1
|
Fouda MA, Alhamad EH, Al-Hajjaj MS, Shaik SA, Alboukai AA, Al-Kassimi FA. A study of chronic obstructive pulmonary disease-specific causes of osteoporosis with emphasis on the emphysema phenotype. Ann Thorac Med 2017; 12:101-106. [PMID: 28469720 PMCID: PMC5399683 DOI: 10.4103/atm.atm_357_16] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/20/2016] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Osteoporosis, the most common extra-pulmonary complication of chronic obstructive pulmonary disease (COPD), may be related to general causes or COPD-specific causes such as low forced expiratory volume in 1 s (FEV1) and hypoxia. A few studies reported that emphysema is an independent risk factor for osteoporosis. However, other workers considered the association to be confounded by low FEV1 and low body mass index (BMI) which cluster with emphysema. AIMS To study the association between osteoporosis and emphysema in a model that includes these potentially confounding factors. METHODS We studied prospectively 52 COPD patients with both high resolution computed tomography and carbon monoxide diffusion coefficient as diagnostic markers of emphysema. Dual-energy X-ray absorptiometry was used to measure the bone mass density (BMD) of lumbar vertebrae and neck of the femur. Vertebral fractures were evaluated using the Genant semiquantitative score. Multiple linear regression analysis was used to identify the following independent variables: age, BMI, FEV1% predicted, PaO2, emphysema score, C-reactive protein (CRP), and dyspnea score as related to BMD. P ≤ 0.05 was considered statistically significant. RESULTS There was no significant difference in the serum Vitamin D levels, vertebral fracture score, or BMD between the emphysematous and nonemphysematous patients. Multivariate analysis showed that (in a model including age, BMI, FEV1, PaO2, emphysema score, CRP, and dyspnea score) only reduced BMI, FEV1, and PaO2 were independent risk factors for low BMD. CONCLUSIONS The emphysematous phenotype is not a risk factor for osteoporosis independently of BMI, FEV1, and PaO2.
Collapse
Affiliation(s)
- Mona Ali Fouda
- Department of Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | | - Shaffi Ahmed Shaik
- Department of Family and Community Medicine, King Saud University, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
2
|
Hampson JA, Stockley RA, Turner AM. Free light chains: potential biomarker and predictor of mortality in alpha-1-antitrypsin deficiency and usual COPD. Respir Res 2016; 17:34. [PMID: 27036487 PMCID: PMC4815123 DOI: 10.1186/s12931-016-0348-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/18/2016] [Indexed: 12/15/2022] Open
Abstract
Background Circulating free light chains (FLCs) can alter neutrophil migration, apoptosis and activation and may be a biomarker of autoimmune disease and adaptive immune system activation. These pathogenic roles could be relevant to lung disease in alpha 1 antitrypsin deficiency (A1ATD) and chronic obstructive pulmonary disease (COPD). Methods Total combined (c)FLCs were measured using the FreeLite® assay in 547 patients with A1ATD and 327 patients with usual COPD in the stable state, and assessed for association with clinical phenotype, disease severity, airway bacterial colonisation and mortality. Univariate and multivariate analyses were undertaken. Results Circulating cFLCs were static in the stable state when measured on 4 occasions in A1ATD and twice in usual COPD. Levels were inversely related to renal function (A1ATD and COPD p = <0.01), and higher in patients with chronic bronchitis (p = 0.019) and airway bacterial colonisation (p = 0.008). After adjusting for renal function and age the relationship between cFLCs and lung function was weak. Kaplan Meier curves showed that cFLC > normal (43.3 mg/L) significantly associated with mortality in both cohorts (A1ATD p = 0.001, COPD p = 0.013). Conclusions cFLCs may be a promising biomarker for risk stratification in A1ATD and COPD. Electronic supplementary material The online version of this article (doi:10.1186/s12931-016-0348-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judith A Hampson
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, B15 2WB, UK.,ADAPT Project, University Hospital Birmingham, Birmingham, B15 2WB, UK
| | - Robert A Stockley
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, B15 2WB, UK.,ADAPT Project, University Hospital Birmingham, Birmingham, B15 2WB, UK
| | - Alice M Turner
- Centre for Translational Inflammation Research, University of Birmingham, Birmingham, B15 2WB, UK. .,ADAPT Project, University Hospital Birmingham, Birmingham, B15 2WB, UK. .,Heart of England NHS Foundation Trust, Birmingham, B9 5SS, UK.
