1
|
da Silva AL, Magalhaes RF, Conceicao PHL, Dos Santos ACM, Oliveira CM, Thorton LT, Crooke PS, Baldavira CM, Capelozzi VL, Cruz FF, Samary CS, Silva PL, Marini JJ, Rocco PRM. Effects of Similar Mechanical Power Resulting From Different Combinations of Respiratory Variables on Lung Damage in Experimental Acute Respiratory Distress Syndrome. Crit Care Med 2025:00003246-990000000-00506. [PMID: 40167363 DOI: 10.1097/ccm.0000000000006661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
OBJECTIVES Mechanical power is a crucial concept in understanding ventilator-induced lung injury (VILI). We adopted the null hypothesis that under the same mechanical power, resulting from combinations of different static and dynamic variables-some with high stress per cycle and others without-would inflict similar degrees of damage on lung epithelial and endothelial cells as well as on the extracellular matrix in experimental acute respiratory distress syndrome (ARDS). To test this hypothesis, we varied tidal volume (Vt), which correlates with the stretching force per cycle, while adjusting respiratory rate (RR) to yield similar mechanical power values for identical durations across all experimental groups. DESIGN Animal study. SETTING Laboratory investigation. SUBJECTS Thirty male Wistar rats (333 ± 26 g). INTERVENTIONS Twenty-four hours after intratracheal administration of Escherichia coli lipopolysaccharide, animals were anesthetized and mechanically ventilated (positive end-expiratory pressure = 3 cm H2O) with combination of Vt and RR sufficient to induce similar mechanical power (n = 8/group): Vt = 6 mL/kg, RR = 140 breaths/minute (low Vt-high RR [LVT-HRR]); Vt = 12 mL/kg, RR = 70 breaths/minute (high Vt-low RR [HVT-LRR]); and Vt = 18 mL/kg, RR = 50 breaths/minute (very-high Vt-very-low RR [VHVT-VLRR]). All groups were ventilated for 80 minutes. A control group, not subjected to mechanical ventilation (MV), was used for molecular biology analyses. MEASUREMENTS AND MAIN RESULTS After 80 minutes of MV, lung overdistension, alveolar/interstitial edema, fractional area of E-cadherin, and biomarkers of lung inflammation (interleukin-6), lung stretch (amphiregulin), damage to epithelial (surfactant protein B) and endothelial cells (vascular cell adhesion molecule 1 and angiopoietin-2), and extracellular matrix (versican and syndecan) were higher in group VHVT-VLRR than LVT-HRR. Plateau pressure and driving pressure increased progressively from LVT-HRR to HVT-LRR and VHVT-VLRR. CONCLUSIONS In the current experimental model of ARDS, mechanical power alone is insufficient to account for VILI. Instead, the manner in which its components are applied determines the extent of injury at a given mechanical power value.
Collapse
Affiliation(s)
- Adriana L da Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel F Magalhaes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro H L Conceicao
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ana Carolina M Dos Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Catharina M Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lauren T Thorton
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN
| | - Philip S Crooke
- Department of Mathematics, Vanderbilt University, Nashville, TN
| | - Camila M Baldavira
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vera L Capelozzi
- Department of Pathology, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Fernanda F Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cynthia S Samary
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Department of Cardiorespiratory and Musculoskeletal Physiotherapy, Faculty of Physiotherapy, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro L Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Minneapolis, St Paul, MN
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
2
|
Giosa L, Collins PD, Shetty S, Lubian M, Del Signore R, Chioccola M, Pugliese F, Camporota L. Bedside Assessment of the Respiratory System During Invasive Mechanical Ventilation. J Clin Med 2024; 13:7456. [PMID: 39685913 DOI: 10.3390/jcm13237456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/21/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
Assessing the respiratory system of a patient receiving mechanical ventilation is complex. We provide an overview of an approach at the bedside underpinned by physiology. We discuss the importance of distinguishing between extensive and intensive ventilatory variables. We outline methods to evaluate both passive patients and those making spontaneous respiratory efforts during assisted ventilation. We believe a comprehensive assessment can influence setting mechanical ventilatory support to achieve lung and diaphragm protective ventilation.
Collapse
Affiliation(s)
- Lorenzo Giosa
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Patrick D Collins
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| | - Sridevi Shetty
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Marta Lubian
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Riccardo Del Signore
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Mara Chioccola
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Francesca Pugliese
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
| | - Luigi Camporota
- Department of Critical Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London SE1 7EH, UK
- Center for Human and Applied Physiological Sciences, School of Basic and Medical Biosciences, King's College London, London WC2R 2LS, UK
| |
Collapse
|
3
|
Yang L, Wiersema UF, Bihari S, Broughton R, Roberts A, Kelley N, McEwen M. A self-regulated expiratory flow device for mechanical ventilation: a bench study. Intensive Care Med Exp 2024; 12:92. [PMID: 39414708 PMCID: PMC11484996 DOI: 10.1186/s40635-024-00681-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 10/03/2024] [Indexed: 10/18/2024] Open
Abstract
INTRODUCTION Unregulated expiratory flow may contribute to ventilator-induced lung injury. The amount of energy dissipated into the lungs with tidal mechanical ventilation may be used to quantify potentially injurious ventilation. Previously reported devices for variable expiratory flow regulation (FLEX) require, either computer-controlled feedback, or an initial expiratory flow trigger. In this bench study we present a novel passive expiratory flow regulation device. METHODS The device was tested using a commercially available mechanical ventilator with a range of settings (tidal volume 420 ml and 630 ml, max. inspiratory flow rate 30 L/min and 50 L/min, respiratory rate 10 min-1, positive end-expiratory pressure 5 cmH2O), and a test lung with six different combinations of compliance and resistance settings. The effectiveness of the device was evaluated for reduction in peak expiratory flow, expiratory time, mean airway pressure, and the reduction of tidal dissipated energy (measured as the area within the airway pressure-volume loop). RESULTS Maximal and minimal reduction in peak expiratory flow was from 97.18 ± 0.41 L/min to 25.82 ± 0.07 L/min (p < 0.001), and from 44.11 ± 0.42 L/min to 26.30 ± 0.06 L/min, respectively. Maximal prolongation in expiratory time was recorded from 1.53 ± 0.06 s to 3.64 ± 0.21 s (p < 0.001). As a result of the extended expiration, the maximal decrease in I:E ratio was from 1:1.15 ± 0.03 to 1:2.45 ± 0.01 (p < 0.001). The greatest increase in mean airway pressure was from 10.04 ± 0.03 cmH2O to 17.33 ± 0.03 cmH2O. Dissipated energy was significantly reduced with the device under all test conditions (p < 0.001). The greatest reduction in dissipated energy was from 1.74 ± 0.00 J to 0.84 ± 0.00 J per breath. The least reduction in dissipated energy was from 0.30 ± 0.00 J to 0.16 ± 0.00 J per breath. The greatest and least percentage reduction in dissipated energy was 68% and 33%, respectively. CONCLUSIONS The device bench tested in this study demonstrated a significant reduction in peak expiratory flow rate and dissipated energy, compared to ventilation with unregulated expiratory flow. Application of the device warrants further experimental and clinical evaluation.
Collapse
Affiliation(s)
- Lianye Yang
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Ubbo F Wiersema
- Intensive and Critical Care Unit, Flinders Medical Centre, South Adelaide Local Health Network, Flinders Lane, Bedford Park, Adelaide, SA, 5042, Australia
| | - Shailesh Bihari
- Intensive and Critical Care Unit, Flinders Medical Centre, South Adelaide Local Health Network, Flinders Lane, Bedford Park, Adelaide, SA, 5042, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, Australia.
| | - Roy Broughton
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Andy Roberts
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Nigel Kelley
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| | - Mark McEwen
- Biomedical Engineering Department, Flinders Medical Centre, South Adelaide Local Health Network, Adelaide, SA, Australia
| |
Collapse
|
4
|
Marini JJ, Gattinoni L. The ventilator of the future: key principles and unmet needs. Crit Care 2024; 28:284. [PMID: 39210377 PMCID: PMC11363519 DOI: 10.1186/s13054-024-05060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
Persistent shortcomings of invasive positive pressure ventilation make it less than an ideal intervention. Over the course of more than seven decades, clinical experience and scientific investigation have helped define its range of hazards and limitations. Apart from compromised airway clearance and lower airway contamination imposed by endotracheal intubation, the primary hazards inherent to positive pressure ventilation may be considered in three broad categories: hemodynamic impairment, potential for ventilation-induced lung injury, and impairment of the respiratory muscle pump. To optimize care delivery, it is crucial for monitoring and machine outputs to integrate information with the potential to impact the underlying requirements of the patient and/or responses of the cardiopulmonary system to ventilatory interventions. Trending analysis, timely interventions, and closer communication with the caregiver would limit adverse clinical trajectories. Judging from the rapid progress of recent years, we are encouraged to think that insights from physiologic research and emerging technological capability may eventually address important aspects of current deficiencies.
