1
|
Caterino M, Costanzo M, Castaldo A, Iacotucci P, Carnovale V, Ruoppolo M, Gelzo M, Castaldo G. Metabolomic profiling of saliva from cystic fibrosis patients. Sci Rep 2025; 15:479. [PMID: 39747338 PMCID: PMC11696459 DOI: 10.1038/s41598-024-84191-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/20/2024] [Indexed: 01/04/2025] Open
Abstract
The development of targeted therapies that correct the effect of mutations in patients with cystic fibrosis (CF) and the relevant heterogeneity of the clinical expression of the disease require biomarkers correlated to the severity of the disease useful for monitoring the therapeutic effects. We applied a targeted metabolomic approach by LC-MS/MS on saliva samples from 70 adult CF patients and 63 age/sex-matched controls to investigate alterations in metabolic pathways related to pancreatic insufficiency (PI), Pseudomonas aeruginosa (PA) colonization, CF liver disease (CFLD), and CF related diabetes (CFRD). Sixty salivary metabolites were differentially expressed, with 11 being less abundant and 49 more abundant in CF patients. Among these, the most relevant alterations involved salivary ADMA, N-acetylornithine, methionine and methionine sulfoxide levels. Furthermore, methionine was significantly lower in CF patients with PI and salivary histamine levels were significantly lower in patients colonized by PA. Moreover, ADMA as well as N-acetylornithine and methionine were significantly lower in CF patients with CFRD than in patients without CFRD. Finally, the levels of DOPA resulted significantly lower in saliva from patients with liver disease. Our study revealed an imbalance in arginine methylation and tryptophan pathway related to CFRD and PI as well as alterations in dopaminergic pathway and Krebs cycle related to CFLD. This study also highlights different salivary metabolites as new potential biomarkers in a non-invasive sample that could represent a useful tool for the stratification and management of CF patients.
Collapse
Affiliation(s)
- M Caterino
- CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - M Costanzo
- CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - A Castaldo
- SC di Pneumologia e UTSIR, AORN Santobono-Pausilipon, Naples, Italy
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Naples, Italy
| | - P Iacotucci
- Dipartimento di Medicina Clinica e Chirurgia, Università di Napoli Federico II, Naples, Italy
| | - V Carnovale
- Dipartimento di Scienze Mediche Traslazionali, Università di Napoli Federico II, Naples, Italy
| | - M Ruoppolo
- CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| | - M Gelzo
- CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy.
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy.
| | - G Castaldo
- CEINGE-Biotecnologie avanzate Franco Salvatore, Via G. Salvatore 486, Naples, 80145, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, Naples, Italy
| |
Collapse
|
2
|
Stumpf F, Wunderle C, Ritz J, Bernasconi L, Neyer P, Tribolet P, Stanga Z, Mueller B, Bischoff SC, Schuetz P. Prognostic implications of the arginine metabolism in patients at nutritional risk: A secondary analysis of the randomized EFFORT trial. Clin Nutr 2024; 43:660-673. [PMID: 38309228 DOI: 10.1016/j.clnu.2024.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/26/2023] [Accepted: 01/14/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Arginine, a conditionally essential amino acid, is key component in metabolic pathways including immune regulation and protein synthesis. Depletion of arginine contributes to worse outcomes in severely ill and surgical patient populations. We assessed prognostic implications of arginine levels and its metabolites and ratios in polymorbid medical inpatients at nutritional risk regarding clinical outcomes and treatment response. METHODS Within this secondary analysis of the randomized controlled Effect of early nutritional support on Frailty, Functional Outcomes, and Recovery of malnourished medical inpatients Trial (EFFORT), we investigated the association of arginine, its metabolites and ratios (i.e., ADMA and SDMA, ratios of arginine/ADMA, arginine/ornithine, and global arginine bioavailability ratio) measured on hospital admission with short-term and long-term mortality by means of regression analysis. RESULTS Among the 231 patients with available measurements, low arginine levels ≤90.05 μmol/l (n = 86; 37 %) were associated with higher all-cause mortality at 30 days (primary endpoint, adjusted HR 3.27, 95 % CI 1.86 to 5.75, p < 0.001) and at 5 years (adjusted HR 1.50, 95 % CI 1.07 to 2.12, p = 0.020). Arginine metabolites and ratios were also associated with adverse outcome, but had lower prognostic value. There was, however, no evidence that treatment response was influenced by admission arginine levels. CONCLUSION This secondary analysis focusing on medical inpatients at nutritional risk confirms a strong association of low plasma arginine levels and worse clinical courses. The potential effects of arginine-enriched nutritional supplements should be investigated in this population of patients. CLINICAL TRIAL REGISTRATION clinicaltrials.gov as NCT02517476 (registered 7 August 2015).
Collapse
Affiliation(s)
- Franziska Stumpf
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland; Institute of Nutritional Medicine, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Carla Wunderle
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Jacqueline Ritz
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Luca Bernasconi
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Peter Neyer
- Institute of Laboratory Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland
| | - Pascal Tribolet
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland; Department of Health Professions, Bern University of Applied Sciences, Falkenplatz 24, 3012 Bern, Switzerland; Faculty of Life Sciences University of Vienna, Djerassiplatz 1, 1030 Vienna, Austria
| | - Zeno Stanga
- Division of Diabetes, Endocrinology, Nutritional Medicine, and Metabolism, Bern University Hospital and University of Bern, Freiburgstrasse 15, 3010 Bern, Switzerland
| | - Beat Mueller
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland; Medical Faculty of the University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland
| | - Stephan C Bischoff
- Institute of Nutritional Medicine, University of Hohenheim, Garbenstraße 30, 70599 Stuttgart, Germany
| | - Philipp Schuetz
- Medical University Department, Division of General Internal and Emergency Medicine, Kantonsspital Aarau, Tellstrasse 25, 5001 Aarau, Switzerland; Medical Faculty of the University of Basel, Klingelbergstrasse 61, 4056 Basel, Switzerland.
| |
Collapse
|
3
|
Eggenkemper L, Schlegtendal A, Maier C, Lücke T, Brinkmann F, Beckmann B, Tsikas D, Koerner-Rettberg C. Impaired Nitric Oxide Synthetase Activity in Primary Ciliary Dyskinesia-Data-Driven Hypothesis. J Clin Med 2023; 12:6010. [PMID: 37762950 PMCID: PMC10531778 DOI: 10.3390/jcm12186010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/07/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
Low nasal nitric oxide (nNO) is a typical feature of Primary Ciliary Dyskinesia (PCD). nNO is part of the PCD diagnostic algorithm due to its discriminative power against other lung diseases, such as cystic fibrosis (CF). However, the underlying pathomechanisms are elusive. To better understand NO dysregulation in PCD, the L-arginine/NO (Arg/NO) pathway in patients with PCD (pwPCD) and CF (pwCF) and in healthy control (HC) subjects was investigated. In a prospective, controlled study, we measured in 24 pwPCD, 25 age-matched pwCF, and 14 HC the concentrations of the NO precursors Arg and homoarginine (hArg), the arginase metabolite ornithine (Orn), the NO inhibitor asymmetric dimethylarginine (ADMA), and the major NO metabolites (nitrate, nitrite) in sputum, plasma, and urine using validated methods. In comparison to HC, the sputum contents (in µmol/mg) of L-Arg (PCD 18.43 vs. CF 329.46 vs. HC 9.86, p < 0.001) and of ADMA (PCD 0.055 vs. CF 0.015 vs. HC 0.010, p < 0.001) were higher. In contrast, the sputum contents (in µmol/mg) of nitrate and nitrite were lower in PCD compared to HC (nitrite 4.54 vs. 9.26, p = 0.023; nitrate 12.86 vs. 40.33, p = 0.008), but higher in CF (nitrite 16.28, p < 0.001; nitrate 56.83, p = 0.002). The metabolite concentrations in urine and plasma were similar in all groups. The results of our study indicate that PCD, unlike CF, is associated with impaired NO synthesis in the lung, presumably due to mechano-chemical uncoupling.
Collapse
Affiliation(s)
- Lisa Eggenkemper
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
- Department of Internal Medicine and Gastroenterology, Christophorus-Kliniken Coesfeld, Teaching Hospital of University Münster, 48653 Coesfeld, Germany
| | - Anne Schlegtendal
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
| | - Christoph Maier
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
| | - Thomas Lücke
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
| | - Folke Brinkmann
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
- Section for Pediatric Pneumology and Allergology, University Medical Center Schleswig-Holstein, 23538 Lübeck, Germany
| | - Bibiana Beckmann
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (B.B.); (D.T.)
| | - Dimitrios Tsikas
- Core Unit Proteomics, Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany; (B.B.); (D.T.)
| | - Cordula Koerner-Rettberg
- University Children’s Hospital, Ruhr-University Bochum, 44791 Bochum, Germany; (A.S.); (C.M.); (T.L.); (F.B.); (C.K.-R.)
