of Biology and Medicine, Lausanne, Switzerland
| | - Lucas Liaudet
- Service of Adult Intensive Care Medicine, University Hospital, Lausanne, Switzerland
| |
Collapse
|
34
|
Su J, Hughes AD, Simonsen U, Nielsen-Kudsk JE, Parker KH, Howard LS, Mellemkjaer S. Impact of pulmonary endarterectomy on pulmonary arterial wave propagation and reservoir function. Am J Physiol Heart Circ Physiol 2019; 317:H505-H516. [PMID: 31225986 PMCID: PMC6703995 DOI: 10.1152/ajpheart.00181.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/29/2019] [Accepted: 06/17/2019] [Indexed: 01/09/2023]
Abstract
High wave speed and large wave reflection in the pulmonary artery have previously been reported in patients with chronic thromboembolic pulmonary hypertension (CTEPH). We assessed the impact of pulmonary endarterectomy (PEA) on pulmonary arterial wave propagation and reservoir function in patients with CTEPH. Right heart catheterization was performed using a combined pressure and Doppler flow sensor-tipped guidewire to obtain simultaneous pressure and flow velocity measurements in the pulmonary artery in eight patients with CTEPH before and 3 mo after PEA. Wave intensity and reservoir-excess pressure analyses were then performed. Following PEA, mean pulmonary arterial pressure (PAPm; ∼49 vs. ∼32 mmHg), pulmonary vascular resistance (PVR; ∼11.1 vs. ∼5.1 Wood units), and wave speed (∼16.5 vs. ∼8.1 m/s), i.e., local arterial stiffness, markedly decreased. The changes in the intensity of the reflected arterial wave and wave reflection index (pre: ∼28%; post: ∼22%) were small, and patients post-PEA with and without residual pulmonary hypertension (i.e., PAPm ≥ 25 mmHg) had similar wave reflection index (∼20 vs. ∼23%). The reservoir and excess pressure decreased post-PEA, and the changes were associated with improved right ventricular afterload, function, and size. In conclusion, although PVR and arterial stiffness decreased substantially following PEA, large wave reflection persisted, even in patients without residual pulmonary hypertension, indicating lack of improvement in vascular impedance mismatch. This may continue to affect the optimal ventriculoarterial interaction, and further studies are warranted to determine whether this contributes to persistent symptoms in some patients.NEW & NOTEWORTHY We performed wave intensity analysis in the pulmonary artery in patients with chronic thromboembolic pulmonary hypertension before and 3 mo after pulmonary endarterectomy. Despite substantial reduction in pulmonary arterial pressures, vascular resistance, and arterial stiffness, large pulmonary arterial wave reflection persisted 3 mo postsurgery, even in patients without residual pulmonary hypertension, suggestive of lack of improvement in vascular impedance mismatch.
Collapse
Affiliation(s)
- Junjing Su
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alun D Hughes
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Institute of Cardiovascular Science, University College London, London, United Kingdom
| | - Ulf Simonsen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | | | - Kim H Parker
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Luke S Howard
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Soren Mellemkjaer
- Department of Cardiology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
35
|
Abstract
The pulmonary circulation carries deoxygenated blood from the systemic veins through the pulmonary arteries to be oxygenated in the capillaries that line the walls of the pulmonary alveoli. The pulmonary circulation carries the cardiac output with a relatively low driving pressure, and so differs considerably in structure and function from the systemic circulation to maintain a low-resistance vascular system. The pulmonary circulation is often considered to be a quasi-static system in both experimental and computational studies of pulmonary perfusion and its matching to ventilation (air flow) for exchange. However, the system is highly dynamic, with cardiac output and regional perfusion changing with posture, exercise, and over time. Here we review this dynamic system, with a focus on understanding the physiology of pulmonary vascular dynamics across spatial and temporal scales, and the changes to these dynamics that are reflective of disease. © 2019 American Physiological Society. Compr Physiol 9:1081-1100, 2019.