Collapse
Affiliation(s)
- John J Marini
- Pulmonary and Critical Care Medicine, Regions Hospital and University of Minnesota, 640 Jackson St., MS 11203B, St. Paul, MN, 55101-2595, USA.
| | - Luciano Gattinoni
- Department of Anaesthesiology, University Medical Center Göttingen, Robert-Koch-Str. 40, 37075, Göttingen, Germany
| |
Collapse
|
5
|
Jozwiak M, Teboul JL. Heart-Lungs interactions: the basics and clinical implications. Ann Intensive Care 2024; 14:122. [PMID: 39133379 PMCID: PMC11319696 DOI: 10.1186/s13613-024-01356-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/24/2024] [Indexed: 08/13/2024] Open
Abstract
Heart-lungs interactions are related to the interplay between the cardiovascular and the respiratory system. They result from the respiratory-induced changes in intrathoracic pressure, which are transmitted to the cardiac cavities and to the changes in alveolar pressure, which may impact the lung microvessels. In spontaneously breathing patients, consequences of heart-lungs interactions are during inspiration an increase in right ventricular preload and afterload, a decrease in left ventricular preload and an increase in left ventricular afterload. In mechanically ventilated patients, consequences of heart-lungs interactions are during mechanical insufflation a decrease in right ventricular preload, an increase in right ventricular afterload, an increase in left ventricular preload and a decrease in left ventricular afterload. Physiologically and during normal breathing, heart-lungs interactions do not lead to significant hemodynamic consequences. Nevertheless, in some clinical settings such as acute exacerbation of chronic obstructive pulmonary disease, acute left heart failure or acute respiratory distress syndrome, heart-lungs interactions may lead to significant hemodynamic consequences. These are linked to complex pathophysiological mechanisms, including a marked inspiratory negativity of intrathoracic pressure, a marked inspiratory increase in transpulmonary pressure and an increase in intra-abdominal pressure. The most recent application of heart-lungs interactions is the prediction of fluid responsiveness in mechanically ventilated patients. The first test to be developed using heart-lungs interactions was the respiratory variation of pulse pressure. Subsequently, many other dynamic fluid responsiveness tests using heart-lungs interactions have been developed, such as the respiratory variations of pulse contour-based stroke volume or the respiratory variations of the inferior or superior vena cava diameters. All these tests share the same limitations, the most frequent being low tidal volume ventilation, persistent spontaneous breathing activity and cardiac arrhythmia. Nevertheless, when their main limitations are properly addressed, all these tests can help intensivists in the decision-making process regarding fluid administration and fluid removal in critically ill patients.
Collapse
Affiliation(s)
- Mathieu Jozwiak
- Service de Médecine Intensive Réanimation, CHU de Nice Hôpital Archet 1, 151 Route Saint Antoine de Ginestière, 06200, Nice, France.
- UR2CA, Unité de Recherche Clinique Côte d'Azur, Université Côte d'Azur, 06200, Nice, France.
| | - Jean-Louis Teboul
- Faculté de Médecine Paris-Saclay, Université Paris-Saclay, 94270, Le Kremlin-Bicêtre, France
| |
Collapse
|
6
|
Miserocchi G, Rezoagli E, Muñoz-Del-Carpio-Toia A, Paricahua-Yucra LP, Zubieta-DeUrioste N, Zubieta-Calleja G, Beretta E. Modelling lung diffusion-perfusion limitation in mechanically ventilated SARS-CoV-2 patients. Front Physiol 2024; 15:1408531. [PMID: 39072215 PMCID: PMC11272564 DOI: 10.3389/fphys.2024.1408531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/18/2024] [Indexed: 07/30/2024] Open
Abstract
This is the first study to describe the daytime evolution of respiratory parameters in mechanically ventilated COVID-19 patients. The data base refers to patients hospitalised in the intensive care unit (ICU) at Arequipa Hospital (Peru, 2335 m) in 2021. In both survivors (S) and non-survivors (NS) patients, a remarkable decrease in respiratory compliance was observed, revealing a proportional decrease in inflatable alveolar units. The S and NS patients were all hyperventilated and their SatO2 was maintained at >90%. However, while S remained normocapnic, NS developed progressive hypercapnia. We compared the efficiency of O2 uptake and CO2 removal in the air blood barrier relying on a model allowing to partition between diffusion and perfusion limitations to gas exchange. The decrease in O2 uptake was interpreted as diffusion limitation, while the impairment in CO2 removal was modelled by progressive perfusion limitation. The latter correlated with the increase in positive end-expiratory pressure (PEEP) and plateau pressure (Pplat), leading to capillary compression, increased blood velocity, and considerable shortening of the air-blood contact time.
Collapse
Affiliation(s)
- Giuseppe Miserocchi
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
| | - Emanuele Rezoagli
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
- Department of Emergency and Intensive Care, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | | | | | | | | | - Egidio Beretta
- Dipartimento di Medicina e Chirurgia, Università Milano-Bicocca, Monza, Italy
| |
Collapse
|
7
|
Jung B, Fosset M, Amalric M, Baedorf-Kassis E, O'Gara B, Sarge T, Moulaire V, Brunot V, Bourdin A, Molinari N, Matecki S. Early and late effects of volatile sedation with sevoflurane on respiratory mechanics of critically ill COPD patients. Ann Intensive Care 2024; 14:91. [PMID: 38888818 PMCID: PMC11189368 DOI: 10.1186/s13613-024-01311-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/12/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The objective was to compare sevoflurane, a volatile sedation agent with potential bronchodilatory properties, with propofol on respiratory mechanics in critically ill patients with COPD exacerbation. METHODS Prospective study in an ICU enrolling critically ill intubated patients with severe COPD exacerbation and comparing propofol and sevoflurane after 1:1 randomisation. Respiratory system mechanics (airway resistance, PEEPi, trapped volume, ventilatory ratio and respiratory system compliance), gas exchange, vitals, safety and outcome were measured at inclusion and then until H48. Total airway resistance change from baseline to H48 in both sevoflurane and propofol groups was the main endpoint. RESULTS Sixteen patients were enrolled and were sedated for 126 h(61-228) in the propofol group and 207 h(171-216) in the sevoflurane group. At baseline, airway resistance was 21.6cmH2O/l/s(19.8-21.6) in the propofol group and 20.4cmH2O/l/s(18.6-26.4) in the sevoflurane group, (p = 0.73); trapped volume was 260 ml(176-290) in the propofol group and 73 ml(35-126) in the sevoflurane group, p = 0.02. Intrinsic PEEP was 1.5cmH2O(1-3) in both groups after external PEEP optimization. There was neither early (H4) or late (H48) significant difference in airway resistance and respiratory mechanics parameters between the two groups. CONCLUSIONS In critically ill patients intubated with COPD exacerbation, there was no significant difference in respiratory mechanics between sevoflurane and propofol from inclusion to H4 and H48.
Collapse
Affiliation(s)
- Boris Jung
- Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France.
- PhyMedExp laboratory, Montpellier University, INSERM, CNRS, CHRU Montpellier, Montpellier, 34295, France.
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA.
- Division of Pulmonary, Sleep and Critical Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, USA.
| | - Maxime Fosset
- Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
- IMAG, CNRS, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
| | - Matthieu Amalric
- Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
| | - Elias Baedorf-Kassis
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
- Division of Pulmonary, Sleep and Critical Care Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School Boston, Boston, MA, USA
| | - Brian O'Gara
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Todd Sarge
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center Harvard Medical School, Boston, MA, USA
| | - Valerie Moulaire
- Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
| | - Vincent Brunot
- Medical Intensive Care Unit, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
| | - Arnaud Bourdin
- PhyMedExp laboratory, Montpellier University, INSERM, CNRS, CHRU Montpellier, Montpellier, 34295, France
- Department of Respiratory Diseases, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
| | - Nicolas Molinari
- IMAG, CNRS, Montpellier University and Montpellier University Health Care Center, Montpellier, 34295, France
| | - Stefan Matecki
- PhyMedExp laboratory, Montpellier University, INSERM, CNRS, CHRU Montpellier, Montpellier, 34295, France
| |
Collapse
|
8
|
Rali AS, Tran L, Balakrishna A, Senussi M, Kapur NK, Metkus T, Tedford RJ, Lindenfeld J. Guide to Lung-Protective Ventilation in Cardiac Patients. J Card Fail 2024; 30:829-837. [PMID: 38513887 DOI: 10.1016/j.cardfail.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 03/23/2024]
Abstract
The incidence of acute respiratory insufficiency has continued to increase among patients admitted to modern-day cardiovascular intensive care units. Positive pressure ventilation (PPV) remains the mainstay of treatment for these patients. Alterations in intrathoracic pressure during PPV has distinct effects on both the right and left ventricles, affecting cardiovascular performance. Lung-protective ventilation (LPV) minimizes the risk of further lung injury through ventilator-induced lung injury and, hence, an understanding of LPV and its cardiopulmonary interactions is beneficial for cardiologists.