- Department of Pediatrics, Marien-Hospital Wesel, Teaching Hospital of University of Münster, 46483 Wesel, Germany
| |
Collapse
|
4
|
Grasemann H, McDonald N, Yuan XZ, Dell S, Waters V, Ratjen F. Lower Airway Nitrogen Oxide Levels in Children with Primary Ciliary Dyskinesia Is Linked to Neutrophilic Inflammation. J Pediatr 2022; 244:230-233. [PMID: 35120987 DOI: 10.1016/j.jpeds.2022.01.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 11/27/2022]
Abstract
Treatment of primary ciliary dyskinesia pulmonary exacerbations resulted in an increase in sputum nitric oxide (NO) metabolites and decrease in neutrophilic inflammation. The association between the 2 suggests that neutrophilic inflammation contributes to airway NO deficiency in primary ciliary dyskinesia and that reducing inflammation may lead to improved airway NO homeostasis. TRIAL REGISTRY: ClinicalTrials.gov: NCT01155115.
Collapse
Affiliation(s)
- Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada.
| | - Nancy McDonald
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Xi Zhou Yuan
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| | - Sharon Dell
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Respiratory Medicine, Department of Pediatrics, University of British Columbia, British Columbia, Canada
| | - Valerie Waters
- Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada; Division of Infectious Diseases, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Department of Paediatrics, The Hospital for Sick Children, Toronto, Ontario, Canada; Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada; University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Nissen G, Ben-Meir E, Kopp M, Shaw M, Ratjen F, Grasemann H. Interleukin-1 beta is a potential mediator of airway nitric oxide deficiency in cystic fibrosis. J Cyst Fibros 2022; 21:623-625. [DOI: 10.1016/j.jcf.2022.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 02/27/2022] [Indexed: 11/25/2022]
|
6
|
Nguyen ALV, Haas D, Bouchard M, Quon BS. Metabolomic Biomarkers to Predict and Diagnose Cystic Fibrosis Pulmonary Exacerbations: A Systematic Review. Front Pediatr 2022; 10:896439. [PMID: 35712620 PMCID: PMC9192952 DOI: 10.3389/fped.2022.896439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Metabolomics is an emerging area of research and has the potential to identify clinical biomarkers for predicting or diagnosing cystic fibrosis (CF) pulmonary exacerbations (PEx). OBJECTIVE To identify clinically promising metabolites across different sample sources that can be used to predict or diagnose PEx in CF. EVIDENCE REVIEW Searches for original literature were completed through EMBASE, MEDLINE, and all databases on the Web of Science with no restrictions on language or publication date. Gray literature was collected through Google Scholar. Additional studies were obtained by contacting authors and searching reference lists of candidate papers. The patient population included individuals with CF. Studies involving patients who underwent lung transplantation were excluded. The outcome was the prediction or diagnosis of pulmonary exacerbations from metabolites directly measured from biological samples. Search results were downloaded and imported into Covidence and duplicates were removed automatically. Any remaining duplicates were manually tagged and excluded. Two independent reviewers screened each abstract for eligibility and repeated this process for full texts. Risk of bias was conducted using QUADAS-2 by two independent reviewers. A third author resolved any remaining conflicts. RESULTS A combined 3974 relevant abstracts were identified and 115 full texts were assessed for eligibility. The final 25 studies underwent data extraction for study design, patient demographics, studied metabolites, concentration values, and diagnostic accuracy values. Included studies differed considerably in methodologies, sample specimen types (exhaled breath condensate [EBC], sputum, saliva, plasma, urine), and disease states. We identified 19 unique metabolites that were measured by two or more studies of which 2 have the potential to predict PEx (EBC 4-hydroxycyclohexylcarboxylic acid [4-HCHC] and lactic acid) and 6 to diagnose PEx (EBC 4-HCHC and lactic acid, sputum lactic acid and nitrate, and plasma arginine and methionine). CONCLUSION AND RELEVANCE This systematic review has identified promising metabolites for further study in CF. Certain metabolites may provide clinical potential in predicting or diagnosing PEx, but further validation studies are required. With better tools to aid in the earlier identification of PEx, clinicians can implement preventative measures to mitigate airway damage.Systematic Review Registration: https://www.crd.york.ac.uk/prospero/.
Collapse
Affiliation(s)
- Anna-Lisa V Nguyen
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Dominic Haas
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Mégane Bouchard
- Department of Epidemiology, Biostatistics, and Occupational Health, McGill University, Montréal, QC, Canada
| | - Bradley S Quon
- Centre for Heart Lung Innovation, University of British Columbia, Vancouver, BC, Canada.,Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Scott JA, Maarsingh H, Holguin F, Grasemann H. Arginine Therapy for Lung Diseases. Front Pharmacol 2021; 12:627503. [PMID: 33833679 PMCID: PMC8022134 DOI: 10.3389/fphar.2021.627503] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/04/2021] [Indexed: 12/15/2022] Open
Abstract
Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs), which all utilize L-arginine as substrate. The production of NO in the lung and airways can play a number of roles during lung development, regulates airway and vascular smooth muscle tone, and is involved in inflammatory processes and host defense. Altered L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors and competition for substrate with the arginase enzymes, has been found to play a role in various conditions affecting the lung and in pulmonary diseases, such as asthma, chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to increase L-arginine levels or bioavailability are currently being explored in pre-clinical and clinical studies. These include supplementation of L-arginine or L-citrulline and inhibition of arginase.
Collapse
Affiliation(s)
- Jeremy A Scott
- Occupational and Environmental Health, Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Harm Maarsingh
- Department of Pharmaceutical Sciences, Lloyd L. Gregory School of Pharmacy, Palm Beach Atlantic University, West Palm Beach, FL, United States
| | - Fernando Holguin
- Division of Pulmonary Sciences and Critical Care, University of Colorado, Aurora, CO, United States
| | - Hartmut Grasemann
- Division of Respiratory Medicine, Department of Paediatrics and Translational Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
8
|
Oxidative Stress and Endoplasmic Reticulum Stress in Rare Respiratory Diseases. J Clin Med 2021; 10:jcm10061268. [PMID: 33803835 PMCID: PMC8003245 DOI: 10.3390/jcm10061268] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Several studies have shown that some rare respiratory diseases, such as alpha-1 antitrypsin deficiency (AATD), idiopathic pulmonary fibrosis (IPF), cystic fibrosis (CF), and primary ciliary dyskinesia (PCD) present oxidative stress (OS) and endoplasmic reticulum (ER) stress. Their involvement in these pathologies and the use of antioxidants as therapeutic agents to minimize the effects of OS are discussed in this review.
Collapse
|
9
|
Masood A, Jacob M, Gu X, Abdel Jabar M, Benabdelkamel H, Nizami I, Li L, Dasouki M, Abdel Rahman AM. Distinctive metabolic profiles between Cystic Fibrosis mutational subclasses and lung function. Metabolomics 2021; 17:4. [PMID: 33394183 DOI: 10.1007/s11306-020-01760-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/09/2020] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a lethal multisystemic disease of a monogenic origin with numerous mutations. Functional defects in the cystic fibrosis transmembrane conductance receptor (CFTR) protein based on these mutations are categorised into distinct classes having different clinical presentations and disease severity. OBJECTIVES The present study aimed to create a comprehensive metabolomic profile of altered metabolites in patients with CF, among different classes and in relation to lung function. METHODS A chemical isotope labeling liquid chromatography-mass spectrometry metabolomics was used to study the serum metabolic profiles of young and adult CF (n = 39) patients and healthy controls (n = 30). Comparisons were made at three levels, CF vs. controls, among mutational classes of CF, between CF class III and IV, and correlated the lung function findings. RESULTS A distinctive metabolic profile was observed in the three analyses. 78, 20, and 13 significantly differentially dysregulated metabolites were identified in the patients with CF, among the different classes and between class III and IV, respectively. The significantly identified metabolites included amino acids, di-, and tri-peptides, glutathione, glutamine, glutamate, and arginine metabolism. The top significant metabolites include 1-Aminopropan-2-ol, ophthalmate, serotonin, cystathionine, and gamma-glutamylglutamic acid. Lung function represented by an above-average FEV1% level was associated with decreased glutamic acid and increased guanosine levels. CONCLUSION Metabolomic profiling identified alterations in different amino acids and dipeptides, involved in regulating glutathione metabolism. Two metabolites, 3,4-dihydroxymandelate-3-O-sulfate and 5-Aminopentanoic acid, were identified in common between the three anlayses and may represent as highly sensitive biomarkers for CF.
Collapse
Affiliation(s)
- Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Minnie Jacob
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Mai Abdel Jabar
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, PO. Box 2925 (98), Riyadh, 11461, Saudi Arabia
| | - Imran Nizami
- Lung Transplant Section, Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Zahrawi Street, Al Maather, Riyadh, 11211, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, T6G 2R3, Canada
| | - Majed Dasouki
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia
| | - Anas M Abdel Rahman
- Metabolomics Section, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Zahrawi Street, Al Maather, PO. Box 3354, Riyadh, 11211, Saudi Arabia.
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia.