Collapse
Affiliation(s)
- Alys Clark
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Merryn Tawhai
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
36
|
Tannvik TD, Rimehaug AE, Wigen MS, Løvstakken L, Kirkeby-Garstad I. Ventriculo-arterial interaction may be assessed by Oscillatory Power Fraction. Clin Physiol Funct Imaging 2019; 39:308-314. [PMID: 31038817 DOI: 10.1111/cpf.12573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/25/2019] [Indexed: 11/29/2022]
Abstract
The rate of energy transfer from the left ventricle to the aorta is viewed in terms of mean power (MP) and total power (TP). The difference between MP and TP is due to the pulsatility of the circulation and is known as oscillatory power (OP). OP is considered the energy spent to accelerate the blood flow. The aim of this study was to investigate the baseline left ventricular oscillatory power fraction (OP/TP) and how this was affected by acute cardiovascular dysfunction and altered preload. Twenty-eight patients undergoing elective coronary artery bypass graft surgery were included. Before administration of anaesthesia, we simultaneously recorded an arterial pressure curve and instantaneous cardiac outflow with pulsed wave Doppler. Postoperatively, prior to extubation, these measurements were repeated in neutral, Trendelenburg and reverse-Trendelenburg position. The final measurements were taken on the awake patient the day after the operation. TP is the mean of the instantaneous product of the flow and pressure curves. MP was calculated by multiplying mean arterial pressure with mean cardiac output. The oscillatory power fraction is therefore calculated as (TP-MP)/TP. The oscillatory power fraction in neutral position decreased from 23% preoperatively to 16% immediately postoperatively (P<0·001) and increased again to 19% the first postoperative day (P = 0·001). The oscillatory power fraction also increased from 16% in neutral to 19% in Trendelenburg (P = 0·001) and decreased comparing to neutral, to 14% in reverse-Trendelenburg (P = 0·04). The oscillatory power fraction is situation-dependent and is influenced by both the operation and the altered preload.
Collapse
Affiliation(s)
- Tomas Dybos Tannvik
- Department of Anaesthesia and Intensive Care, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Audun Eskeland Rimehaug
- Department of Anaesthesia and Intensive Care, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway
| | - Morten Smedsrud Wigen
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Lasse Løvstakken
- Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| | - Idar Kirkeby-Garstad
- Department of Anaesthesia and Intensive Care, St Olav's Hospital, Trondheim University Hospital, Trondheim, Norway.,Department of Circulation and Medical Imaging, Faculty of Medicine and Health Sciences, Norges Teknisk-Naturvitenskapelige Universitet, Trondheim, Norway
| |
Collapse
|
37
|
Pulmonary Artery Elastic Properties After Balloon Pulmonary Angioplasty in Patients With Inoperable Chronic Thromboembolic Pulmonary Hypertension. Can J Cardiol 2019; 35:422-429. [PMID: 30935632 DOI: 10.1016/j.cjca.2019.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/27/2019] [Accepted: 01/27/2019] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND A significant proportion of the right ventricular afterload is determined by the elastic properties of the pulmonary artery (PA). We aimed to assess the effect of balloon pulmonary angioplasty (BPA) on PA elastic properties in patients with inoperable chronic thromboembolic pulmonary hypertension (CTEPH). METHODS We enrolled adult patients with CTEPH treated with BPA and controls without PH. Total PA compliance (CPa) was calculated as stroke volume/PA pulse pressure. PA distensibility (DC) and compliance (CC) coefficients were assessed by intravascular ultrasound to denote local elastic properties of the treated PA segments. RESULTS We performed 103 BPA sessions in 17 patients with CTEPH (5 men [29%], aged 66 [64 to 73] years) who were followed for 6 (5 to 7) months after the last BPA. The median time between BPA sessions was 39 (28 to 52) days. The CPa, CC, and DC were lower in patients with CTEPH than in controls without PH (n = 10). Complete BPA treatment led to increase of CPa from 1.02 (0.70 to 1.39) to 2.08 (1.49 to 2.39) mL/mm Hg (P < 0.001) at the 6-month follow up, and this increase was in proportion to a decrease in pulmonary vascular resistance (PVR) (R2 = 0.74; P = 0.001). CPa increased immediately after BPA session by 0.13 (-0.05; 0.33) mL/mm Hg (P = 0.001) and remained unchanged until the next BPA session. CC and DC exhibited no immediate change after catheter balloon inflation (Δ=0 [-0.03; 0.02] mm2/mm Hg, P = 0.52, and Δ = 0 [-0.13; 0.13] %/mm Hg, P = 0.91, respectively) and remained unchanged at the 6-month follow-up. CONCLUSIONS BPA improved total CPa in proportion to a decrease in PVR despite no improvement in local elastic properties of the treated PA segments.