Collapse
Affiliation(s)
- Aniket S Rali
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN.
| | - Lena Tran
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN
| | - Aditi Balakrishna
- Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, TN
| | - Mourad Senussi
- Department of Medicine, Baylor St. Luke's Medical Center, Houston, TX
| | - Navin K Kapur
- Division of Cardiovascular Diseases, Tufts Medical Center, Boston, MA
| | - Thomas Metkus
- Departments of Medicine and Surgery, Divisions of Cardiology and Cardiac Surgery, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Ryan J Tedford
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC
| | - Joann Lindenfeld
- Division of Cardiovascular Diseases, Vanderbilt University Medical Center, Nashville, TN
| |
Collapse
|
9
|
Junhasavasdikul D, Kasemchaiyanun A, Tassaneyasin T, Petnak T, Bezerra FS, Mellado-Artigas R, Chen L, Sutherasan Y, Theerawit P, Brochard L. Expiratory flow limitation during mechanical ventilation: real-time detection and physiological subtypes. Crit Care 2024; 28:171. [PMID: 38773629 PMCID: PMC11106966 DOI: 10.1186/s13054-024-04953-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
BACKGROUND Tidal expiratory flow limitation (EFLT) complicates the delivery of mechanical ventilation but is only diagnosed by performing specific manoeuvres. Instantaneous analysis of expiratory resistance (Rex) can be an alternative way to detect EFLT without changing ventilatory settings. This study aimed to determine the agreement of EFLT detection by Rex analysis and the PEEP reduction manoeuvre using contingency table and agreement coefficient. The patterns of Rex were explored. METHODS Medical patients ≥ 15-year-old receiving mechanical ventilation underwent a PEEP reduction manoeuvre from 5 cmH2O to zero for EFLT detection. Waveforms were recorded and analyzed off-line. The instantaneous Rex was calculated and was plotted against the volume axis, overlapped by the flow-volume loop for inspection. Lung mechanics, characteristics of the patients, and clinical outcomes were collected. The result of the Rex method was validated using a separate independent dataset. RESULTS 339 patients initially enrolled and underwent a PEEP reduction. The prevalence of EFLT was 16.5%. EFLT patients had higher adjusted hospital mortality than non-EFLT cases. The Rex method showed 20% prevalence of EFLT and the result was 90.3% in agreement with PEEP reduction manoeuvre. In the validation dataset, the Rex method had resulted in 91.4% agreement. Three patterns of Rex were identified: no EFLT, early EFLT, associated with airway disease, and late EFLT, associated with non-airway diseases, including obesity. In early EFLT, external PEEP was less likely to eliminate EFLT. CONCLUSIONS The Rex method shows an excellent agreement with the PEEP reduction manoeuvre and allows real-time detection of EFLT. Two subtypes of EFLT are identified by Rex analysis. TRIAL REGISTRATION Clinical trial registered with www.thaiclinicaltrials.org (TCTR20190318003). The registration date was on 18 March 2019, and the first subject enrollment was performed on 26 March 2019.
Collapse
Affiliation(s)
- Detajin Junhasavasdikul
- Division of Pulmonary and Pulmonary Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd. Rajthevi, Bangkok, Thailand.
| | - Akarawut Kasemchaiyanun
- Division of Pulmonary and Pulmonary Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd. Rajthevi, Bangkok, Thailand
- Division of Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Tanakorn Tassaneyasin
- Division of Pulmonary and Pulmonary Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd. Rajthevi, Bangkok, Thailand
| | - Tananchai Petnak
- Division of Pulmonary and Pulmonary Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd. Rajthevi, Bangkok, Thailand
| | - Frank Silva Bezerra
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences and Center of Research in Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Ricard Mellado-Artigas
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Surgical Intensive Care Unit, Department of Anesthesia, Hospital Clinic, Barcelona, Spain
| | - Lu Chen
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Yuda Sutherasan
- Division of Pulmonary and Pulmonary Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, 270 Rama 6 Rd. Rajthevi, Bangkok, Thailand
| | - Pongdhep Theerawit
- Division of Critical Care, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Laurent Brochard
- Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
10
|
Jubran A. Setting positive end-expiratory pressure in the severely obstructive patient. Curr Opin Crit Care 2024; 30:89-96. [PMID: 38085854 PMCID: PMC11141232 DOI: 10.1097/mcc.0000000000001131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW The response to positive end-expiratory pressure (PEEP) in patients with chronic obstructive pulmonary disease (COPD) requiring mechanical ventilation depends on the underlying pathophysiology. This review focuses on the pathophysiology of COPD, especially intrinsic PEEP (PEEPi) and its consequences, and the benefits of applying external PEEP during assisted ventilation when PEEPi is present. RECENT FINDINGS The presence of expiratory airflow limitation and increased airway resistance promotes the development of dynamic hyperinflation in patients with COPD during acute respiratory failure. Dynamic hyperinflation and the associated development of PEEPi increases work of breathing and contributes to ineffective triggering of the ventilator. In the presence of airflow limitation, application of external PEEP during patient-triggered ventilation has been shown to reduce inspiratory effort, facilitate ventilatory triggering and enhance patient-ventilator interaction. To minimize the risk of hyperinflation, it is advisable to limit the level of external PEEP during assisted ventilation after optimization of ventilator settings to about 70% of the level of PEEPi (measured during passive ventilation). SUMMARY In patients with COPD and dynamic hyperinflation receiving assisted mechanical ventilation, the application of low levels of external PEEP can minimize work of breathing, facilitate ventilator triggering and improve patient-ventilator interaction.
Collapse
Affiliation(s)
- Amal Jubran
- Division of Pulmonary and Critical Care Medicine, Edward Hines Jr. Veterans Affairs Hospital, Hines, Illinois
- Loyola University of Chicago Stritch School of Medicine, Maywood, Illinois, USA
| |
Collapse
|
11
|
Drevhammar T, Bjorland PA, Haynes J, Eilevstjønn J, Hinder M, Tracy M, Rettedal SI, Ersdal HL. Incomplete Exhalation during Resuscitation-Theoretical Review and Examples from Ventilation of Newborn Term Infants. CHILDREN (BASEL, SWITZERLAND) 2023; 10:1118. [PMID: 37508615 PMCID: PMC10377906 DOI: 10.3390/children10071118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/16/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Newborn resuscitation guidelines recommend positive pressure ventilation (PPV) for newborns who do not establish effective spontaneous breathing after birth. T-piece resuscitator systems are commonly used in high-resource settings and can additionally provide positive end-expiratory pressure (PEEP). Short expiratory time, high resistance, rapid dynamic changes in lung compliance and large tidal volumes increase the possibility of incomplete exhalation. Previous publications indicate that this may occur during newborn resuscitation. Our aim was to study examples of incomplete exhalations in term newborn resuscitation and discuss these against the theoretical background. METHODS Examples of flow and pressure data from respiratory function monitors (RFM) were selected from 129 term newborns who received PPV using a T-piece resuscitator. RFM data were not presented to the user during resuscitation. RESULTS Examples of incomplete exhalation with higher-than-set PEEP-levels were present in the recordings with visual correlation to factors affecting time needed to complete exhalation. CONCLUSIONS Incomplete exhalation and the relationship to expiratory time constants have been well described theoretically. We documented examples of incomplete exhalations with increased PEEP-levels during resuscitation of term newborns. We conclude that RFM data from resuscitations can be reviewed for this purpose and that incomplete exhalations should be further explored, as the clinical benefit or risk of harm are not known.
Collapse
Affiliation(s)
- Thomas Drevhammar
- Department of Women's and Children's Health, Karolinska Institutet, 171 77 Stockholm, Sweden
| | | | - Joanna Haynes
- Department of Anaesthesia, Stavanger University Hospital, 4019 Stavanger, Norway
- Faculty of Health Sciences, University of Stavanger, 4021 Stavanger, Norway
| | - Joar Eilevstjønn
- Laerdal Medical, Strategic Research Department, 4007 Stavanger, Norway
| | - Murray Hinder
- Department of Paediatrics and Child Health, Sydney University, Westmead, Sydney, NSW 2006, Australia
- Neonatal Intensive Care Unit, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Mark Tracy
- Department of Paediatrics and Child Health, Sydney University, Westmead, Sydney, NSW 2006, Australia
- Neonatal Intensive Care Unit, Westmead Hospital, Westmead, Sydney, NSW 2145, Australia
| | - Siren Irene Rettedal
- Department of Paediatrics, Stavanger University Hospital, 4019 Stavanger, Norway
- Faculty of Health Sciences, University of Stavanger, 4021 Stavanger, Norway
| | - Hege Langli Ersdal
- Department of Anaesthesia, Stavanger University Hospital, 4019 Stavanger, Norway
- Faculty of Health Sciences, University of Stavanger, 4021 Stavanger, Norway
| |
Collapse
|
12
|
Kelebeyev S, Davison W, Ford BL, Pitman MJ, Bulman WA. The Effects of Endotracheal Tube Size During Bronchoscopy in Simulated Models of Intubated Patients. Laryngoscope 2023; 133:147-153. [PMID: 35218022 DOI: 10.1002/lary.30074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/11/2022] [Accepted: 02/15/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The aim is to use a simulation lung model to assess the possibility of performing bronchoscopy through endotracheal tubes (ETT) less than 8.0-mm while appropriately ventilating patients with normal and ARDS lungs in the setting of SARS-CoV-2. METHODS Five SHERIDAN® ETTs were used to ventilate SimMan® 3G under respiratory compliance levels representing normal and severe ARDS lungs. Baseline measurements of peak pressure, plateau pressure, and auto-positive end expiratory pressure (auto-PEEP) were recorded at four different inspiratory times (Ti). Three different-sized disposable bronchoscopes were inserted, and all measurements were repeated. RESULTS Normal lung model: Slim bronchoscopes in 6.0-mm ETTs resulted in plateau pressures <30 cm H2 O, and increasing Ti to minimize peak pressure resulted in low auto-PEEP. Regular bronchoscopes in 7.0-mm ETTs had similar results. Large bronchoscopes in 7.5-mm ETTs generated plateau pressures ranging from 28 to 35 cm H2 O with modest auto-PEEP. Severe ARDS lung model: Slim bronchoscopes in 6.0-mm ETTs resulted in plateau pressures of 46 and an auto-PEEP of 5 cm H2 O. Regular bronchoscopes in 7.0-mm ETTs generated similar results. Large bronchoscopes in 8.0-mm ETTs displayed plateau pressures of 44 and an auto-PEEP of 2 cm H2 O. CONCLUSION To mitigate risk of laryngeal injury, larger ETTs during bronchoscopy should be avoided. Our data show bronchoscopy with any ETT causes auto-PEEP and high plateau pressures, especially in lungs with poor compliance; however, ETT less than 7.5 mm can be used when considering several factors. Our data also suggest similar studies in patients with varying degrees of ARDS would be informative. LEVEL OF EVIDENCE NA Laryngoscope, 133:147-153, 2023.