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7, Canada.
| |
Collapse
|
10
|
Local and Systemic Alterations of the L-Arginine/Nitric Oxide Pathway in Sputum, Blood, and Urine of Pediatric Cystic Fibrosis Patients and Effects of Antibiotic Treatment. J Clin Med 2020; 9:jcm9123802. [PMID: 33255369 PMCID: PMC7761143 DOI: 10.3390/jcm9123802] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/08/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the L-arginine (Arg)/nitric oxide (NO) pathway have been reported in cystic fibrosis (CF; OMIM 219700) as the result of various factors including systemic and local inflammatory activity in the airways. The aim of the present study was to evaluate the Arg/NO metabolism in pediatric CF patients with special emphasis on lung impairment and antibiotic treatment. Seventy CF patients and 78 healthy controls were included in the study. CF patients (43% male, median age 11.8 years) showed moderately impaired lung functions (FEV1 90.5 ± 19.1% (mean ± SD); 21 (30%) had a chronic Pseudomonas aeruginosa (PSA) infection, and 24 (33%) had an acute exacerbation). Plasma, urinary, and sputum concentrations of the main Arg/NO metabolites, nitrate, nitrite, Arg, homoarginine (hArg), and asymmetric dimethylarginine (ADMA) were determined in pediatric CF patients and in healthy age-matched controls. Clinical parameters in CF patients included lung function and infection with PSA. Additionally, the Arg/NO pathway in sputum samples of five CF patients was analyzed before and after routine antibiotic therapy. CF patients with low fractionally exhaled NO (FENO) showed lower plasma Arg and nitrate concentrations. During acute exacerbation, sputum Arg and hArg levels were high and dropped after antibiotic treatment: Arg: pre-antibiotics: 4.14 nmol/25 mg sputum vs. post-antibiotics: 2.33 nmol/25 mg sputum, p = 0.008; hArg: pre-antibiotics: 0.042 nmol/25 mg sputum vs. post-antibiotics: 0.029 nmol/25 mg sputum, p = 0.035. The activated Arg/NO metabolism in stable CF patients may be a result of chronic inflammation. PSA infection did not play a major role regarding these differences. Exacerbation increased and antibiotic therapy decreased sputum Arg concentrations.
Collapse
|
11
|
Brinkmann F, Hanusch B, Ballmann M, Mayorandan S, Bollenbach A, Chobanyan-Jürgens K, Jansen K, Schmidt-Choudhury A, Derichs N, Tsikas D, Lücke T. Activated L-Arginine/Nitric Oxide Pathway in Pediatric Cystic Fibrosis and Its Association with Pancreatic Insufficiency, Liver Involvement and Nourishment: An Overview and New Results. J Clin Med 2020; 9:jcm9062012. [PMID: 32604946 PMCID: PMC7356307 DOI: 10.3390/jcm9062012] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/15/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023] Open
Abstract
Cystic fibrosis (CF; OMIM 219700) is a rare genetic disorder caused by a chloride channel defect, resulting in lung disease, pancreas insufficiency and liver impairment. Altered L-arginine (Arg)/nitric oxide (NO) metabolism has been observed in CF patients’ lungs and in connection with malnutrition. The aim of the present study was to investigate markers of the Arg/NO pathway in the plasma and urine of CF patients and to identify possible risk factors, especially associated with malnutrition. We measured the major NO metabolites nitrite and nitrate, Arg, a semi-essential amino acid and NO precursor, the NO synthesis inhibitor asymmetric dimethylarginine (ADMA) and its major urinary metabolite dimethylamine (DMA) in plasma and urine samples of 70 pediatric CF patients and 78 age-matched healthy controls. Biomarkers were determined by gas chromatography–mass spectrometry and high-performance liquid chromatography. We observed higher plasma Arg (90.3 vs. 75.6 µM, p < 0.0001), ADMA (0.62 vs. 0.57 µM, p = 0.03), Arg/ADMA ratio (148 vs. 135, p = 0.01), nitrite (2.07 vs. 1.95 µM, p = 0.03) and nitrate (43.3 vs. 33.1 µM, p < 0.001) concentrations, as well as higher urinary DMA (57.9 vs. 40.7 µM/mM creatinine, p < 0.001) and nitrate (159 vs. 115 µM/mM creatinine, p = 0.001) excretion rates in the CF patients compared to healthy controls. CF patients with pancreatic sufficiency showed plasma concentrations of the biomarkers comparable to those of healthy controls. Malnourished CF patients had lower Arg/ADMA ratios (p = 0.02), indicating a higher NO synthesis capacity in sufficiently nourished CF patients. We conclude that NO production, protein-arginine dimethylation, and ADMA metabolism is increased in pediatric CF patients. Pancreas and liver function influence Arg/NO metabolism. Good nutritional status is associated with higher NO synthesis capacity and lower protein-arginine dimethylation.
Collapse
Affiliation(s)
- Folke Brinkmann
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Beatrice Hanusch
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
- Correspondence: ; Tel.: +49-234-5092615
| | - Manfred Ballmann
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
- Paediatric Clinic, University Medicine Rostock, 18057 Rostock, Germany
| | - Sebene Mayorandan
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- Department of Paediatrics, University Clinic Münster, 48149 Münster, Germany
| | - Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany; (A.B.); (D.T.)
| | - Kristine Chobanyan-Jürgens
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- Department of Clinical Pharmacology and Pharmacoepidemiology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Department of General Pediatrics, Neuropediatrics, Metabolism, Gastroenterology, Nephrology, Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
- Pediatric Clinical-Pharmacological Trial Center (paedKliPS), Center for Pediatric and Adolescent Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany
| | - Kathrin Jansen
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Anjona Schmidt-Choudhury
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| | - Nico Derichs
- Department of Paediatrics, Hannover Medical School, 30623 Hannover, Germany; (S.M.); (K.C.-J.); (N.D.)
- KinderPneumologieDerichs, Pediatric Pneumology and Allergology, CFTR & Pulmonary Research Center, 30173 Hannover, Germany
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany; (A.B.); (D.T.)
| | - Thomas Lücke
- University Children’s Hospital, Ruhr University, 44791 Bochum, Germany; (F.B.); (M.B.); (K.J.); (A.S.-C.); (T.L.)
| |
Collapse
|
12
|
Increased Arginase Expression and Decreased Nitric Oxide in Pig Donor Lungs after Normothermic Ex Vivo Lung Perfusion. Biomolecules 2020; 10:biom10020300. [PMID: 32075026 PMCID: PMC7072555 DOI: 10.3390/biom10020300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/30/2020] [Accepted: 02/11/2020] [Indexed: 01/12/2023] Open
Abstract
An established pig lung transplantation model was used to study the effects of cold ischemia time, normothermic acellular ex vivo lung perfusion (EVLP) and reperfusion after lung transplantation on l-arginine/NO metabolism in lung tissue. Lung tissue homogenates were analyzed for NO metabolite (NOx) concentrations by chemiluminescent NO-analyzer technique, and l-arginine, l-ornithine, l-citrulline and asymmetric dimethylarginine (ADMA) quantified using liquid chromatography-mass spectrometry (LC-MS/MS). The expression of arginase and nitric oxide synthase (NOS) isoforms in lung was measured by real-time polymerase chain reaction. EVLP preservation resulted in a significant decrease in concentrations of NOx and l-citrulline, both products of NOS, at the end of EVLP and after reperfusion following transplantation, compared to control, respectively. The ratio of l-ornithine over l-citrulline, a marker of the balance between l-arginine metabolizing enzymes, was increased in the EVLP group prior to reperfusion. The expression of both arginase isoforms was increased from baseline 1 h post reperfusion in EVLP but not in the no-EVLP group. These data suggest that EVLP results in a shift of the l-arginine balance towards arginase, leading to NO deficiency in the lung. The arginase/NOS balance may, therefore, represent a therapeutic target to improve lung quality during EVLP and, subsequently, transplant outcomes.
Collapse
|
13
|
Grasemann H, Klingel M, Avolio J, Prentice C, Gonska T, Tullis E, Ratjen F. Long-term effect of CFTR modulator therapy on airway nitric oxide. Eur Respir J 2020; 55:13993003.01113-2019. [PMID: 31601715 DOI: 10.1183/13993003.01113-2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/18/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Hartmut Grasemann
- Division of Respiratory Medicine, Dept of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada .,Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Michelle Klingel
- Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Julie Avolio
- Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Carley Prentice
- Division of Respiratory Medicine, Dept of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Tanja Gonska
- Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Division of Gastroenterology, Dept of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Tullis
- Division of Respirology and Keenan Research Centre of Li Ka Shing Knowledge Institute, Dept of Medicine, St Michael's Hospital, University of Toronto, Toronto, ON, Canada
| | - Felix Ratjen
- Division of Respiratory Medicine, Dept of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada.,Translational Medicine, SickKids Research Institute, The Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
14
|
High-Dose Inhaled Nitric Oxide as Adjunct Therapy in Cystic Fibrosis Targeting Burkholderia multivorans. Case Rep Pediatr 2020; 2020:1536714. [PMID: 32685229 PMCID: PMC7334765 DOI: 10.1155/2020/1536714] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/15/2020] [Accepted: 04/30/2020] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Individuals with cystic fibrosis (CF) have persistent lung infections, necessitating the frequent use of antibiotics for pulmonary exacerbations. Some respiratory pathogens have intrinsic resistance to the currently available antibiotics, and any pathogen may acquire resistance over time, posing a challenge to CF care. Gaseous nitric oxide has been shown to have antimicrobial activity against a wide variety of microorganisms, including common CF pathogens, and offers a potential inhaled antimicrobial therapy. Case Presentation. Here, we present the case of a 16-year-old female with CF who experienced a precipitous decline in lung function over the prior year in conjunction with worsening antibiotic resistance of her primary pathogen, Burkholderia multivorans. She received 46 intermittent inhalations of 160 parts-per-million nitric oxide over a 28-day period. The gas was administered via a mechanical ventilator fitted with nitrogen dioxide scavenging chambers. CONCLUSIONS High-dose inhaled nitric oxide was safe, well tolerated, and showed clinical benefit in an adolescent with cystic fibrosis and pulmonary colonization with Burkholderia multivorans.