Collapse
|
38
|
Smolich JJ, Mynard JP. Reducing lung liquid volume increases biventricular outputs and systemic arterial blood flows despite decreased cardiac filling pressures in fetal lambs. Am J Physiol Regul Integr Comp Physiol 2019; 316:R274-R280. [PMID: 30624977 DOI: 10.1152/ajpregu.00284.2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
As prior work has shown that reducing lung liquid volume 1) increases pulmonary arterial (PA) blood flow, 2) augments right ventricular (RV) output/power, and 3) decreases left atrial (LA) pressure, we tested the hypothesis that this perturbation has global cardiovascular effects. Ten anesthetized, open-chest fetal lambs (128 ± 2 days gestation, full term = 147 days) were acutely instrumented with 1) LA and right atrial (RA) catheters, 2) aortic and pulmonary trunk catheters, 3) brachiocephalic trunk, aortic isthmus, ductal, and left PA flow probes to obtain left ventricular (LV) and RV outputs and hydraulic power and flow in the descending thoracic aorta, and 4) an endotracheal tube to remove lung liquid. A 17 ± 7 ml/kg reduction of lung liquid volume 1) decreased LA and RA pressures similarly (1.5-1.6 mmHg, P < 0.001), 2) augmented LV and RV outputs (21-24%, P < 0.001) and total power (27-28%, P < 0.005), 3) increased systolic flows in the brachiocephalic trunk (18%, P < 0.001), aortic isthmus (29%, P < 0.005), ductus (12%, P < 0.005), and descending thoracic aorta (16%, P < 0.001), 4) increased mean PA flow via a higher systolic inflow (37%, P < 0.001) and lower diastolic backflow (-16%, P < 0.05), and 5) did not change systemic vascular conductance or arterial compliance but increased both pulmonary vascular conductance and arterial compliance (1.8-fold, P < 0.001). These data suggest that hemodynamic effects of lung liquid volume reduction are not confined to the lungs but extend to all cardiac chambers via rises in LV and RV outputs and power, despite falls in cardiac filling pressures, as well as the systemic circulation, via downstream increases in systolic flows of major central arteries.
Collapse
Affiliation(s)
- Joseph J Smolich
- Heart Research, Murdoch Children's Research Institute , Parkville, Victoria , Australia.,Department of Paediatrics, University of Melbourne , Parkville, Victoria , Australia
| | - Jonathan P Mynard
- Heart Research, Murdoch Children's Research Institute , Parkville, Victoria , Australia.,Department of Paediatrics, University of Melbourne , Parkville, Victoria , Australia.,Department of Biomedical Engineering, University of Melbourne , Parkville, Victoria , Australia.,Department of Cardiology, Royal Children's Hospital , Parkville, Victoria , Australia
| |
Collapse
|
39
|
Abstract
The most common cause of right heart failure is increased afterload caused by pulmonary hypertension. Right ventricular function adaptation to increased afterload is basically systolic, with secondary increase in dimensions and systemic congestion. Increased right ventricular dimensions and decreased ejection fraction are associated with a decreased survival in severe pulmonary hypertension. Targeted therapies titrated to reverse the right ventricular remodeling dimensions improve survival in severe pulmonary hypertension.
Collapse
|
40
|
Amsallem M, Mercier O, Kobayashi Y, Moneghetti K, Haddad F. Forgotten No More: A Focused Update on the Right Ventricle in Cardiovascular Disease. JACC-HEART FAILURE 2018; 6:891-903. [PMID: 30316939 DOI: 10.1016/j.jchf.2018.05.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/13/2022]
Abstract
In the last decade, there has been renewed interest in the study of the right ventricle. It is now well established that right ventricular function is a strong predictor of mortality, not only in heart failure but also in pulmonary hypertension, congenital heart disease, and cardiothoracic surgery. The right ventricle is part of a cardiopulmonary unit with connections to the pulmonary circulation, venous return, atria, and left ventricle. In this context, ventriculoarterial coupling, interventricular interactions, and pericardial constraint become important to understand right ventricular adaptation to injury or abnormal loading conditions. This state-of-the-art review summarizes major advances that occurred in the field of right ventricular research over the last decade. The first section focuses on right ventricular physiology and pulmonary circulation. The second section discusses the emerging data on right ventricular phenotyping, highlighting the importance of myocardial deformation (strain) imaging and assessment of end-systolic dimensions. The third section reviews recent clinical trials involving patients at risk for or with established right ventricular failure, focusing on beta blockade, phosphodiesterase inhibition, and mechanical support of the failing right heart. The final section presents a perspective on active areas of research that are most likely to translate in clinical practice in the next decade.