Collapse
Affiliation(s)
- Saveliy Kelebeyev
- Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Wesley Davison
- Department of Otolaryngology - Head and Neck Surgery, The Center for Voice and Swallowing, Columbia University Irving Medical Center, New York, New York, USA
| | - Branden L Ford
- Mary & Michael Jaharis Simulation Center, Columbia University Vagelos College of Physicians and Surgeons, New York, New York, USA
| | - Michael J Pitman
- Department of Otolaryngology - Head and Neck Surgery, The Center for Voice and Swallowing, Columbia University Irving Medical Center, New York, New York, USA
| | - William A Bulman
- Department of Medicine - Division of Pulmonary, Allergy and Critical Care, Columbia University Irving Medical Center, New York, New York, USA
| |
Collapse
|
13
|
Gutierrez G. A novel method to calculate compliance and airway resistance in ventilated patients. Intensive Care Med Exp 2022; 10:55. [PMID: 36581716 PMCID: PMC9800666 DOI: 10.1186/s40635-022-00483-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The respiratory system's static compliance (Crs) and airway resistance (Rrs) are measured during an end-inspiratory hold on volume-controlled ventilation (static method). A numerical algorithm is presented to calculate Crs and Rrs during volume-controlled ventilation on a breath-by-breath basis not requiring an end-inspiratory hold (dynamic method). METHODS The dynamic method combines a numerical solution of the equation of motion of the respiratory system with frequency analysis of airway signals. The method was validated experimentally with a one-liter test lung using 300 mL and 400 mL tidal volumes. It also was validated clinically using airway signals sampled at 32.25 Hz stored in a historical database as 131.1-s-long epochs. There were 15 patients in the database having epochs on volume-controlled ventilation with breaths displaying end-inspiratory holds. This allowed for the reliable calculation of paired Crs and Rrs values using both static and dynamic methods. Epoch mean values for Crs and Rrs were assessed by both methods and compared in aggregate form and individually for each patient in the study with Pearson's R2 and Bland-Altman analysis. Figures are shown as median[IQR]. RESULTS Experimental method differences in 880 simulated breaths were 0.3[0.2,0.4] mL·cmH2O-1 for Crs and 0[- 0.2,0.2] cmH2O·s· L-1 for Rrs. Clinical testing included 78,371 breaths found in 3174 epochs meeting criteria with 24[21,30] breaths per epoch. For the aggregate data, Pearson's R2 were 0.99 and 0.94 for Crs and Rrs, respectively. Bias ± 95% limits of agreement (LOA) were 0.2 ± 1.6 mL·cmH2O-1 for Crs and - 0.2 ± 1.5 cmH2O·s· L-1 for Rrs. Bias ± LOA median values for individual patients were 0.6[- 0.2, 1.4] ± 0.9[0.8, 1.2] mL·cmH2O-1 for Crs and - 0.1[- 0.3, 0.2] ± 0.8[0.5, 1.2] cmH2O·s· L-1 for Rrs. DISCUSSION Experimental and clinical testing produced equivalent paired measurements of Crs and Rrs by the dynamic and static methods under the conditions tested. CONCLUSIONS These findings support to the possibility of using the dynamic method in continuously monitoring respiratory system mechanics in patients on ventilatory support with volume-controlled ventilation.
Collapse
Affiliation(s)
- Guillermo Gutierrez
- grid.253615.60000 0004 1936 9510Professor Emeritus Medicine, Anesthesiology and Engineering, The George Washington University, 700 New Hampshire Ave, NW, Suite 510, Washington, DC 20037 USA
| |
Collapse
|
14
|
Yueyi J, Jing T, Lianbing G. A structured narrative review of clinical and experimental studies of the use of different positive end-expiratory pressure levels during thoracic surgery. THE CLINICAL RESPIRATORY JOURNAL 2022; 16:717-731. [PMID: 36181340 PMCID: PMC9629996 DOI: 10.1111/crj.13545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES This study aimed to present a review on the general effects of different positive end-expiratory pressure (PEEP) levels during thoracic surgery by qualitatively categorizing the effects into detrimental, beneficial, and inconclusive. DATA SOURCE Literature search of Pubmed, CNKI, and Wanfang was made to find relative articles about PEEP levels during thoracic surgery. We used the following keywords as one-lung ventilation, PEEP, and thoracic surgery. RESULTS We divide the non-individualized PEEP value into five grades, that is, less than 5, 5, 5-10, 10, and more than 10 cmH2 O, among which 5 cmH2 O is the most commonly used in clinic at present to maintain alveolar dilatation and reduce the shunt fraction and the occurrence of atelectasis, whereas individualized PEEP, adjusted by test titration or imaging method to adapt to patients' personal characteristics, can effectively ameliorate intraoperative oxygenation and obtain optimal pulmonary compliance and better indexes relating to respiratory mechanics. CONCLUSIONS Available data suggest that PEEP might play an important role in one-lung ventilation, the understanding of which will help in exploring a simple and economical method to set the appropriate PEEP level.
Collapse
Affiliation(s)
- Jiang Yueyi
- The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina
| | - Tan Jing
- Department of AnesthesiologyJiangsu Cancer HospitalNanjingChina
| | - Gu Lianbing
- The Affiliated Cancer Hospital of Nanjing Medical UniversityNanjingChina,Department of AnesthesiologyJiangsu Cancer HospitalNanjingChina
| |
Collapse
|
15
|
Andrews P, Shiber J, Madden M, Nieman GF, Camporota L, Habashi NM. Myths and Misconceptions of Airway Pressure Release Ventilation: Getting Past the Noise and on to the Signal. Front Physiol 2022; 13:928562. [PMID: 35957991 PMCID: PMC9358044 DOI: 10.3389/fphys.2022.928562] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 06/21/2022] [Indexed: 12/16/2022] Open
Abstract
In the pursuit of science, competitive ideas and debate are necessary means to attain knowledge and expose our ignorance. To quote Murray Gell-Mann (1969 Nobel Prize laureate in Physics): "Scientific orthodoxy kills truth". In mechanical ventilation, the goal is to provide the best approach to support patients with respiratory failure until the underlying disease resolves, while minimizing iatrogenic damage. This compromise characterizes the philosophy behind the concept of "lung protective" ventilation. Unfortunately, inadequacies of the current conceptual model-that focuses exclusively on a nominal value of low tidal volume and promotes shrinking of the "baby lung" - is reflected in the high mortality rate of patients with moderate and severe acute respiratory distress syndrome. These data call for exploration and investigation of competitive models evaluated thoroughly through a scientific process. Airway Pressure Release Ventilation (APRV) is one of the most studied yet controversial modes of mechanical ventilation that shows promise in experimental and clinical data. Over the last 3 decades APRV has evolved from a rescue strategy to a preemptive lung injury prevention approach with potential to stabilize the lung and restore alveolar homogeneity. However, several obstacles have so far impeded the evaluation of APRV's clinical efficacy in large, randomized trials. For instance, there is no universally accepted standardized method of setting APRV and thus, it is not established whether its effects on clinical outcomes are due to the ventilator mode per se or the method applied. In addition, one distinctive issue that hinders proper scientific evaluation of APRV is the ubiquitous presence of myths and misconceptions repeatedly presented in the literature. In this review we discuss some of these misleading notions and present data to advance scientific discourse around the uses and misuses of APRV in the current literature.
Collapse
Affiliation(s)
- Penny Andrews
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Joseph Shiber
- University of Florida College of Medicine, Jacksonville, FL, United States
| | - Maria Madden
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Gary F. Nieman
- Department of Surgery, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Luigi Camporota
- Department of Adult Critical Care, Guy’s and St Thomas’ NHS Foundation Trust, Health Centre for Human and Applied Physiological Sciences, London, United Kingdom
| | - Nader M. Habashi
- R Adams Cowley Shock Trauma Center, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
16
|
Biselli PJC, Degobbi Tenorio Quirino Dos Santos Lopes F, Righetti RF, Moriya HT, Tibério IFLC, Martins MA. Lung Mechanics Over the Century: From Bench to Bedside and Back to Bench. Front Physiol 2022; 13:817263. [PMID: 35910573 PMCID: PMC9326096 DOI: 10.3389/fphys.2022.817263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Lung physiology research advanced significantly over the last 100 years. Respiratory mechanics applied to animal models of lung disease extended the knowledge of the workings of respiratory system. In human research, a better understanding of respiratory mechanics has contributed to development of mechanical ventilators. In this review, we explore the use of respiratory mechanics in basic science to investigate asthma and chronic obstructive pulmonary disease (COPD). We also discuss the use of lung mechanics in clinical care and its role on the development of modern mechanical ventilators. Additionally, we analyse some bench-developed technologies that are not in widespread use in the present but can become part of the clinical arsenal in the future. Finally, we explore some of the difficult questions that intensive care doctors still face when managing respiratory failure. Bringing back these questions to bench can help to solve them. Interaction between basic and translational science and human subject investigation can be very rewarding, as in the conceptualization of “Lung Protective Ventilation” principles. We expect this interaction to expand further generating new treatments and managing strategies for patients with respiratory disease.