Collapse
|
15
|
Zhao WC, Li G, Huang CY, Jiang JL. Asymmetric dimethylarginine: An crucial regulator in tissue fibrosis. Eur J Pharmacol 2019; 854:54-61. [PMID: 30951718 DOI: 10.1016/j.ejphar.2019.03.055] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/21/2019] [Accepted: 03/28/2019] [Indexed: 02/06/2023]
Abstract
Fibrosis is a reparative process with very few therapeutic options to prevent its progression to organ dysfunction. Chronic fibrotic diseases contribute to an estimated 45% of all death in the industrialized world. Asymmetric dimethylarginine (ADMA), an endothelial nitric oxide synthase inhibitor, plays a crucial role in the pathogenesis of various cardiovascular diseases associated with endothelial dysfunction. Recent reports have focused on ADMA in the pathogenesis of tissue fibrosis. This review discusses the current knowledge about ADMA biology, its association with risk factors of established fibrotic diseases and the potential pathophysiological mechanisms implicating ADMA in the process of tissue fibrosis.
Collapse
Affiliation(s)
- Wei-Chen Zhao
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Ge Li
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Faculty of Medical Public Courses, Xinhua College of Sun Yat-sen University, Guangzhou, Guangdong, 510520, China
| | - Chu-Yi Huang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China
| | - Jun-Lin Jiang
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, 410078, China; Provincial Key Laboratory of Cardiovascular Research, Central South University, Changsha, 410078, China.
| |
Collapse
|
16
|
Gao XF, Xiao Y, Dai Y. Direct Analysis of Human Sputum for Differentiating Non-small Cell Lung Cancer by Neutral Desorption Extractive Electrospray Ionization Mass Spectrometry. ANAL SCI 2018; 34:1067-1071. [PMID: 30197376 DOI: 10.2116/analsci.18p008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Human sputum, a typical highly viscous biosample, was directly characterized at the molecular level using neutral desorption extractive electrospray ionization mass spectrometry (ND-EESI-MS) without multi-step sample pretreatment, in an attempt to provide a method for constructing the pattern recognition of rapid diagnosis of lung cancer. Under the optimal experiment conditions, glucose, amino acids, phosphoric lipids and other typical analytes in the sputum sample could be used to conduct qualitative or quantitative (in arginine) analysis. More interestingly, the full scan mass spectra from 50 patients of non-small cell lung cancer, recording the mass spectral fingerprints of sputum samples, were differentiated from the control group (50 healthy individuals) through principal component analysis (PCA). These findings suggest that valuable molecular information concealed in human sputum could be easily revealed and applied for conducting qualitative or quantitative analysis by direct ND-EESI-MS analysis.
Collapse
Affiliation(s)
- Xiao-Fei Gao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology
| | - Yipo Xiao
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology
| | - Yuyou Dai
- Jiangxi Key Laboratory for Mass Spectrometry and Instrumentation, East China University of Technology
| |
Collapse
|
17
|
Ahmadi S, Xia S, Wu YS, Di Paola M, Kissoon R, Luk C, Lin F, Du K, Rommens J, Bear CE. SLC6A14, an amino acid transporter, modifies the primary CF defect in fluid secretion. eLife 2018; 7:37963. [PMID: 30004386 PMCID: PMC6054531 DOI: 10.7554/elife.37963] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/12/2018] [Indexed: 01/29/2023] Open
Abstract
The severity of intestinal disease associated with Cystic Fibrosis (CF) is variable in the patient population and this variability is partially conferred by the influence of modifier genes. Genome-wide association studies have identified SLC6A14, an electrogenic amino acid transporter, as a genetic modifier of CF-associated meconium ileus. The purpose of the current work was to determine the biological role of Slc6a14, by disrupting its expression in CF mice bearing the major mutation, F508del. We found that disruption of Slc6a14 worsened the intestinal fluid secretion defect, characteristic of these mice. In vitro studies of mouse intestinal organoids revealed that exacerbation of the primary defect was associated with reduced arginine uptake across the apical membrane, with aberrant nitric oxide and cyclic GMP-mediated regulation of the major CF-causing mutant protein. Together, these studies highlight the role of this apical transporter in modifying cellular nitric oxide levels, residual function of the major CF mutant and potentially, its promise as a therapeutic target.
Collapse
Affiliation(s)
- Saumel Ahmadi
- Department of Physiology, University of Toronto, Toronto, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Sunny Xia
- Department of Physiology, University of Toronto, Toronto, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Yu-Sheng Wu
- Department of Physiology, University of Toronto, Toronto, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Michelle Di Paola
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Randolph Kissoon
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Catherine Luk
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Fan Lin
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Kai Du
- Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Johanna Rommens
- Department of Molecular Genetics, University of Toronto, Toronto, Canada.,Programme in Genetics and Genome Biology, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Christine E Bear
- Department of Physiology, University of Toronto, Toronto, Canada.,Programme in Molecular Medicine, Research Institute, Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| |
Collapse
|
18
|
Systemic concentrations of asymmetric dimethylarginine (ADMA) in chronic obstructive pulmonary disease (COPD): state of the art. Amino Acids 2018; 50:1169-1176. [PMID: 29951704 DOI: 10.1007/s00726-018-2606-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/20/2018] [Indexed: 01/08/2023]
Abstract
Experimental evidence suggests that oxidative stress (OS) may increase the activity of arginine methylating enzymes that produce the endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). In addition, it is well documented that OS can significantly decrease the synthesis and/or activity of ADMA degrading enzymes, thus causing ADMA accumulation in biological fluids. Recent reports have focused on circulating methylated arginine concentrations in chronic obstructive pulmonary disease, a disease characterized by a significant increase in OS. This review discusses the results of these studies and the opportunities for further research in this area.
Collapse
|
19
|
Lower exhaled nitric oxide in infants with Cystic Fibrosis compared to healthy controls. J Cyst Fibros 2018; 17:105-108. [DOI: 10.1016/j.jcf.2017.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/24/2017] [Accepted: 05/15/2017] [Indexed: 11/17/2022]
|
20
|
EL-Alameey IR, Fathy GA, Shady MMA, Ali A, Fathy HA, Youness ER, Nasr SA. Relationship of Oxidant and Antioxidant Markers to Asthma Severity in Egyptian Asthmatic Children. Open Access Maced J Med Sci 2017; 5:645-650. [PMID: 28932307 PMCID: PMC5591596 DOI: 10.3889/oamjms.2017.149] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/18/2017] [Accepted: 06/20/2017] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Asthma is a chronic airway disease which is characterized by oxidant antioxidant imbalance with the generation of oxidative stress related mediators. AIM The study aimed to evaluate the role of asymmetric dimethylarginine, and malondialdehyde as oxidant markers and serum paraoxonase activity as an antioxidant marker in asthma, and to determine their relationship to the asthma severity and lung function among asthmatic children in Egypt. PATIENTS AND METHODS This case control study was conducted on sixty patients with asthma compared with sixty apparently healthy children of matched age and sex. RESULTS Serum concentrations of oxidant markers as asymmetric dimethylarginine and malondialdehyde were significantly increased in asthmatic patients while anti-oxidant marker as paraoxonase activity was significantly decreased compared to healthy controls (P < 0.05). ANOVA test revealed highly significant elevation of the serum concentrations of oxidant markers while anti-oxidant marker was significantly decreased in severe asthmatic patients (P < 0.001) compared to the patients with moderate and mild asthma respectively. Serum malondialdehyde concentration was a strong predictor of asthma severity by multiple regression analysis (P < 0.05). CONCLUSION The study revealed an imbalance between oxidative and antioxidant defence systems in asthmatic children. Serum concentration of malondialdehyde was the most predictive biomarker having a significant association with asthma severity.
Collapse
Affiliation(s)
| | - Gihan A. Fathy
- National Research Centre, Child Health Department, Egypt
| | | | - Alaa Ali
- National Research Centre, Child Health Department, Egypt
| | - Hanan A. Fathy
- National Center for Radiation Research and Technology, Pediatric Department, Egypt
| | | | - Soha A. Nasr
- National Research Centre, Clinical Pathology, Egypt
| |
Collapse
|
21
|
Bjørke-Monsen AL, Vollsæter M, Ueland PM, Markestad T, Øymar K, Halvorsen T. Increased Bronchial Hyperresponsiveness and Higher Asymmetric Dimethylarginine Levels after Fetal Growth Restriction. Am J Respir Cell Mol Biol 2017; 56:83-89. [PMID: 27574738 DOI: 10.1165/rcmb.2016-0210oc] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Bronchial hyperresponsiveness (BHR), a feature of asthma, is observed in preterm-born children and has been linked to intrauterine growth restriction. BHR is mediated via airway smooth muscle tone and is modulated by the autonomic nervous system, nitric oxide, and airway inflammation. Interactions among these factors are insufficiently understood. Methacholine-induced BHR (Met-BHR), fractional exhaled NO, and systemic soluble markers of nitric oxide metabolism and inflammation were determined in a population-based sample of 57 eleven-year-old children born extremely preterm (gestational age [GA] < 28 wk) or with extremely low birth weight (<1,000 g), and in a matched normal-birth weight term-born control group (n = 54). Bronchopulmonary dysplasia (BPD) was defined as the need for oxygen treatment at a GA of 36 weeks. In preterm-born children, birth weight below the 10th percentile for GA was associated with increased Met-BHR and higher plasma levels of asymmetric dimethylarginine (ADMA), with an increased odds ratio for being in the upper tertile of Met-BHR (11.8; 95% confidence interval, 3.3-42.4) and of ADMA (5.2; 95% confidence interval, 1.3-20.3). Met-BHR was correlated to ADMA level (r = 0.27, P = 0.007). There were no significant differences in Met-BHR, fractional exhaled NO, or z-FEV1 according to BPD status. No associations with systemic soluble markers of inflammation were observed for Met-BHR, birth, or BPD status. Intrauterine growth restriction in preterm-born children was associated with substantially increased Met-BHR and higher ADMA levels, suggesting altered nitric oxide regulation. These findings contribute to the understanding of the consequences from an adverse fetal environment; they should also be tested in term-born children.