Collapse
Affiliation(s)
- Myriam Amsallem
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Stanford Cardiovascular Institute, Stanford, California; Vera Moulton Wall Center at Stanford, Stanford, California; Research and Innovation Unit, INSERM U999, DHU Torino, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Olaf Mercier
- Research and Innovation Unit, INSERM U999, DHU Torino, Paris Sud University, Marie Lannelongue Hospital, Le Plessis Robinson, France; Department of Cardiothoracic Surgery, Marie Lannelongue Hospital, Le Plessis Robinson, France
| | - Yukari Kobayashi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Stanford Cardiovascular Institute, Stanford, California
| | - Kegan Moneghetti
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Stanford Cardiovascular Institute, Stanford, California
| | - Francois Haddad
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California; Stanford Cardiovascular Institute, Stanford, California; Vera Moulton Wall Center at Stanford, Stanford, California.
| |
Collapse
|
41
|
Increased right ventricular power and ductal characteristic impedance underpin higher pulmonary arterial blood flow after betamethasone therapy in fetal lambs. Pediatr Res 2018; 84:558-563. [PMID: 29983413 DOI: 10.1038/s41390-018-0098-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 11/09/2022]
Abstract
BACKGROUND The glucocorticosteroid betamethasone is routinely administered prior to anticipated preterm birth to enhance lung maturation. While betamethasone also increases fetal pulmonary blood flow and reduces pulmonary vascular resistance (PVR), we investigated whether alterations in right ventricular (RV) function and ductal characteristic impedance (Zc) additionally contributed to rises in pulmonary flow. METHODS Anesthetized preterm fetal lambs with (n = 10) or without (n = 8) betamethasone pretreatment were instrumented with a pulmonary trunk micromanometer and ductus arteriosus and left pulmonary artery (PA) flow probes to calculate Zc, and obtain RV output and hydraulic power. RESULTS Betamethasone (1) increased systolic and pulse arterial pressures (P ≤ 0.04), heart rate (P = 0.02), and lowered PVR (P = 0.04), (2) increased mean (P = 0.008) and systolic (P = 0.004), but not diastolic PA flow or PA Zc, (3) increased ductal Zc (P < 0.05), but not ductal flow, (4) increased RV output (P = 0.03) and the proportion of PT flow distributed to the lungs (P = 0.02), and (5) increased RV power (P ≤ 0.002). CONCLUSION An increased fetal PA blood flow after betamethasone therapy was confined to the systole and underpinned not only by decreased PVR, but also greater RV power and preferential distribution of an augmented RV systolic outflow to the lungs due to higher ductal Zc.
Collapse
|
42
|
Mercurio V, Palazzuoli A, Correale M, Lombardi C, Passantino A, Ravera A, Ruocco G, Sciatti E, Triggiani M, Lagioia R, Scrutinio D, Tocchetti CG, Nodari S. Right heart dysfunction: from pathophysiologic insights to therapeutic options: a translational overview. J Cardiovasc Med (Hagerstown) 2018; 19:613-623. [PMID: 30048301 DOI: 10.2459/jcm.0000000000000700] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
: The right ventricle has become increasingly studied in cardiovascular research. In this article, we describe specific pathophysiological characteristics of the right ventricle, with special focus on functional and molecular modifications as well as therapeutic strategies in right ventricular dysfunction, underlining the differences with the left ventricle. Then we analyze the main imaging modalities to assess right ventricular function in different clinical settings. Finally, we acknowledge main therapeutic advances for treatment of right heart diseases.