Collapse
Affiliation(s)
- Paolo Jose Cesare Biselli
- Intensive Care Unit, University Hospital, University of Sao Paulo, Sao Paulo, Brazil
- *Correspondence: Paolo Jose Cesare Biselli,
| | | | - Renato Fraga Righetti
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
- Hospital Sírio-Libanês, Serviço de Reabilitação, São Paulo, Brazil
| | - Henrique Takachi Moriya
- Biomedical Engineering Laboratory, Escola Politecnica, University of Sao Paulo, Sao Paulo, Brazil
| | - Iolanda Fátima Lopes Calvo Tibério
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton Arruda Martins
- Laboratory of Experimental Therapeutics, Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
17
|
Kreit J. Respiratory-Cardiovascular Interactions During Mechanical Ventilation: Physiology and Clinical Implications. Compr Physiol 2022; 12:3425-3448. [PMID: 35578946 DOI: 10.1002/cphy.c210003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Positive-pressure inspiration and positive end-expiratory pressure (PEEP) increase pleural, alveolar, lung transmural, and intra-abdominal pressure, which decrease right and left ventricular (RV; LV) preload and LV afterload and increase RV afterload. The magnitude and clinical significance of the resulting changes in ventricular function are determined by the delivered tidal volume, the total level of PEEP, the compliance of the lungs and chest wall, intravascular volume, baseline RV and LV function, and intra-abdominal pressure. In mechanically ventilated patients, the most important, adverse consequences of respiratory-cardiovascular interactions are a PEEP-induced reduction in cardiac output, systemic oxygen delivery, and blood pressure; RV dysfunction in patients with ARDS; and acute hemodynamic collapse in patients with pulmonary hypertension. On the other hand, the hemodynamic changes produced by respiratory-cardiovascular interactions can be beneficial when used to assess volume responsiveness in hypotensive patients and by reducing dyspnea and improving hypoxemia in patients with cardiogenic pulmonary edema. Thus, a thorough understanding of the physiological principles underlying respiratory-cardiovascular interactions is essential if critical care practitioners are to anticipate, recognize, manage, and utilize their hemodynamic effects. © 2022 American Physiological Society. Compr Physiol 12:1-24, 2022.
Collapse
Affiliation(s)
- John Kreit
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Oliveira MVD, Magalhães RF, Rocha NN, Fernandes MVS, Antunes MA, Morales MM, Capelozzi VL, Satalin J, Andrews P, Habashi NM, Nieman GF, Rocco PRM, Silva PL. Effects of time-controlled adaptive ventilation on cardiorespiratory parameters and inflammatory response in experimental emphysema. J Appl Physiol (1985) 2022; 132:564-574. [PMID: 34989651 DOI: 10.1152/japplphysiol.00689.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The time-controlled adaptive ventilation (TCAV) method attenuates lung damage in acute respiratory distress syndrome. However, so far, no study has evaluated the impact of the TCAV method on ventilator-induced lung injury (VILI) and cardiac function in emphysema. We hypothesized that the use of the TCAV method to achieve an expiratory flow termination/expiratory peak flow (EFT/EPF) of 25% could reduce VILI and improve right ventricular function in elastase-induced lung emphysema in rats. Five weeks after the last intratracheal instillation of elastase, animals were anesthetized and mechanically ventilated for 1 h using TCAV adjusted to either EFT/EPF 25% or EFT/EPF 75%, the latter often applied in ARDS. Pressure-controlled ventilation (PCV) groups with positive end-expiratory pressure levels similar to positive end-release pressure in TCAV with EFT/EPF 25% and EFT/EPF 75% were also analyzed. Echocardiography and lung ultrasonography were monitored. Lung morphometry, alveolar heterogeneity, and biological markers related to inflammation (interleukin [IL]-6, CINC-1), alveolar pulmonary stretch (amphiregulin), lung matrix damage (metalloproteinase [MMP]-9) were assessed. EFT/EPF 25% reduced respiratory system peak pressure, mean linear intercept, B lines at lung ultrasonography, and increased pulmonary acceleration time/pulmonary ejection time ratio compared with EFT/EPF 75%. The volume fraction of mononuclear cells, neutrophils, and expression of IL-6, CINC-1, amphiregulin, and MMP-9 were lower with EFT/EPF 25% than with EFT/EPF 75%. In conclusion, TCAV with EFT/EPF 25%, compared with EFT/EPF 75%, led to less lung inflammation, hyperinflation, and pulmonary arterial hypertension, which may be a promising strategy for patients with emphysema.
Collapse
Affiliation(s)
- Milena Vasconcellos de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel F Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth N Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcos V S Fernandes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mariana Alves Antunes
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcelo Marco Morales
- Department of Physiology and Pharmacology, Biomedical Institute, grid.411173.1Fluminense Federal University, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, grid.11899.38University of Sao Paulo, São Paulo, Brazil
| | - Joshua Satalin
- Department of Surgery, grid.411023.5SUNY Upstate Medical University, Syracuse, United States
| | - Penny Andrews
- Department of Surgery, R Adams Cowley Shock Trauma Center, grid.411024.2University of Maryland, Baltimore, Baltimore, United States
| | - Nader M Habashi
- Department of Surgery, Adams Cowley Shock Trauma Center, grid.411024.2University of Maryland, Baltimore, Baltimore, MD, United States
| | - Gary F Nieman
- Department of Surgery, grid.411023.5SUNY Upstate Medical University, Syracuse, New York, United States
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Biophysics Institute, grid.8536.8Federal University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
19
|
Roesthuis LH, van der Hoeven JG, Guérin C, Doorduin J, Heunks LMA. Three bedside techniques to quantify dynamic pulmonary hyperinflation in mechanically ventilated patients with chronic obstructive pulmonary disease. Ann Intensive Care 2021; 11:167. [PMID: 34862945 PMCID: PMC8643378 DOI: 10.1186/s13613-021-00948-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/03/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Dynamic pulmonary hyperinflation may develop in patients with chronic obstructive pulmonary disease (COPD) due to dynamic airway collapse and/or increased airway resistance, increasing the risk of volutrauma and hemodynamic compromise. The reference standard to quantify dynamic pulmonary hyperinflation is the measurement of the volume at end-inspiration (Vei). As this is cumbersome, the aim of this study was to evaluate if methods that are easier to perform at the bedside can accurately reflect Vei. METHODS Vei was assessed in COPD patients under controlled protective mechanical ventilation (7 ± mL/kg) on zero end-expiratory pressure, using three techniques in a fixed order: (1) reference standard (Veireference): passive exhalation to atmosphere from end-inspiration in a calibrated glass burette; (2) ventilator maneuver (Veimaneuver): measuring the expired volume during a passive exhalation of 45s using the ventilator flow sensor; (3) formula (Veiformula): (Vt × Pplateau)/(Pplateau - PEEPi), with Vt tidal volume, Pplateau is plateau pressure after an end-inspiratory occlusion, and PEEPi is intrinsic positive end-expiratory pressure after an end-expiratory occlusion. A convenience sample of 17 patients was recruited. RESULTS Veireference was 1030 ± 380 mL and had no significant correlation with Pplateau (r2 = 0.06; P = 0.3710) or PEEPi (r2 = 0.11; P = 0.2156), and was inversely related with Pdrive (calculated as Pplateau -PEEPi) (r2 = 0.49; P = 0.0024). A low bias but rather wide limits of agreement and fairly good correlations were found when comparing Veimaneuver and Veiformula to Veireference. Vei remained stable during the study period (low bias 15 mL with high agreement (95% limits of agreement from - 100 to 130 mL) and high correlation (r2 = 0.98; P < 0.0001) between both measurements of Veireference). CONCLUSIONS In patients with COPD, airway pressures are not a valid representation of Vei. The three techniques to quantify Vei show low bias, but wide limits of agreement.
Collapse
Affiliation(s)
- L H Roesthuis
- Department of Intensive Care Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands.
| | - J G van der Hoeven
- Department of Intensive Care Medicine, Radboud University Medical Center, Geert Grooteplein-Zuid 10, 6525 GA, Nijmegen, The Netherlands
| | - C Guérin
- Service de Medicine Intensive Réanimation, Hôpital Edouard Herriot, Lyon, France
| | - J Doorduin
- Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - L M A Heunks
- Department of Intensive Care Medicine, Amsterdam UMC, Location VUmc, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Discordance Between Respiratory Drive and Sedation Depth in Critically Ill Patients Receiving Mechanical Ventilation. Crit Care Med 2021; 49:2090-2101. [PMID: 34115638 PMCID: PMC8602777 DOI: 10.1097/ccm.0000000000005113] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES In mechanically ventilated patients, deep sedation is often assumed to induce "respirolysis," that is, lyse spontaneous respiratory effort, whereas light sedation is often assumed to preserve spontaneous effort. This study was conducted to determine validity of these common assumptions, evaluating the association of respiratory drive with sedation depth and ventilator-free days in acute respiratory failure. DESIGN Prospective cohort study. SETTING Patients were enrolled during 2 month-long periods in 2016-2017 from five ICUs representing medical, surgical, and cardiac specialties at a U.S. academic hospital. PATIENTS Eligible patients were critically ill adults receiving invasive ventilation initiated no more than 36 hours before enrollment. Patients with neuromuscular disease compromising respiratory function or expiratory flow limitation were excluded. INTERVENTIONS Respiratory drive was measured via P0.1, the change in airway pressure during a 0.1-second airway occlusion at initiation of patient inspiratory effort, every 12 ± 3 hours for 3 days. Sedation depth was evaluated via the Richmond Agitation-Sedation Scale. Analyses evaluated the association of P0.1 with Richmond Agitation-Sedation Scale (primary outcome) and ventilator-free days. MEASUREMENTS AND MAIN RESULTS Fifty-six patients undergoing 197 bedside evaluations across five ICUs were included. P0.1 ranged between 0 and 13.3 cm H2O (median [interquartile range], 0.1 cm H2O [0.0-1.3 cm H2O]). P0.1 was not significantly correlated with the Richmond Agitation-Sedation Scale (RSpearman, 0.02; 95% CI, -0.12 to 0.16; p = 0.80). Considering P0.1 terciles (range less than 0.2, 0.2-1.0, and greater than 1.0 cm H2O), patients in the middle tercile had significantly more ventilator-free days than the lowest tercile (incidence rate ratio, 0.78; 95% CI, 0.65-0.93; p < 0.01) or highest tercile (incidence rate ratio, 0.58; 95% CI, 0.48-0.70; p < 0.01). CONCLUSIONS Sedation depth is not a reliable marker of respiratory drive during critical illness. Respiratory drive can be low, moderate, or high across the range of routinely targeted sedation depth.