Collapse
Affiliation(s)
| | - Maria Vollsæter
- 2 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway
| | - Per M Ueland
- 1 Laboratory of Clinical Biochemistry, and.,3 Bevital A/S, Bergen, Norway
| | - Trond Markestad
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway; and
| | - Knut Øymar
- 4 Department of Clinical Science, University of Bergen, Bergen, Norway; and.,5 Department of Pediatrics, Stavanger University Hospital, Stavanger, Norway
| | - Thomas Halvorsen
- 2 Department of Pediatrics, Haukeland University Hospital, Bergen, Norway.,4 Department of Clinical Science, University of Bergen, Bergen, Norway; and
| |
Collapse
|
22
|
Krantz C, Janson C, Hollsing A, Alving K, Malinovschi A. Exhaled and nasal nitric oxide in relation to lung function, blood cell counts and disease characteristics in cystic fibrosis. J Breath Res 2017; 11:026001. [PMID: 28220034 DOI: 10.1088/1752-7163/aa61aa] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND Patients with cystic fibrosis (CF) have similar or lower exhaled nitric oxide (FeNO) and lower nasal nitric oxide (nNO) levels than controls. There are divergent results on alveolar NO (CalvNO) concentrations in relation to CF. There are inconsistent results on correlation between different nitric oxide parameters and lung function and inflammation in CF. AIM To compare FeNO, CalvNO and nNO levels between subjects with CF, asthma and healthy controls and to study whether these parameters are related to lung function, blood cell counts or clinical characteristics in CF patients. MATERIAL AND METHODS Measurements of FeNO at multiple exhalation flow rates, nNO and spirometry were done in 38 patients (18 adults) with CF. Blood cell counts and CF clinical characteristics were recorded. Thirty-eight healthy controls and 38 asthma patients, gender- and age-matched, were included as reference groups. RESULTS FeNO levels were lower in CF patients (7.2 [4.7-11.2] ppb) than in healthy controls (11.4 [8.3-14.6] ppb) and asthma patients (14.7 [8.7-24.7] ppb) (both p < 0.005). These differences were consistent in adults. No difference in CalvNO was seen between the groups. nNO levels in CF patients (319 [193-447] ppb) were lower than in healthy controls (797 [664-984] ppb) and asthma patients (780 [619-961] ppb) (both p < 0.001). FeNO positively related to FEV1 (rho = 0.51, p = 0.001) in CF patients and this was consistent in both adults and children. A negative correlation was found between FeNO and blood neutrophil counts (rho = -0.37, p = 0.03) in CF patients. CONCLUSION CF patients have lower FeNO and nNO and similar CalvNO levels as healthy controls and asthma patients. Lower FeNO related to lower lung function in both adults and children with CF. Furthermore, in CF, lower FeNO also related to higher blood neutrophil counts.
Collapse
Affiliation(s)
- Christina Krantz
- Department of Women's and Children's Health, Uppsala University, Sweden
| | | | | | | | | |
Collapse
|
23
|
Zinellu A, Fois AG, Sotgia S, Sotgiu E, Zinellu E, Bifulco F, Mangoni AA, Pirina P, Carru C. Arginines Plasma Concentration and Oxidative Stress in Mild to Moderate COPD. PLoS One 2016; 11:e0160237. [PMID: 27479314 PMCID: PMC4968788 DOI: 10.1371/journal.pone.0160237] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 07/15/2016] [Indexed: 11/17/2022] Open
Abstract
Background Elevated plasma concentrations of the endogenous nitric oxide synthase (NOS) inhibitor asymmetric dimethylarginine (ADMA) have been observed in respiratory conditions such as asthma and cystic fibrosis. Since oxidative stress has been shown to increase the activity of arginine methylating enzymes, hence increased ADMA synthesis, and to reduce ADMA degrading enzymes, hence increased ADMA concentrations, we assessed methylated arginines concentrations in chronic obstructive pulmonary disease (COPD), a disease characterized by increased oxidative stress. Methods Plasma arginine, ADMA and symmetric dimethylarginine (SDMA), oxidative stress markers (thiobarbituric acid reactive substances, TBARS, and plasma proteins SH, PSH) and antioxidants (taurine and paraoxonase 1, PON1, activity) were measured in 43 COPD patients with mild (n = 29) or moderate (n = 14) disease and 43 age- and sex-matched controls. Results TBARS significantly increased with COPD presence and severity (median 2.93 vs 3.18 vs 3.64 μmol/L, respectively in controls, mild and moderate group, p<0.0001 by ANOVA) whereas PSH decreased (6.69±1.15 vs 6.04±0.85 vs 5.33±0.96 μmol/gr prot, p<0.0001 by ANOVA). Increased ADMA/arginine ratio, primarily due to reduced arginine concentrations, was also observed with COPD presence and severity (median 0.0067 vs 0.0075 vs 0.0100, p<0.0001 by ANOVA). In multiple logistic regression analysis, only TBARS (OR 0.44, 95% CI 0.25–0.77; p = 0.0045) and ADMA/Arginine ratio (OR 1.72, 95% CI 2.27–13.05; p = 0.02) were independently associated with COPD severity. Conclusion COPD presence and severity are associated with increased oxidative stress and alterations in arginine metabolism. The reduced arginine concentrations in COPD may offer a new target for therapeutic interventions increasing arginine availability.
Collapse
Affiliation(s)
- Angelo Zinellu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | | | - Salvatore Sotgia
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Sotgiu
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy
| | - Elisabetta Zinellu
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Fabiana Bifulco
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Arduino A Mangoni
- Department of Clinical Pharmacology, School of Medicine, Flinders University, Adelaide, Australia
| | - Pietro Pirina
- Department of Clinical and Experimental Medicine, University of Sassari, Sassari, Italy
| | - Ciriaco Carru
- Department of Biomedical Sciences, University of Sassari, Sassari, Italy.,Quality Control Unit, University Hospital Sassari (AOU), Sassari, Italy
| |
Collapse
|
24
|
Lucca F, Da Dalt L, Ros M, Gucciardi A, Pirillo P, Naturale M, Perilongo G, Giordano G, Baraldi E. Asymmetric dimethylarginine and related metabolites in exhaled breath condensate of children with cystic fibrosis. CLINICAL RESPIRATORY JOURNAL 2016; 12:140-148. [PMID: 27216780 DOI: 10.1111/crj.12502] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 04/18/2016] [Accepted: 05/13/2016] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Asymmetric dimethylarginine (ADMA) competitively inhibits nitric oxide synthase (NOS). Its levels in specimens from murine models and asthmatic patients are related to inflammation and oxidative stress. Patients with cystic fibrosis(CF) reportedly have higher arginase activity, lower NO production and NOS expression than healthy controls. OBJECTIVE The objective was to assess the role of ADMA and related metabolites as disease biomarkers in exhaled breath condensate (EBC) of pediatric CF patients, compared with age-matched healthy controls (HC). METHODS A longitudinal design was conceived and 34 CF patients (21 stable, 13 at the onset of exacerbation) and 16 HC were enrolled. All CF patients underwent clinical examination, spirometry and EBC collection at enrolment; the same tests were performed also after an antibiotic course in those patients with exacerbation. Metabolites levels in EBC were measured with an ultra-performance liquid chromatography and tandem mass spectrometry technique. RESULTS All CF patients had ADMA levels (expressed as ratio to tyrosine) similar to those in HC (median 0.0112, IQR 0.0103-0.0120 and median 0.0114, IQR 0.0090-0.0128, respectively; P = 0.983), while a significant increase in the citrulline/tyrosine ratio was found in CF patients (median 0.6419, IQR 0.5738-0.6899 in CF vs median 0.4176, IQR 0.2986-0.5082 in HC; P = 0.00003). No differences in ADMA levels emerged between stable patients and those with exacerbation. CONCLUSION ADMA and related aminoacids were measured simultaneously for the first time in EBC from CF patients. Higher citrulline/tyrosine ratios were found in CF children with normal ADMA levels, suggesting a dysregulated ADMA metabolism in these patients.