Collapse
Affiliation(s)
- Valentina Mercurio
- Department of Translational Medical Sciences, Federico II University, Naples
| | - Alberto Palazzuoli
- Department of Internal Medicine, Cardiovascular Diseases Unit, University of Siena, Siena
| | | | - Carlo Lombardi
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Andrea Passantino
- Istituti Clinici Scientifici Maugeri. Istituto di Cassano delle Murge. I.R.C.C.S., Cassano Murge, Bari, Italy
| | - Alice Ravera
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Gaetano Ruocco
- Department of Internal Medicine, Cardiovascular Diseases Unit, University of Siena, Siena
| | - Edoardo Sciatti
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Marco Triggiani
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| | - Rocco Lagioia
- Istituti Clinici Scientifici Maugeri. Istituto di Cassano delle Murge. I.R.C.C.S., Cassano Murge, Bari, Italy
| | - Domenico Scrutinio
- Istituti Clinici Scientifici Maugeri. Istituto di Cassano delle Murge. I.R.C.C.S., Cassano Murge, Bari, Italy
| | - Carlo G Tocchetti
- Department of Translational Medical Sciences, Federico II University, Naples
| | - Savina Nodari
- Cardiology Section, Department of Clinical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia
| |
Collapse
|
43
|
Dieffenbach PB, Maracle M, Tschumperlin DJ, Fredenburgh LE. Mechanobiological Feedback in Pulmonary Vascular Disease. Front Physiol 2018; 9:951. [PMID: 30090065 PMCID: PMC6068271 DOI: 10.3389/fphys.2018.00951] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/28/2018] [Indexed: 01/06/2023] Open
Abstract
Vascular stiffening in the pulmonary arterial bed is increasingly recognized as an early disease marker and contributor to right ventricular workload in pulmonary hypertension. Changes in pulmonary artery stiffness throughout the pulmonary vascular tree lead to physiologic alterations in pressure and flow characteristics that may contribute to disease progression. These findings have led to a greater focus on the potential contributions of extracellular matrix remodeling and mechanical signaling to pulmonary hypertension pathogenesis. Several recent studies have demonstrated that the cellular response to vascular stiffness includes upregulation of signaling pathways that precipitate further vascular remodeling, a process known as mechanobiological feedback. The extracellular matrix modifiers, mechanosensors, and mechanotransducers responsible for this process have become increasingly well-recognized. In this review, we discuss the impact of vascular stiffening on pulmonary hypertension morbidity and mortality, evidence in favor of mechanobiological feedback in pulmonary hypertension pathogenesis, and the major contributors to mechanical signaling in the pulmonary vasculature.
Collapse
Affiliation(s)
- Paul B Dieffenbach
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| | - Marcy Maracle
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - Laura E Fredenburgh
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Boston, MA, United States
| |
Collapse
|
44
|
Su J, Logan CC, Hughes AD, Parker KH, Dhutia NM, Danielsen CC, Simonsen U. Impact of chronic hypoxia on proximal pulmonary artery wave propagation and mechanical properties in rats. Am J Physiol Heart Circ Physiol 2018; 314:H1264-H1278. [PMID: 29547024 PMCID: PMC6032080 DOI: 10.1152/ajpheart.00695.2017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 03/12/2018] [Accepted: 03/14/2018] [Indexed: 02/06/2023]
Abstract
Arterial stiffness and wave reflection are important components of the ventricular afterload. Therefore, we aimed to assess the arterial wave characteristics and mechanical properties of the proximal pulmonary arteries (PAs) in the hypoxic pulmonary hypertensive rat model. After 21 days in normoxic or hypoxic chambers (24 animals/group), animals underwent transthoracic echocardiography and PA catheterization with a dual-tipped pressure and Doppler flow sensor wire. Wave intensity analysis was performed. Artery rings obtained from the pulmonary trunk, right and left PAs, and aorta were subjected to a tensile test to rupture. Collagen and elastin content were determined. In hypoxic rats, proximal PA wall thickness, collagen content, tensile strength per unit collagen, maximal elastic modulus, and wall viscosity increased, whereas the elastin-to-collagen ratio and arterial distensibility decreased. Arterial pulse wave velocity was also increased, and the increase was more prominent in vivo than ex vivo. Wave intensity was similar in hypoxic and normoxic animals with negligible wave reflection. In contrast, the aortic maximal elastic modulus remained unchanged, whereas wall viscosity decreased. In conclusion, there was no evidence of altered arterial wave propagation in proximal PAs of hypoxic rats while the extracellular matrix protein composition was altered and collagen tensile strength increased. This was accompanied by altered mechanical properties in vivo and ex vivo. NEW & NOTEWORTHY In rats exposed to chronic hypoxia, we have shown that pulse wave velocity in the proximal pulmonary arteries increased and pressure dependence of the pulse wave velocity was steeper in vivo than ex vivo leading to a more prominent increase in vivo.