Collapse
|
21
|
Suri TM, Suri JC. A review of therapies for the overlap syndrome of obstructive sleep apnea and chronic obstructive pulmonary disease. FASEB Bioadv 2021; 3:683-693. [PMID: 34485837 PMCID: PMC8409567 DOI: 10.1096/fba.2021-00024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/13/2021] [Accepted: 05/14/2021] [Indexed: 12/20/2022] Open
Abstract
Obstructive sleep apnea (OSA) and chronic obstructive pulmonary disease (COPD) are common chronic diseases. These two noncommunicable diseases (NCDs) are prevalent among approximately 10% of the general population. Approximately 1% of the population is affected by the co-existence of both conditions, known as the overlap syndrome (OS). OS patients suffer from greater degrees of nocturnal oxygen desaturation and cardiovascular consequences than those with either condition in isolation. Besides OS, patients with COPD may suffer from a spectrum of sleep-related breathing disorders, including hypoventilation and central sleep apnea. The article provides an overview of the pathogenesis, associated risk factors, prevalence, and management of sleep-related breathing disorders in COPD. It examines respiratory changes during sleep caused by COPD and OSA. It elaborates upon the factors that link the two conditions together to lead to OS. It also discusses the clinical evaluation and diagnosis of these patients. Subsequently, it reviews the pathophysiological basis and the current evidence for three potential therapies: positive airway pressure therapy [including continuous positive airway pressure (CPAP) and bilevel positive airway pressure], oxygen therapy, and pharmacological therapy. It also proposes a phenotypic approach toward the diagnosis and treatment of OS and the entire spectrum of sleep-related breathing disorders in COPD. It concludes with the current evidence gaps and future areas of research in the management of OS.
Collapse
Affiliation(s)
- Tejas Menon Suri
- Department of PulmonaryCritical Care and Sleep MedicineAll India Institute of Medical SciencesNew DelhiIndia
| | - Jagdish Chander Suri
- Department of PulmonaryCritical Care and Sleep MedicineFortis Flt. Lt. Rajan Dhall HospitalNew DelhiIndia
- Indian Sleep Disorders AssociationNew DelhiIndia
| |
Collapse
|
22
|
Abstract
Today's management of the ventilated patient still relies on the measurement of old parameters such as airway pressures and flow. Graphical presentations reveal the intricacies of patient-ventilator interactions in times of supporting the patient on the ventilator instead of fully ventilating the heavily sedated patient. This opens a new pathway for several bedside technologies based on basic physiologic knowledge; however, it may increase the complexity of measurements. The spread of the COVID-19 infection has confronted the anesthesiologist and intensivist with one of the most severe pulmonary pathologies of the last decades. Optimizing the patient at the bedside is an old and newly required skill for all physicians in the intensive care unit, supported by mobile technologies such as lung ultrasound and electrical impedance tomography. This review summarizes old knowledge and presents a brief insight into extended monitoring options.
Collapse
Affiliation(s)
- Ralph Gertler
- Department of Anaesthesiology and Intensive Care, HELIOS Klinikum München West, Teaching Hospital of the Ludwig-Maximilians-Universität, Steinerweg 5, München 85241, Germany.
| |
Collapse
|
23
|
Degree of convexity calculated from expiratory flow-volume curves for identifying airway obstruction in nonsedated and nonparalyzed ventilated patients. Respir Physiol Neurobiol 2021; 293:103739. [PMID: 34245876 DOI: 10.1016/j.resp.2021.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/28/2021] [Accepted: 07/05/2021] [Indexed: 11/15/2022]
Abstract
The predictive performance of applying the degree of convexity in expiratory flow-volume (EFV) curves to detect airway obstruction in ventilated patients has yet to be investigated. We enrolled 33 nonsedated and nonparalyzed mechanically ventilated patients and found that the degree of convexity had a significant negative correlation with FEV1% predicted. The mean degree of convexity in EFV curves in the chronic obstructive pulmonary disease (COPD) group (n = 18) was significantly higher than that in the non-COPD group (n = 15; 26.37 % ± 11.94 % vs. 17.24 % ± 10.98 %, p = 0.030) at a tidal volume of 12 mL/kg IBW. A degree of convexity in the EFV curve > 16.75 at a tidal volume of 12 mL/kg IBW effectively differentiated COPD from non-COPD (AUC = 0.700, sensitivity = 77.8 %, specificity = 53.3 %, p = 0.051). The degree of convexity calculated from EFV curves may help physicians to identify ventilated patients with airway obstruction.
Collapse
|
24
|
Corp A, Thomas C, Adlam M. The cardiovascular effects of positive pressure ventilation. BJA Educ 2021; 21:202-209. [PMID: 34026273 DOI: 10.1016/j.bjae.2021.01.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/03/2021] [Indexed: 12/16/2022] Open
Affiliation(s)
- A Corp
- St James University Hospital, Leeds, UK
| | - C Thomas
- St James University Hospital, Leeds, UK
| | - M Adlam
- St James University Hospital, Leeds, UK
| |
Collapse
|
25
|
How to ventilate obstructive and asthmatic patients. Intensive Care Med 2020; 46:2436-2449. [PMID: 33169215 PMCID: PMC7652057 DOI: 10.1007/s00134-020-06291-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/12/2020] [Indexed: 11/11/2022]
Abstract
Exacerbations are part of the natural history of chronic obstructive pulmonary disease and asthma. Severe exacerbations can cause acute respiratory failure, which may ultimately require mechanical ventilation. This review summarizes practical ventilator strategies for the management of patients with obstructive airway disease. Such strategies include non-invasive mechanical ventilation to prevent intubation, invasive mechanical ventilation, from the time of intubation to weaning, and strategies intended to prevent post-extubation acute respiratory failure. The role of tracheostomy, the long-term prognosis, and potential future adjunctive strategies are also discussed. Finally, the physiological background that underlies these strategies is detailed.
Collapse
|
26
|
Hamahata NT, Sato R, Daoud EG. Go with the flow-clinical importance of flow curves during mechanical ventilation: A narrative review. ACTA ACUST UNITED AC 2020; 56:11-20. [PMID: 32844110 PMCID: PMC7427988 DOI: 10.29390/cjrt-2020-002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Most clinicians pay attention to tidal volume and airway pressures and their curves during mechanical ventilation. On the other hand, inspiratory–expiratory flow curves also provide a plethora of information, but much less attention is paid to them. Flow curves chronologically show the velocity and direction of inspiration and expiration and are influenced by the respiratory mechanics, the patient’s effort, and the mode of ventilation and its settings. When the ventilator setting does not synchronize with the patient’s respiratory pattern, the patient can easily have worsening breathing effort, patient–ventilator asynchrony, which can lead to prolonged ventilator support or lung injury. The information provided by the flow curves during mechanical ventilation, such as respiratory mechanics, the patient’s effort, and patient–ventilator interactions, are very helpful when adjusting the ventilator setting. If clinicians can monitor and assess the flow curves information appropriately, it can be a useful diagnostic and therapeutic tool at the bedside. There may be association between inspiratory effort and flow, and this may further guide us, especially in the weaning process and when patients are not synchronizing with the ventilator. In this review, we try to gather information about “flow” that is scattered around in the literature and textbooks in one place. We will summarize the different flow waveforms utilized in commonly used ventilator modes with their advantages and disadvantages, information gained by the flow curves (i.e., flow-time, flow-volume, and flow-pressure), how to detect and manage asynchronies, and some ideas for future uses. Flow waveforms shapes and patterns are very beneficial for the management of patients undergoing mechanical ventilatory support. Attention to those waveforms can potentially improve patient outcomes. Clinicians should be familiar with this information and how to act upon them.