Collapse
Affiliation(s)
- Francesca Lucca
- Women's and Children's Health Department, University of Padova, Padova, Italy
| | - Liviana Da Dalt
- Women's and Children's Health Department, University of Padova, Padova, Italy.,Cystic Fibrosis Unit, Pediatric Department, Treviso Hospital, Treviso, Italy
| | - Mirco Ros
- Cystic Fibrosis Unit, Pediatric Department, Treviso Hospital, Treviso, Italy
| | - Antonina Gucciardi
- Institute for Pediatric Research (IRP) "Città della Speranza", University of Padova, Padova, Italy
| | - Paola Pirillo
- Institute for Pediatric Research (IRP) "Città della Speranza", University of Padova, Padova, Italy
| | - Mauro Naturale
- Institute for Pediatric Research (IRP) "Città della Speranza", University of Padova, Padova, Italy
| | - Giorgio Perilongo
- Institute for Pediatric Research (IRP) "Città della Speranza", University of Padova, Padova, Italy
| | - Giuseppe Giordano
- Institute for Pediatric Research (IRP) "Città della Speranza", University of Padova, Padova, Italy
| | - Eugenio Baraldi
- Women's and Children's Health Department, University of Padova, Padova, Italy.,Institute for Pediatric Research (IRP) "Città della Speranza", University of Padova, Padova, Italy
| |
Collapse
|
25
|
Otsuka T, Kirkham C, Brauer A, Koszelak-Rosenblum M, Malkowski MG, Murphy TF. The Vaccine Candidate Substrate Binding Protein SBP2 Plays a Key Role in Arginine Uptake, Which Is Required for Growth of Moraxella catarrhalis. Infect Immun 2016; 84:432-8. [PMID: 26597985 PMCID: PMC4730574 DOI: 10.1128/iai.00799-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 11/13/2015] [Indexed: 01/10/2023] Open
Abstract
Moraxella catarrhalis is an exclusively human pathogen that is an important cause of otitis media in children and lower respiratory tract infections in adults with chronic obstructive pulmonary disease. A vaccine to prevent M. catarrhalis infections would have an enormous global impact in reducing morbidity resulting from these infections. Substrate binding protein 2 (SBP2) of an ABC transporter system has recently been identified as a promising vaccine candidate antigen on the bacterial surface of M. catarrhalis. In this study, we showed that SBP1, -2, and -3 individually bind different basic amino acids with exquisite specificity. We engineered mutants that each expressed a single SBP from this gene cluster and showed in growth experiments that SBP1, -2, and -3 serve a nutritional function through acquisition of amino acids for the bacterium. SBP2 mediates uptake of arginine, a strict growth requirement of M. catarrhalis. Adherence and invasion assays demonstrated that SBP1 and SBP3 play a role in invasion of human respiratory epithelial cells, consistent with a nutritional role in intracellular survival in the human respiratory tract. This work demonstrates that the SBPs of an ABC transporter system function in the uptake of basic amino acids to support growth of M. catarrhalis. The critical role of SBP2 in arginine uptake may contribute to its potential as a vaccine antigen.
Collapse
Affiliation(s)
- Taketo Otsuka
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Charmaine Kirkham
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Aimee Brauer
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA
| | - Mary Koszelak-Rosenblum
- Department of Structural Biology, University at Buffalo, State University of New York, Buffalo, New York, USA Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Michael G Malkowski
- Department of Structural Biology, University at Buffalo, State University of New York, Buffalo, New York, USA Hauptman Woodward Medical Research Institute, Buffalo, New York, USA
| | - Timothy F Murphy
- Division of Infectious Diseases, Department of Medicine, University at Buffalo, State University of New York, Buffalo, New York, USA Clinical and Translational Research Center, University at Buffalo, State University of New York, Buffalo, New York, USA Department of Microbiology and Immunology, University at Buffalo, State University of New York, Buffalo, New York, USA
| |
Collapse
|
26
|
Abstract
The versatile chemistry of nitrogen is important to pulmonary physiology. Indeed, almost all redox forms of nitrogen are relevant to pulmonary physiology and to pathophysiology. Here we review the relevance to pulmonary biology of (a) elemental nitrogen; (b) reduced forms of nitrogen such as amines, ammonia, and hydroxylamine; and (c) oxidized forms of nitrogen such as the nitroxyl anion, the nitric oxide free radical, and S-nitrosothiols. Our focus is on oxidized nitrogen in the form of S-nitrosothiol bond-containing species, which are now appreciated to be important to every type of cell-signaling process in the lung. We also review potential clinical applications of nitrogen oxide biochemistry. These principles are being translated into clinical practice as diagnostic techniques and therapies for a range of pulmonary diseases including asthma, cystic fibrosis, adult respiratory distress syndrome, primary ciliary dyskinesia, and pulmonary hypertension.
Collapse
Affiliation(s)
- Nadzeya V Marozkina
- Department of Pediatrics, Rainbow Babies and Children's Hospital and Case Western Reserve University, Cleveland, Ohio 44106; ,
| | | |
Collapse
|
27
|
Effect of ivacaftor therapy on exhaled nitric oxide in patients with cystic fibrosis. J Cyst Fibros 2015; 14:727-32. [DOI: 10.1016/j.jcf.2015.07.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 06/30/2015] [Accepted: 07/01/2015] [Indexed: 11/20/2022]
|
28
|
Malinovschi A, Ludviksdottir D, Tufvesson E, Rolla G, Bjermer L, Alving K, Diamant Z. Application of nitric oxide measurements in clinical conditions beyond asthma. Eur Clin Respir J 2015; 2:28517. [PMID: 26672962 PMCID: PMC4653314 DOI: 10.3402/ecrj.v2.28517] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 07/05/2015] [Indexed: 02/01/2023] Open
Abstract
Fractional exhaled nitric oxide (FeNO) is a convenient, non-invasive method for the assessment of active, mainly Th2-driven, airway inflammation, which is sensitive to treatment with standard anti-inflammatory therapy. Consequently, FeNO serves as a valued tool to aid diagnosis and monitoring in several asthma phenotypes. More recently, FeNO has been evaluated in several other respiratory, infectious, and/or immunological conditions. In this short review, we provide an overview of several clinical studies and discuss the status of potential applications of NO measurements in clinical conditions beyond asthma.
Collapse
Affiliation(s)
- Andrei Malinovschi
- Department of Medical Sciences: Clinical Physiology, Uppsala University, Uppsala, Sweden;
| | - Dora Ludviksdottir
- Department of Respiratory Medicine and Sleep, Landspitali University Hospital, Reykjavik, Iceland
| | - Ellen Tufvesson
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Lund University, Lund, Sweden
| | - Giovanni Rolla
- Department of Medical Sciences, Allergology and Clinical Immunology, University of Torino, Torino, Italy
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Lund University, Lund, Sweden
| | - Kjell Alving
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Lund University, Lund, Sweden.,Department of Clinical Pharmacy & Pharmacology, University Medical Centre Groningen, Groningen, The Netherlands.,Department of General Practice, University Medical Centre Groningen, Groningen, The Netherlands.,QPS Netherlands, Groningen, The Netherlands
| |
Collapse
|
29
|
Aydin M, Altintas N, Cem Mutlu L, Bilir B, Oran M, Tülübaş F, Topçu B, Tayfur İ, Küçükyalçin V, Kaplan G, Gürel A. Asymmetric dimethylarginine contributes to airway nitric oxide deficiency in patients with COPD. CLINICAL RESPIRATORY JOURNAL 2015; 11:318-327. [PMID: 26076870 DOI: 10.1111/crj.12337] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/17/2015] [Accepted: 06/12/2015] [Indexed: 01/06/2023]
Abstract
INTRODUCTION Asymmetric dimethylarginine (ADMA) and nitric oxide (NO) show their mechanism of action reciprocally, the balance between these molecules contributes to the tight regulation of airways tone and function. OBJECTIVES The aim of this study to determine the serum levels of ADMA and NO in patients with chronic obstructive pulmonary disease (COPD) and establish whether their level vary in relation to forced expiratory volume in 1s (FEV1 ), to assess their role in pathophysiology of COPD. MATERIALS AND METHODS This study consisted of 58 patients with COPD and 30 healthy subjects. Serum ADMA and NO levels were measured using enzyme-linked immunosorbent assay and the colorimetric method, respectively. RESULTS Serum ADMA levels were significantly higher, however, NO levels were lower in patients with COPD compared with controls. ADMA levels were inversely correlated with NO levels. Serum ADMA and NO were significantly correlated with FEV1 . Multivariable logistic regression analysis revealed that serum ADMA and NO were independently and significantly associated with the presence of COPD. Multiple linear regression analysis showed that COPD was positively associated with ADMA, additionally COPD and ADMA were independently and inversely associated with NO. NO levels were decreased, ADMA levels were increased compliant with progression of COPD stages. CONCLUSION While circulating ADMA is higher, NO is lower in COPD and both show a strong correlation to the degree of airflow limitation. ADMA seems to be a possible new marker of prognosis of COPD and can be a novel therapeutic target for the treatment of COPD.