Collapse
Affiliation(s)
- Junjing Su
- Department of Biomedicine, Aarhus University , Aarhus , Denmark
| | | | - Alun D Hughes
- Institute of Cardiovascular Science, University College London , London , United Kingdom
| | - Kim H Parker
- Department of Bioengineering, Imperial College London , London , United Kingdom
| | - Niti M Dhutia
- Department of Bioengineering, Imperial College London , London , United Kingdom
| | | | - Ulf Simonsen
- Department of Biomedicine, Aarhus University , Aarhus , Denmark
| |
Collapse
|
45
|
Tampakakis E, Shah SJ, Borlaug BA, Leary PJ, Patel HH, Miller WL, Kelemen BW, Houston BA, Kolb TM, Damico R, Mathai SC, Kasper EK, Hassoun PM, Kass DA, Tedford RJ. Pulmonary Effective Arterial Elastance as a Measure of Right Ventricular Afterload and Its Prognostic Value in Pulmonary Hypertension Due to Left Heart Disease. Circ Heart Fail 2018; 11:e004436. [PMID: 29643065 PMCID: PMC5901761 DOI: 10.1161/circheartfailure.117.004436] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 03/09/2018] [Indexed: 01/01/2023]
Abstract
BACKGROUND Patients with combined post- and precapillary pulmonary hypertension due to left heart disease have a worse prognosis compared with isolated postcapillary. However, it remains unclear whether increased mortality in combined post- and precapillary pulmonary hypertension is simply a result of higher total right ventricular load. Pulmonary effective arterial elastance (Ea) is a measure of total right ventricular afterload, reflecting both resistive and pulsatile components. We aimed to test whether pulmonary Ea discriminates survivors from nonsurvivors in patients with pulmonary hypertension due to left heart disease and if it does so better than other hemodynamic parameters associated with combined post- and precapillary pulmonary hypertension. METHODS AND RESULTS We combined 3 large heart failure patient cohorts (n=1036) from academic hospitals, including patients with pulmonary hypertension due to heart failure with preserved ejection fraction (n=232), reduced ejection fraction (n=335), and a mixed population (n=469). In unadjusted and 2 adjusted models, pulmonary Ea more robustly predicted mortality than pulmonary vascular resistance and the transpulmonary gradient. Along with pulmonary arterial compliance, pulmonary Ea remained predictive of survival in patients with normal pulmonary vascular resistance. The diastolic pulmonary gradient did not predict mortality. In addition, in a subset of patients with echocardiographic data, Ea and pulmonary arterial compliance were better discriminators of right ventricular dysfunction than the other parameters. CONCLUSIONS Pulmonary Ea and pulmonary arterial compliance more consistently predicted mortality than pulmonary vascular resistance or transpulmonary gradient across a spectrum of left heart disease with pulmonary hypertension, including patients with heart failure with preserved ejection fraction, heart failure with reduced ejection fraction, and pulmonary hypertension with a normal pulmonary vascular resistance.
Collapse
Affiliation(s)
- Emmanouil Tampakakis
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Sanjiv J Shah
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Barry A Borlaug
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Peter J Leary
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Harnish H Patel
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Wayne L Miller
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Benjamin W Kelemen
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Brian A Houston
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Todd M Kolb
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Rachel Damico
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Stephen C Mathai
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Edward K Kasper
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Paul M Hassoun
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - David A Kass
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.)