Collapse
Affiliation(s)
- Natsumi T Hamahata
- Department of Internal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ryota Sato
- Department of Internal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Ehab G Daoud
- Department of Internal Medicine, John A. Burns School of Medicine, University of Hawaii at Manoa, Honolulu, HI, USA.,Respiratory Care Program, Kapiolani Community College, Honolulu, HI, USA.,Critical Care Department, Kuakini Medical Center, Honolulu, HI, USA
| |
Collapse
|
27
|
He H, Yuan S, Yi C, Long Y, Zhang R, Zhao Z. Titration of extra-PEEP against intrinsic-PEEP in severe asthma by electrical impedance tomography: A case report and literature review. Medicine (Baltimore) 2020; 99:e20891. [PMID: 32590795 PMCID: PMC7329004 DOI: 10.1097/md.0000000000020891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
RATIONALE The use of extra-positive end-expiratory pressure (PEEP) at a level of 80% intrinsic-PEEP (iPEEP) to improve ventilation in severe asthma patients with control ventilation remains controversial. Electrical impedance tomography (EIT) may provide regional information for determining the optimal extra-PEEP to overcome gas trapping and distribution. Moreover, the experience of using EIT to determine extra-PEEP in severe asthma patients with controlled ventilation is limited. PATIENTS CONCERNS A severe asthma patient had 12-cmH2O iPEEP using the end-expiratory airway occlusion method at Zero positive end-expiratory pressures (ZEEP). How to titrate the extra-PEEP to against iPEEP at bedside? DIAGNOSES AND INTERVENTIONS An incremental PEEP titration was performed in the severe asthma patient with mechanical ventilation. An occult pendelluft phenomenon of the ventral and dorsal regions was found during the early and late expiration periods when the extra-PEEP was set to <6 cmH2O. If the extra-PEEP was elevated from 4 to 6 cmH2O, a decrease in the end-expiratory lung impedance (EELI) and a disappearance of the pendelluft phenomenon were observed during the PEEP titration. Moreover, there was broad disagreement as to the "best" extra-PEEP settings according to the various EIT parameters. The regional ventilation delay had the lowest extra-PEEP value (10 cmH2O), whereas the value was 12 cmH2O for the lung collapse/overdistension index and 14 cmH2O for global inhomogeneity. OUTCOMES The extra-PEEP was set at 6 cmH2O, and the severe whistling sound was improved. The patient's condition further became better under the integrated therapy. LESSONS A broad literature review shows that this was the 3rd case of using EIT to titrate an extra-PEEP to against PEEPi. Importantly, the visualization of occult pendelluft and possible air release during incremental PEEP titration was documented for the first time during incremental PEEP titration in patients with severe asthma. Examining the presence of the occult pendelluft phenomenon and changes in the EELI by EIT might be an alternative means for determining an individual's extra-PEEP.
Collapse
Affiliation(s)
- Huaiwu He
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing
| | - Siyi Yuan
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing
| | - Chi Yi
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing
| | - Yun Long
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing
| | - Rui Zhang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Dongcheng District, Beijing
| | - Zhanqi Zhao
- Department of Biomedical Engineering, Fourth Military Medical University, Xi’an, China
- Institute of Technical Medicine, Furtwangen University, Villingen-Schwenningen, Germany
| |
Collapse
|
28
|
Vassilakopoulos T, Toumpanakis D, Mancebo J. What's new about pulmonary hyperinflation in mechanically ventilated critical patients. Intensive Care Med 2020; 46:2381-2384. [PMID: 32472214 PMCID: PMC7256337 DOI: 10.1007/s00134-020-06105-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/11/2020] [Indexed: 12/01/2022]
Affiliation(s)
- Theodoros Vassilakopoulos
- 3rd Department of Critical Care Medicine, Evgenideion Hospital, National & Kapodistrian University of Athens, Athens, Greece.
| | - Dimitrios Toumpanakis
- 3rd Department of Critical Care Medicine, Evgenideion Hospital, National & Kapodistrian University of Athens, Athens, Greece
| | - Jordi Mancebo
- Intensive Care Medicine, Hospital de Sant Pau, Barcelona, Spain.
| |
Collapse
|
29
|
d'Andrea A, Banfi C, Bendjelid K, Giraud R. The use of extracorporeal carbon dioxide removal in acute chronic obstructive pulmonary disease exacerbation: a narrative review. Can J Anaesth 2020; 67:462-474. [PMID: 31811514 DOI: 10.1007/s12630-019-01551-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 10/16/2019] [Accepted: 10/29/2019] [Indexed: 10/25/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) exacerbation induces hypercapnic respiratory acidosis. Extracorporeal carbon dioxide removal (ECCO2R) aims to eliminate blood carbon dioxide (CO2) in order to reduce adverse effects from hypercapnia and the related acidosis. Hypercapnia has deleterious extra-pulmonary consequences in increasing intracranial pressure and inducing and/or worsening right heart failure. During COPD exacerbation, the use of ECCO2R may improve the efficacy of non-invasive ventilation (NIV) in terms of CO2 removal, decrease respiratory rate and reduce dynamic hyperinflation and intrinsic positive end expiratory pressure, which all contribute to increasing dead space. Moreover, ECCO2R may prevent NIV failure while facilitating the weaning of intubated patients from mechanical ventilation. In this review of the literature, the authors will present the current knowledge on the pathophysiology related to COPD, the principles of the ECCO2R technique and its role in acute and severe decompensation of COPD. However, despite technical advances, there are only case series in the literature and few prospective studies to clearly establish the role of ECCO2R in acute and severe COPD decompensation.
Collapse
Affiliation(s)
- Alexia d'Andrea
- Service d'anesthésiologie, Hôpital Riviera-Chablais, Montreux, Switzerland
| | - Carlo Banfi
- Département de chirurgie cardio-thoracique, Istituto Clinico Sant'Ambrogio, Gruppo Ospedaliero San Donato, Milan, Italy
- Faculté de médecine, Université de Genève, Geneva, Switzerland
- Faculté de médecine, Groupe de recherche hémodynamique, Geneva, Switzerland
| | - Karim Bendjelid
- Service des soins intensifs, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland
- Faculté de médecine, Université de Genève, Geneva, Switzerland
- Faculté de médecine, Groupe de recherche hémodynamique, Geneva, Switzerland
| | - Raphaël Giraud
- Service des soins intensifs, Hôpitaux Universitaires de Genève, 4, Rue Gabrielle Perret-Gentil, 1211, Geneva 14, Switzerland.
- Faculté de médecine, Université de Genève, Geneva, Switzerland.
- Faculté de médecine, Groupe de recherche hémodynamique, Geneva, Switzerland.
| |
Collapse
|
30
|
Wang H, He H. Dynamic hyperinflation and intrinsic PEEP in ARDS patients: who, when, and how needs more focus? Crit Care 2019; 23:422. [PMID: 31870401 PMCID: PMC6929493 DOI: 10.1186/s13054-019-2713-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 12/17/2019] [Indexed: 11/10/2022] Open
Affiliation(s)
- Heyan Wang
- Department of Critical Care Medicine, The Sixth Hospital of Guiyang, Guiyang City, Guizhou Province, China
| | - Hangyong He
- Department of Respiratory and Critical Care Medicine, Beijing Institute of Respiratory Medicine, Beijing Chao-Yang Hospital, Capital Medical University, No. 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.
| |
Collapse
|
31
|
Coppola S, Caccioppola A, Froio S, Ferrari E, Gotti M, Formenti P, Chiumello D. Dynamic hyperinflation and intrinsic positive end-expiratory pressure in ARDS patients. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:375. [PMID: 31775830 PMCID: PMC6880369 DOI: 10.1186/s13054-019-2611-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 09/13/2019] [Indexed: 02/02/2023]
Abstract
Background In ARDS patients, changes in respiratory mechanical properties and ventilatory settings can cause incomplete lung deflation at end-expiration. Both can promote dynamic hyperinflation and intrinsic positive end-expiratory pressure (PEEP). The aim of this study was to investigate, in a large population of ARDS patients, the presence of intrinsic PEEP, possible associated factors (patients’ characteristics and ventilator settings), and the effects of two different external PEEP levels on the intrinsic PEEP. Methods We made a secondary analysis of published data. Patients were ventilated with a tidal volume of 6–8 mL/kg of predicted body weight, sedated, and paralyzed. After a recruitment maneuver, a PEEP trial was run at 5 and 15 cmH2O, and partitioned mechanics measurements were collected after 20 min of stabilization. Lung computed tomography scans were taken at 5 and 45 cmH2O. Patients were classified into two groups according to whether or not they had intrinsic PEEP at the end of an expiratory pause. Results We enrolled 217 sedated, paralyzed patients: 87 (40%) had intrinsic PEEP with a median of 1.1 [1.0–2.3] cmH2O at 5 cmH2O of PEEP. The intrinsic PEEP significantly decreased with higher PEEP (1.1 [1.0–2.3] vs 0.6 [0.0–1.0] cmH2O; p < 0.001). The applied tidal volume was significantly lower (480 [430–540] vs 520 [445–600] mL at 5 cmH2O of PEEP; 480 [430–540] vs 510 [430–590] mL at 15 cmH2O) in patients with intrinsic PEEP, while the respiratory rate was significantly higher (18 [15–20] vs 15 [13–19] bpm at 5 cmH2O of PEEP; 18 [15–20] vs 15 [13–19] bpm at 15 cmH2O). At both PEEP levels, the total airway resistance and compliance of the respiratory system were not different in patients with and without intrinsic PEEP. The total lung gas volume and lung recruitability were also not different between patients with and without intrinsic PEEP (respectively 961 [701–1535] vs 973 [659–1433] mL and 15 [0–32] % vs 22 [0–36] %). Conclusions In sedated, paralyzed ARDS patients without a known obstructive disease, the amount of intrinsic PEEP during lung-protective ventilation is negligible and does not influence respiratory mechanical properties.