Collapse
Affiliation(s)
- Murat Aydin
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Nejat Altintas
- Department of Pulmonary and Sleep Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Levent Cem Mutlu
- Department of Pulmonary and Sleep Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Bulent Bilir
- Department of Internal Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Mustafa Oran
- Department of Internal Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Feti Tülübaş
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Birol Topçu
- Department of Biostatistics, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - İsmail Tayfur
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Volkan Küçükyalçin
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Gizem Kaplan
- Department of Pulmonary and Sleep Medicine, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| | - Ahmet Gürel
- Department of Biochemistry, School of Medicine, Namik Kemal University, Tekirdağ, Turkey
| |
Collapse
|
30
|
Ghorbani P, Santhakumar P, Hu Q, Djiadeu P, Wolever TM, Palaniyar N, Grasemann H. Short-chain fatty acids affect cystic fibrosis airway inflammation and bacterial growth. Eur Respir J 2015; 46:1033-45. [DOI: 10.1183/09031936.00143614] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 03/30/2015] [Indexed: 11/05/2022]
Abstract
The hypoxic environment of cystic fibrosis airways allows the persistence of facultative anaerobic bacteria, which can produce short-chain fatty acids (SCFAs) through fermentation. However, the relevance of SCFAs in cystic fibrosis lung disease is unknown. We show that SCFAs are present in sputum samples from cystic fibrosis patients in millimolar concentrations (mean±sem1.99±0.36 mM).SCFAs positively correlated with sputum neutrophil count and higher SCFAs were predictive for impaired nitric oxide production. We studied the effects of the SCFAs acetate, propionate and butyrate on airway inflammatory responses using epithelial cell lines and primary cell cultures. SCFAs in concentrations present in cystic fibrosis airways (0.5–2.5 mM) affected the release of granulocyte-macrophage colony-stimulating factor, granulocyte colony-stimulating factor and interleukin (IL)-6. SCFAs also resulted in higher IL-8 release from stimulated cystic fibrosis transmembrane conductance regulator (CFTR) F508del-mutant compared to wild-type CFTR-corrected bronchial epithelial cells. At 25 mM propionate reduced IL-8 release in control but not primary cystic fibrosis epithelial cells. Low (0.5–2.5 mM) SCFA concentrations increased, while high (25–50 mM) concentrations decreased inducible nitric oxide synthase expression. In addition, SCFAs affected the growth ofPseudomonas aeruginosain a concentration- and pH-dependent manner.Thus, our data suggest that SCFAs contribute to cystic fibrosis-specific alterations of responses to airway infection and inflammation.
Collapse
|
31
|
Role of the oligopeptide permease ABC Transporter of Moraxella catarrhalis in nutrient acquisition and persistence in the respiratory tract. Infect Immun 2014; 82:4758-66. [PMID: 25156736 DOI: 10.1128/iai.02185-14] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Moraxella catarrhalis is a strict human pathogen that causes otitis media in children and exacerbations of chronic obstructive pulmonary disease in adults, resulting in significant worldwide morbidity and mortality. M. catarrhalis has a growth requirement for arginine; thus, acquiring arginine is important for fitness and survival. M. catarrhalis has a putative oligopeptide permease ABC transport operon (opp) consisting of five genes (oppB, oppC, oppD, oppF, and oppA), encoding two permeases, two ATPases, and a substrate binding protein. Thermal shift assays showed that the purified recombinant substrate binding protein OppA binds to peptides 3 to 16 amino acid residues in length regardless of the amino acid composition. A mutant in which the oppBCDFA gene cluster is knocked out showed impaired growth in minimal medium where the only source of arginine came from a peptide 5 to 10 amino acid residues in length. Whether methylated arginine supports growth of M. catarrhalis is important in understanding fitness in the respiratory tract because methylated arginine is abundant in host tissues. No growth of wild-type M. catarrhalis was observed in minimal medium in which arginine was present only in methylated form, indicating that the bacterium requires l-arginine. An oppA knockout mutant showed marked impairment in its capacity to persist in the respiratory tract compared to the wild type in a mouse pulmonary clearance model. We conclude that the Opp system mediates both uptake of peptides and fitness in the respiratory tract.
Collapse
|
32
|
Multitracer stable isotope quantification of arginase and nitric oxide synthase activity in a mouse model of pseudomonas lung infection. Mediators Inflamm 2014; 2014:323526. [PMID: 25177109 PMCID: PMC4142665 DOI: 10.1155/2014/323526] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/17/2014] [Indexed: 01/18/2023] Open
Abstract
Cystic fibrosis airways are deficient for L-arginine, a substrate for nitric oxide synthases (NOSs) and arginases. The rationale for this study was to quantify NOS and arginase activity in the mouse lung. Anesthetized unventilated mice received a primed constant stable isotope intravenous infusion containing labeled L-arginine, ornithine, and citrulline. The isotopic enrichment of each of the infused isotopomers and its product amino acids were measured in plasma and organ homogenates using liquid chromatography-tandem mass spectrometry. The effect of infection was studied three days after direct tracheal instillation of Pseudomonas-coated agar beads. In the infusion model, lung infection resulted in a significant (28-fold) increase in NOS activity in lung but not in trachea, kidney, liver, or plasma. Absolute rates of arginase activity in solid tissues could not be calculated in this model. In an isolated lung perfusion model used for comparison increased NOS activity in infected lungs was confirmed (28.5-fold) and lung arginase activity was increased 9.7-fold. The activity of L-arginine metabolizing enzymes can be measured using stable isotope conversion in the mouse. Accumulation of L-ornithine in the whole mouse model hindered the exact quantification of arginase activity in the lung, a problem that was overcome utilizing an isolated lung perfusion model.
Collapse
|
33
|
Scott JA, Duongh M, Young AW, Subbarao P, Gauvreau GM, Grasemann H. Asymmetric dimethylarginine in chronic obstructive pulmonary disease (ADMA in COPD). Int J Mol Sci 2014; 15:6062-71. [PMID: 24727374 PMCID: PMC4013615 DOI: 10.3390/ijms15046062] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Revised: 03/07/2014] [Accepted: 03/31/2014] [Indexed: 01/06/2023] Open
Abstract
L-arginine metabolism including the nitric oxide (NO) synthase and arginase pathways is important in the maintenance of airways function. We have previously reported that accumulation of asymmetric dimethylarginine (ADMA) in airways, resulting in changes in L-arginine metabolism, contributes to airways obstruction in asthma and cystic fibrosis. Herein, we assessed L-arginine metabolism in airways of patients with chronic obstructive pulmonary disease (COPD). Lung function testing, measurement of fractional exhaled NO (FeNO) and sputum NO metabolites, as well as quantification of L-arginine metabolites (L-arginine, L-ornithine, L-citrulline, ADMA and symmetric dimethylarginine) using liquid chromatography-mass spectrometry (LC-MS) were performed. Concentrations of L-ornithine, the product of arginase activity, correlated directly with L-arginine and ADMA sputum concentrations. FeNO correlated directly with pre- and post-bronchodilator forced expiratory volume in one second (FEV1). Sputum arginase activity correlated inversely with total NO metabolite (NOx) and nitrite concentrations in sputum, and with pre- and post-bronchodilator FEV1. These findings suggest that ADMA in COPD airways results in a functionally relevant shift of L-arginine breakdown by the NO synthases towards the arginase pathway, which contributes to airway obstruction in these patients.
Collapse
Affiliation(s)
- Jeremy A Scott
- Department of Health Sciences, Lakehead University, 955 Oliver Road, Thunder Bay, ON P7B 5E1, Canada.
| | - MyLinh Duongh
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Aaron W Young
- Department of Physiology and Biophysics, Boston University School of Medicine, 72 East Concord St., Boston, MA 02118, USA.
| | - Padmaja Subbarao
- Program in Physiology and Experimental Medicine, SickKids Research Institute, and Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, 555 University Avenue University of Toronto, Toronto, ON M5G 1X8, Canada.
| | - Gail M Gauvreau
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4L8, Canada.
| | - Hartmut Grasemann
- Program in Physiology and Experimental Medicine, SickKids Research Institute, and Division of Respiratory Medicine, Department of Pediatrics, Hospital for Sick Children, 555 University Avenue University of Toronto, Toronto, ON M5G 1X8, Canada.
| |
Collapse
|
34
|
Carraro S, Giordano G, Piacentini G, Kantar A, Moser S, Cesca L, Berardi M, Di Gangi IM, Baraldi E. Asymmetric dimethylarginine in exhaled breath condensate and serum of children with asthma. Chest 2014; 144:405-410. [PMID: 23412513 DOI: 10.1378/chest.12-2379] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Asymmetric dimethylarginine (ADMA) is an endogenous inhibitor and uncoupler of nitric oxide synthase. By promoting the formation of peroxynitrite, ADMA is believed to contribute to several aspects of asthma pathogenesis (ie, airway inflammation, oxidative stress, bronchial hyperresponsiveness, and collagen deposition). The aim of the present study was to compare this mediator in healthy children and children with asthma using the completely noninvasive exhaled breath condensate (EBC) technique. METHODS We recruited 77 children with asthma (5-16 years of age) and 65 healthy children (5-15 years of age) who underwent EBC collection and spirometry. Serum ADMA levels and fractional exhaled nitric oxide levels were measured on the same day in a subgroup of children with asthma. EBC was collected using the Turbo-Deccs (Medivac). ADMA levels were measured using the ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) technique. RESULTS ADMA could be detected in the EBC of 71 subjects with asthma and 64 healthy subjects. ADMA levels in the EBC of children with asthma were significantly higher than in the healthy control subjects (median, 0.12 [interquartile range, 0.05-0.3] vs 0.07 [0.05-0.12]; P = .017), whereas no difference emerged between the children with asthma who were or were not receiving inhaled steroid treatment. No correlation was found between serum and EBC ADMA levels (P > .5). CONCLUSIONS We measured ADMA in EBC by UPLC-MS/MS, a reference analytical technique. Higher ADMA levels were found in children with asthma, supporting a role for this mediator in asthma pathogenesis. This oxidative stress-related mediator also seems to be scarcely affected by steroid therapy. We speculate that ADMA might be a target for new therapeutic strategies designed to control oxidative stress in asthma.