| | - Ryan J Tedford
- Division of Cardiology (E.T., B.W.K., E.K.K., D.A.K., R.J.T.) and Division of Pulmonary and Critical Care Medicine (T.M.K., R.D., S.C.M., P.M.H.), Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD. Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL (S.J.S., H.H.P.). Division of Cardiology, Mayo Clinic, Rochester, MN (B.A.B., W.L.M.). Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle (P.J.L.). Division of Cardiology, Department of Medicine, Medical University of South Carolina, Charleston (B.A.H., R.J.T.).
| |
Collapse
|
46
|
Axell RG, Messer SJ, White PA, McCabe C, Priest A, Statopoulou T, Drozdzynska M, Viscasillas J, Hinchy EC, Hampton-Till J, Alibhai HI, Morrell N, Pepke-Zaba J, Large SR, Hoole SP. Ventriculo-arterial coupling detects occult RV dysfunction in chronic thromboembolic pulmonary vascular disease. Physiol Rep 2017; 5:5/7/e13227. [PMID: 28373412 PMCID: PMC5392517 DOI: 10.14814/phy2.13227] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/09/2017] [Accepted: 02/26/2017] [Indexed: 01/24/2023] Open
Abstract
Chronic thromboembolic disease (CTED) is suboptimally defined by a mean pulmonary artery pressure (mPAP) <25 mmHg at rest in patients that remain symptomatic from chronic pulmonary artery thrombi. To improve identification of right ventricular (RV) pathology in patients with thromboembolic obstruction, we hypothesized that the RV ventriculo-arterial (Ees/Ea) coupling ratio at maximal stroke work (Ees/Eamax sw) derived from an animal model of pulmonary obstruction may be used to identify occult RV dysfunction (low Ees/Ea) or residual RV energetic reserve (high Ees/Ea). Eighteen open chested pigs had conductance catheter RV pressure-volume (PV)-loops recorded during PA snare to determine Ees/Eamax sw This was then applied to 10 patients with chronic thromboembolic pulmonary hypertension (CTEPH) and ten patients with CTED, also assessed by RV conductance catheter and cardiopulmonary exercise testing. All patients were then restratified by Ees/Ea. The animal model determined an Ees/Eamax sw = 0.68 ± 0.23 threshold, either side of which cardiac output and RV stroke work fell. Two patients with CTED were identified with an Ees/Ea well below 0.68 suggesting occult RV dysfunction whilst three patients with CTEPH demonstrated Ees/Ea ≥ 0.68 suggesting residual RV energetic reserve. Ees/Ea > 0.68 and Ees/Ea < 0.68 subgroups demonstrated constant RV stroke work but lower stroke volume (87.7 ± 22.1 vs. 60.1 ± 16.3 mL respectively, P = 0.006) and higher end-systolic pressure (36.7 ± 11.6 vs. 68.1 ± 16.7 mmHg respectively, P < 0.001). Lower Ees/Ea in CTED also correlated with reduced exercise ventilatory efficiency. Low Ees/Ea aligns with features of RV maladaptation in CTED both at rest and on exercise. Characterization of Ees/Ea in CTED may allow for better identification of occult RV dysfunction.
Collapse
Affiliation(s)
- Richard G Axell
- Medical Physics and Clinical Engineering, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK.,Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, UK
| | - Simon J Messer
- Department of Cardiovascular Surgery, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Paul A White
- Medical Physics and Clinical Engineering, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK.,Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, UK
| | - Colm McCabe
- Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Andrew Priest
- Medical Physics and Clinical Engineering, Cambridge University Hospital NHS Foundation Trust, Cambridge, UK
| | | | | | | | - Elizabeth C Hinchy
- MRC Mitochondrial Biology Unit, Cambridge Biomedical Campus, Cambridge, UK
| | - James Hampton-Till
- Postgraduate Medical Institute, Anglia Ruskin University, Chelmsford, UK
| | | | - Nicholas Morrell
- Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Joanna Pepke-Zaba
- Pulmonary Vascular Diseases Unit, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Stephen R Large
- Department of Cardiovascular Surgery, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| | - Stephen P Hoole
- Department of Interventional Cardiology, Papworth Hospital NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
47
|