| |
Collapse
|
3
|
Seys LJM, Verhamme FM, Schinwald A, Hammad H, Cunoosamy DM, Bantsimba-Malanda C, Sabirsh A, McCall E, Flavell L, Herbst R, Provoost S, Lambrecht BN, Joos GF, Brusselle GG, Bracke KR. Role of B Cell-Activating Factor in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2015; 192:706-18. [PMID: 26266827 DOI: 10.1164/rccm.201501-0103oc] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
RATIONALE B cell-activating factor (BAFF) plays a major role in activation of B cells and in adaptive humoral immune responses. In chronic obstructive pulmonary disease (COPD), lymphoid follicles have been associated with disease severity, and overexpression of BAFF has been demonstrated within lymphoid follicles of patients with severe COPD. OBJECTIVES To investigate expression and localization of BAFF in the lungs of patients with COPD and to study the role of BAFF in COPD by antagonizing BAFF in a mouse model of chronic cigarette smoke (CS) exposure. METHODS We quantified and localized BAFF expression in lungs of never-smokers, smokers without COPD, and patients with COPD and in lungs of air- or CS-exposed mice by reverse-transcriptase polymerase chain reaction, ELISA, immunohistochemistry, and confocal imaging. Next, to investigate the role of BAFF in COPD, we antagonized BAFF by prophylactic or therapeutic administration of a soluble fusion protein of the BAFF-receptor, BAFFR-Fc, in mice exposed to air or CS for 24 weeks and evaluated several hallmarks of COPD and polarization of lung macrophages. MEASUREMENTS AND MAIN RESULTS BAFF expression was significantly increased in lungs of patients with COPD and CS-exposed mice. BAFF staining in lymphoid follicles was observed around B cells, CD4(+) cells, dendritic cells, follicular dendritic cells, and fibroblastic reticular cells. Prophylactic and therapeutic administration of BAFFR-Fc in mice reduced pulmonary B-cell numbers and prevented CS-induced formation of lymphoid follicles and increases in immunoglobulin levels. Interestingly, prophylactic BAFFR-Fc administration significantly attenuated pulmonary inflammation and destruction of alveolar walls. Moreover, antagonizing BAFF altered the phenotype of alveolar and interstitial macrophages. CONCLUSIONS BAFF is significantly increased in lungs of patients with COPD and is present around both immune and stromal cells within lymphoid follicles. Antagonizing BAFF in CS-exposed mice attenuates pulmonary inflammation and alveolar destruction.
Collapse
Affiliation(s)
- Leen J M Seys
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Fien M Verhamme
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Anja Schinwald
- 2 AstraZeneca Respiratory, Inflammation and Autoimmune iMed, Molndal, Sweden
| | - Hamida Hammad
- 3 Laboratory of Immunoregulation and Mucosal Immunity, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,4 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Alan Sabirsh
- 6 AstraZeneca Cardiovascular and Metabolic Disease iMed, Molndal, Sweden; and
| | - Eileen McCall
- 6 AstraZeneca Cardiovascular and Metabolic Disease iMed, Molndal, Sweden; and
| | - Liz Flavell
- 7 AstraZeneca Discovery Sciences iMed, Alderley Park, United Kingdom
| | - Ronald Herbst
- 5 Department of Research, MedImmune, LLC, Gaithersburg, Maryland
| | - Sharen Provoost
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Bart N Lambrecht
- 3 Laboratory of Immunoregulation and Mucosal Immunity, Department for Molecular Biomedical Research, VIB, Ghent, Belgium.,4 Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy F Joos
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Guy G Brusselle
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| | - Ken R Bracke
- 1 Laboratory for Translational Research in Obstructive Pulmonary Diseases, Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
4
|
Green CE, Turner AM. Role of chronic obstructive pulmonary disease in lung cancer pathogenesis. World J Respirol 2013; 3:67-76. [DOI: 10.5320/wjr.v3.i3.67] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/26/2013] [Accepted: 09/04/2013] [Indexed: 02/06/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and lung cancer are two important smoking related conditions. However, COPD has been shown to be an independent risk factor for lung cancer regardless of smoking history, suggesting that COPD and lung cancer may share a common pathogenesis. This review summarizes the epidemiology of lung cancer and COPD briefly, as well as discussing the potential for shared genetic risk, and shared genomic mechanisms, such as epigenetic changes or DNA damage induced by smoking. How key areas of COPD pathogenesis, such as inflammation, oxidative stress and protease imbalance may contribute to subsequent development of cancer will also be covered. Finally the possibility that consequences of COPD, such as hypoxia, influence carcinogenesis will be reviewed. By understanding the pathogenesis of COPD and lung cancer in detail it is possible that new treatments may be developed and the risk of lung cancer in COPD may be reduced.
Collapse
|