Collapse
Affiliation(s)
- Silvia Carraro
- Women's and Children's Health Department, University of Padova, Padova
| | - Giuseppe Giordano
- Women's and Children's Health Department, University of Padova, Padova
| | | | - Ahmad Kantar
- Paediatric Asthma Centre, Misurina Pio XII Institute, Belluno, Italy
| | - Serena Moser
- Department of Pediatrics, University of Verona, Verona
| | - Laura Cesca
- Women's and Children's Health Department, University of Padova, Padova
| | | | - Iole M Di Gangi
- Women's and Children's Health Department, University of Padova, Padova
| | - Eugenio Baraldi
- Women's and Children's Health Department, University of Padova, Padova.
| |
Collapse
|
35
|
A randomized controlled trial of inhaled l-Arginine in patients with cystic fibrosis. J Cyst Fibros 2013; 12:468-74. [DOI: 10.1016/j.jcf.2012.12.008] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 11/28/2012] [Accepted: 12/19/2012] [Indexed: 11/22/2022]
|
36
|
Grasemann H, Pencharz PB. Arginine metabolism in patients with cystic fibrosis. J Pediatr 2013; 163:317-9. [PMID: 23541774 DOI: 10.1016/j.jpeds.2013.02.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 10/27/2022]
|
37
|
Engelen MPKJ, Com G, Luiking YC, Deutz NEP. Stimulated nitric oxide production and arginine deficiency in children with cystic fibrosis with nutritional failure. J Pediatr 2013; 163:369-75. [PMID: 23419590 PMCID: PMC3661742 DOI: 10.1016/j.jpeds.2013.01.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/26/2012] [Accepted: 01/02/2013] [Indexed: 01/16/2023]
Abstract
OBJECTIVE To determine whether upregulated whole body de novo arginine synthesis and protein breakdown are present as a compensatory mechanism to meet the increased demand for arginine and nitric oxide (NO) production in pediatric patients with cystic fibrosis (CF) and nutritional failure. STUDY DESIGN In 16 children with CF, studied at the end of antibiotic treatment for a pulmonary exacerbation, and 17 healthy controls, whole body arginine, citrulline (Cit), and protein turnover were assessed by stable isotope methodology and de novo arginine synthesis, arginine clearance, NO synthesis, protein synthesis and breakdown, and net protein balance were calculated. The plasma isotopic enrichments and amino acid concentrations were measured by liquid chromatography-tandem mass spectrometry. RESULTS Increased arginine clearance was found in patients with CF (P < .001), whereas whole body NO production rate and plasma arginine levels were not different. Whole body arginine production (P < .001), de novo arginine synthesis, and protein breakdown and synthesis (P < .05) were increased in patients with CF, but net protein balance was comparable. Patients with CF with nutritional failure (n = 7) had significantly higher NO production (P < .05), de novo arginine synthesis, Cit production (P < .001), and plasma Cit concentration (P < .05) and lower plasma arginine concentration (P < .05) than those without nutritional failure (n = 9). CONCLUSIONS Nutritional failure in CF is associated with increased NO production. However, up-regulation of de novo arginine synthesis and Cit production was not sufficient to meet the increased arginine needs leading to arginine deficiency.
Collapse
Affiliation(s)
- Mariëlle PKJ Engelen
- Center for Translational Research in Aging & Longevity, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| | - Gulnur Com
- Department Pediatric Pulmonology, Arkansas Children’s Hospital, Little Rock, Arkansas
| | - Yvette C Luiking
- Center for Translational Research in Aging & Longevity, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas
| | - Nicolaas EP Deutz
- Center for Translational Research in Aging & Longevity, Department of Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas,Translational Research in Aging & Longevity, Department of Health and Kinesiology, Texas A&M University, College Station, Texas
| |
Collapse
|
38
|
Arginine and nitric oxide pathways in obesity-associated asthma. J Allergy (Cairo) 2013; 2013:714595. [PMID: 23710196 PMCID: PMC3654368 DOI: 10.1155/2013/714595] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/02/2013] [Indexed: 12/24/2022] Open
Abstract
Obesity is a comorbidity that adversely affects asthma severity and control by mechanisms that are not fully understood. This review will discuss evidence supporting a role for nitric oxide (NO) as a potential mechanistic link between obesity and late-onset asthma (>12 years). Several studies have shown that there is an inverse association between increasing body mass index (BMI) and reduced exhaled NO. Newer evidence suggests that a potential explanation for this paradoxical relationship is related to nitric oxide synthase (NOS) uncoupling, which occurs due to an imbalance between L-arginine (NOS substrate) and its endogenous inhibitor, asymmetric di-methyl arginine (ADMA). The review will propose a theoretical framework to understand the relevance of this pathway and how it may differ between early and late-onset obese asthmatics. Finally, the paper will discuss potential new therapeutic approaches, based on these paradigms, for improving the respiratory health of obese subjects with asthma.
Collapse
|
39
|
Abstract
Increased arginase activity contributes to airway nitric oxide (NO) deficiency in cystic fibrosis (CF). Whether down-stream products of arginase activity contribute to CF lung disease is currently unknown. The objective of this study was to test whether L-ornithine derived polyamines are present in CF airways and contribute to airway pathophysiology. Polyamine concentrations were measured in sputum of patients with CF and in healthy controls, using liquid chromatography-tandem mass spectrometry. The effect of spermine on airway smooth muscle mechanical properties was assessed in bronchial segments of murine airways, using a wire myograph. Sputum polyamine concentrations in stable CF patients were similar to healthy controls for putrescine and spermidine but significantly higher for spermine. Pulmonary exacerbations were associated with an increase in sputum and spermine levels. Treatment for pulmonary exacerbations resulted in decreases in arginase activity, L-ornithine and spermine concentrations in sputum. The changes in sputum spermine with treatment correlated significantly with changes in L-ornithine but not with sputum inflammatory markers. Incubation of mouse bronchi with spermine resulted in an increase in acetylcholine-induced force and significantly reduced nitric oxide-induced bronchial relaxation. The polyamine spermine is increased in CF airways. Spermine contributes to airways obstruction by reducing the NO-mediated smooth muscle relaxation.
Collapse
|
40
|
Galli F, Battistoni A, Gambari R, Pompella A, Bragonzi A, Pilolli F, Iuliano L, Piroddi M, Dechecchi MC, Cabrini G. Oxidative stress and antioxidant therapy in cystic fibrosis. Biochim Biophys Acta Mol Basis Dis 2012; 1822:690-713. [DOI: 10.1016/j.bbadis.2011.12.012] [Citation(s) in RCA: 155] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 12/16/2011] [Accepted: 12/17/2011] [Indexed: 01/07/2023]
|
41
|
|
42
|
Scott JA, North ML, Rafii M, Huang H, Pencharz P, Subbarao P, Belik J, Grasemann H. Asymmetric dimethylarginine is increased in asthma. Am J Respir Crit Care Med 2011; 184:779-85. [PMID: 21719758 DOI: 10.1164/rccm.201011-1810oc] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
RATIONALE Asymmetric dimethylarginine (ADMA) is an endogenous nitric oxide synthase (NOS) inhibitor that competes with L-arginine for binding to NOS. It has been suggested that ADMA contributes to inflammation, collagen deposition, nitrosative stress, and lung function in murine models. OBJECTIVES To test the hypothesis that ADMA is increased in asthma and that NOS inhibition by ADMA contributes to airways obstruction. METHODS We assessed alterations of L-arginine, ADMA, and symmetric dimethylarginine (SDMA) levels in a murine model of allergic airways inflammation using LC-tandem mass spectrometry. Based on the levels of ADMA observed in the murine model, we further tested the direct effects of nebulized inhaled ADMA on airways responsiveness in naive control mice. We also assessed alterations of L-arginine, ADMA, and SDMA in humans in adult lung specimens and sputum samples from pediatric patients with asthma. MEASUREMENTS AND MAIN RESULTS ADMA was increased in lungs from the murine model of allergic airways inflammation. Exogenous administration of ADMA to naive mice, at doses consistent with the levels observed in the allergically inflamed lungs, resulted in augmentation of the airways responsiveness to methacholine. ADMA levels were also increased in human asthma lungs and sputum samples. CONCLUSIONS ADMA levels are increased in asthma and contribute to NOS-related pathophysiology.
Collapse
Affiliation(s)
- Jeremy A Scott
- Division of Occupational Medicine, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Marozkina NV, Gaston B. Nitrogen balance in the ecosystem of the cystic fibrosis lung. Am J Respir Crit Care Med 2011; 183:1290-2. [PMID: 21596830 DOI: 10.1164/rccm.201102-0288ed] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
|