Adir Y, Guazzi M, Offer A, Temporelli PL, Cannito A, Ghio S. Pulmonary hemodynamics in heart failure patients with reduced or preserved ejection fraction and pulmonary hypertension: Similarities and disparities. Am Heart J 2017; 192:120-127. [PMID: 28938958 DOI: 10.1016/j.ahj.2017.06.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 06/16/2017] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The current understanding of pulmonary hypertension (PH) due to left ventricular diseases does not distinguish heart failure (HF) with reduced ejection fraction (HFrEF) from HF and preserved ejection fraction (HFpEF), in terms of pulmonary hemodynamics. The value of pulmonary vascular compliance (PCa) and diastolic pulmonary gradient (DPG) as predictors of survival in either HF syndrome is controversial. The aims of our study were to compare the pulmonary hemodynamics in the two HF phenotypes, given similar values of pulmonary artery wedge pressure (PAWP), and to evaluate the impact of PCa and DPG on survival. METHODS We retrospectively reviewed the charts of 168 PH-HFrEF and 86 PH-HFpEF patients. The independent association of PCa and DPG with prognosis was assessed by means of a Cox proportional hazard model. All cause survival was analyzed over an average follow-up period of 50 months. RESULTS PH-HFpEF patients had a significantly higher DPG than PH-HFrEF patients (6.1±7.1 vs 1.8±4.5 mmHg, adjusted P=.025). PCa was similar in PH-HFpEF and PH-HFrEF. PCa was a significant predictor of survival, according to previously described preset cutoffs (2.15 mL/mmHg in HFrEF and 1.1 mL/mmHg in HFpEF) and based on a continuous scale; whereas DPG had no impact on survival in both patients groups. CONCLUSION Our findings suggest that for similar levels of PAWP, pulmonary circulation may be stiffer in patients with HFpEF-PH than patients with HFrEF-PH, leading to higher DPGs. Nonetheless, PCa rather than DPG emerged as the stronger predictor of survival in both left-sided PH phenotypes.
Collapse
|
48
|
Grignola JC, Domingo E. Conceptos básicos en circulación pulmonar. REVISTA COLOMBIANA DE CARDIOLOGÍA 2017. [DOI: 10.1016/j.rccar.2017.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
49
|
Acosta S, Puelz C, Rivière B, Penny DJ, Brady KM, Rusin CG. Cardiovascular mechanics in the early stages of pulmonary hypertension: a computational study. Biomech Model Mechanobiol 2017; 16:2093-2112. [PMID: 28733923 DOI: 10.1007/s10237-017-0940-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 07/12/2017] [Indexed: 01/12/2023]
Abstract
We formulate and study a new mathematical model of pulmonary hypertension. Based on principles of fluid and elastic dynamics, we introduce a model that quantifies the stiffening of pulmonary vasculature (arteries and arterioles) to reproduce the hemodynamics of the pulmonary system, including physiologically consistent dependence between compliance and resistance. This pulmonary model is embedded in a closed-loop network of the major vessels in the body, approximated as one-dimensional elastic tubes, and zero-dimensional models for the heart and other organs. Increasingly severe pulmonary hypertension is modeled in the context of two extreme scenarios: (1) no cardiac compensation and (2) compensation to achieve constant cardiac output. Simulations from the computational model are used to estimate cardiac workload, as well as pressure and flow traces at several locations. We also quantify the sensitivity of several diagnostic indicators to the progression of pulmonary arterial stiffening. Simulation results indicate that pulmonary pulse pressure, pulmonary vascular compliance, pulmonary RC time, luminal distensibility of the pulmonary artery, and pulmonary vascular impedance are much better suited to detect the early stages of pulmonary hypertension than mean pulmonary arterial pressure and pulmonary vascular resistance, which are conventionally employed as diagnostic indicators for this disease.
Collapse
Affiliation(s)
- Sebastián Acosta
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA.
| | - Charles Puelz
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Béatrice Rivière
- Department of Computational and Applied Mathematics, Rice University, Houston, TX, USA
| | - Daniel J Penny
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Ken M Brady
- Department of Anesthesiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| | - Craig G Rusin
- Department of Pediatrics-Cardiology, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, USA
| |
Collapse
|
50
|
Right ventricular response to pulsatile load is associated with early right heart failure and mortality after left ventricular assist device. J Heart Lung Transplant 2017; 36:97-105. [DOI: 10.1016/j.healun.2016.06.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 05/19/2016] [Accepted: 06/22/2016] [Indexed: 11/23/2022] Open
|