Collapse
Affiliation(s)
- Silvia Coppola
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | | | - Sara Froio
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Erica Ferrari
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Miriam Gotti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Paolo Formenti
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy
| | - Davide Chiumello
- Department of Anesthesia and Intensive Care, ASST Santi Paolo e Carlo, San Paolo University Hospital, Milan, Italy. .,Department of Health Sciences, University of Milan, Milan, Italy. .,Coordinated Research Center on Respiratory Failure, University of Milan, Milan, Italy. .,SC Anestesia e Rianimazione, ASST Santi Paolo e Carlo, Via Di Rudinì, Milan, Italy.
| |
Collapse
|
32
|
Gallagher JJ. Mechanical Ventilator Modes. Crit Care Nurse 2019; 38:74-76. [PMID: 30275066 DOI: 10.4037/ccn2018101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- John J Gallagher
- John J. Gallagher is a trauma program manager and clinical nurse specialist in the Division of Trauma, Surgical Critical Care and Emergency Surgery at Penn Presbyterian Medical Center in Philadelphia, Pennsylvania.
| |
Collapse
|
33
|
Fichtner F, Moerer O, Weber-Carstens S, Nothacker M, Kaisers U, Laudi S. Clinical Guideline for Treating Acute Respiratory Insufficiency with Invasive Ventilation and Extracorporeal Membrane Oxygenation: Evidence-Based Recommendations for Choosing Modes and Setting Parameters of Mechanical Ventilation. Respiration 2019; 98:357-372. [PMID: 31505511 DOI: 10.1159/000502157] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
For patients with acute respiratory insufficiency, mechanical ("invasive") ventilation is a fundamental therapeutic measure to ensure sufficient gas exchange. Despite decades of strong research efforts, central questions on mechanical ventilation therapy are still answered incompletely. Therefore, many different ventilation modes and settings have been used in daily clinical practice without scientifically sound bases. At the same time, implementation of the few evidence-based therapeutic concepts (e.g., "lung protective ventilation") into clinical practice is still insufficient. The aim of our guideline project "Mechanical ventilation and extracorporeal gas exchange in acute respiratory insufficiency" was to develop an evidence-based decision aid for treating patients with and on mechanical ventilation. It covers the whole pathway of invasively ventilated patients (including indications of mechanical ventilation, ventilator settings, additional and rescue therapies, and liberation from mechanical ventilation). To assess the quality of scientific evidence and subsequently derive recommendations, we applied the Grading of Recommendations, Assessment, Development and Evaluation method. For the first time, using this globally accepted methodological standard, our guideline contains recommendations on mechanical ventilation therapy not only for acute respiratory distress syndrome patients but also for all types of acute respiratory insufficiency. This review presents the two main chapters of the guideline on choosing the mode of mechanical ventilation and setting its parameters. The guideline group aimed that - by thorough implementation of the recommendations - critical care teams may further improve the quality of care for patients suffering from acute respiratory insufficiency. By identifying relevant gaps of scientific evidence, the guideline group intended to support the development of important research projects.
Collapse
Affiliation(s)
- Falk Fichtner
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Medical Center, Leipzig, Germany,
| | - Onnen Moerer
- Center for Anesthesiology, Emergency and Intensive Care Medicine, University of Göttingen, Göttingen, Germany
| | - Steffen Weber-Carstens
- Department of Anesthesiology and Operative Intensive Care Medicine, Charité, Universitätsmedizin Berlin, Berlin, Germany
| | - Monika Nothacker
- AWMF-Institute for Medical Knowledge Management (AWMF-IMWi), AWMF-office Berlin, Berlin, Germany
| | - Udo Kaisers
- Board of Directors, Ulm University Hospital, Ulm, Germany
| | - Sven Laudi
- Department of Anesthesiology and Intensive Care Medicine, University of Leipzig Medical Center, Leipzig, Germany
| |
Collapse
|
34
|
Abstract
Invasive mechanical ventilation is a potentially lifesaving intervention for acutely ill patients. The goal of this review is to provide a concise, clinically focused overview of basic invasive mechanical ventilation for the many clinicians who care for mechanically ventilated patients. Attention is given to how common ventilator modes differ in delivering a mechanical breath, evaluation of respiratory system mechanics, how to approach acute changes in airway pressure, and the diagnosis of auto-positive end-expiratory pressure. Waveform interpretation is emphasized throughout the review.
Collapse
Affiliation(s)
- James M Walter
- From the Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Thomas C Corbridge
- From the Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Benjamin D Singer
- From the Department of Medicine, Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| |
Collapse
|
35
|
Silva PL, Ball L, Rocco PRM, Pelosi P. Power to mechanical power to minimize ventilator-induced lung injury? Intensive Care Med Exp 2019; 7:38. [PMID: 31346828 PMCID: PMC6658623 DOI: 10.1186/s40635-019-0243-4] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 03/13/2019] [Indexed: 11/28/2022] Open
Abstract
Mechanical ventilation is a life-supportive therapy, but can also promote damage to pulmonary structures, such as epithelial and endothelial cells and the extracellular matrix, in a process referred to as ventilator-induced lung injury (VILI). Recently, the degree of VILI has been related to the amount of energy transferred from the mechanical ventilator to the respiratory system within a given timeframe, the so-called mechanical power. During controlled mechanical ventilation, mechanical power is composed of parameters set by the clinician at the bedside—such as tidal volume (VT), airway pressure (Paw), inspiratory airflow (V′), respiratory rate (RR), and positive end-expiratory pressure (PEEP) level—plus several patient-dependent variables, such as peak, plateau, and driving pressures. Different mathematical equations are available to calculate mechanical power, from pressure-volume (PV) curves to more complex formulas which consider both dynamic (kinetic) and static (potential) components; simpler methods mainly consider the dynamic component. Experimental studies have reported that, even at low levels of mechanical power, increasing VT causes lung damage. Mechanical power should be normalized to the amount of ventilated pulmonary surface; the ratio of mechanical power to the alveolar area exposed to energy delivery is called “intensity.” Recognizing that mechanical power may reflect a conjunction of parameters which may predispose to VILI is an important step toward optimizing mechanical ventilation in critically ill patients. However, further studies are needed to clarify how mechanical power should be taken into account when choosing ventilator settings.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil
| | - Lorenzo Ball
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Largo Rosanna Benzi, 8, 16131, Genoa, Italy.,IRCCS AOU San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Centro de Ciências da Saúde, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Av. Carlos Chagas Filho, s/n, Bloco G-014, Ilha do Fundão, Rio de Janeiro, RJ, 21941-902, Brazil.
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Largo Rosanna Benzi, 8, 16131, Genoa, Italy.,IRCCS AOU San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
| |
Collapse
|
36
|
Lin Q, Zhuo L, Wu Z, Li C, Zhou M, Cai C. Effects of breathing exercises using home-based positive pressure in the expiratory phase in patients with COPD. Postgrad Med J 2019; 95:476-481. [PMID: 31332025 DOI: 10.1136/postgradmedj-2019-136580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/17/2019] [Accepted: 06/23/2019] [Indexed: 11/04/2022]
Abstract
BACKGROUND Patients with chronic obstructive pulmonary disease (COPD) commonly have higher intrinsic positive end-expiratory pressure (PEEPi). A breathing exercise programme strategy employing an appropriate PEEP may improve their pulmonary functional capacity, exercise tolerance and health-related quality of life. Breathing with an expiratory resistive load, which is a method of modulating spontaneous breathing against PEEPi, has not been fully studied in patients with COPD. The objective of this study was to investigate the role of changing spontaneous breathing in home-based conditions and regulating spontaneous breathing with breathing exercises in patients with COPD. METHODS This was a prospective randomised trial including 64 patients with a diagnosis of stage III or IV COPD. Patients were randomised into two groups: standard treatment and standard treatment combined with breathing exercise rehabilitation. The effects of the treatments on the COPD assessment test (CAT) score, 6-minute walk test (6MWT) results and pulmonary function were compared at 0, 6, 12 and 18 months within and between the two groups. RESULTS All outcomes showed no significant differences between the two groups at the beginning of the study, while the 6MWT and CAT scores exhibited clinically and statistically significant improvements (p<0.001) by the end of the study. At month 18, the change in the predicted percentage of forced expiratory volume in 1 s (FEV1%pred) differed between the two groups (p<0.05). In addition, there were statistically significant differences in the 6MWT results, CAT scores and FEV1%pred values between the baseline and month 18 (p<0.0001) in the intervention group. CONCLUSIONS Improvements in 6MWT results, pulmonary function and CAT scores are associated with a successful response to breathing against PEEPi in patients with COPD. TRIAL REGISTRATION This trial was registered at research registry.com (identifier research registry 4816).
Collapse
Affiliation(s)
- Qibin Lin
- Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, China
| | - Leying Zhuo
- Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, China
| | - Zhenjie Wu
- Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, China
| | - Chengye Li
- Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, China
| | - Meixi Zhou
- Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, China
| | - Chang Cai
- Respiratory and Critical Care Medicine, Wenzhou Medical University First Affiliated Hospital, Wenzhou, China
| |
Collapse
|
37
|
de Oliveira MV, Rocha NDN, Santos RS, Rocco MRM, de Magalhães RF, Silva JD, Souza SAL, Capelozzi VL, Pelosi P, Silva PL, Rocco PRM. Endotoxin-Induced Emphysema Exacerbation: A Novel Model of Chronic Obstructive Pulmonary Disease Exacerbations Causing Cardiopulmonary Impairment and Diaphragm Dysfunction. Front Physiol 2019; 10:664. [PMID: 31191356 PMCID: PMC6546905 DOI: 10.3389/fphys.2019.00664] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 05/09/2019] [Indexed: 12/26/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a progressive disorder of the lung parenchyma which also involves extrapulmonary manifestations, such as cardiovascular impairment, diaphragm dysfunction, and frequent exacerbations. The development of animal models is important to elucidate the pathophysiology of COPD exacerbations and enable analysis of possible therapeutic approaches. We aimed to characterize a model of acute emphysema exacerbation and evaluate its consequences on the lung, heart, and diaphragm. Twenty-four Wistar rats were randomly assigned into one of two groups: control (C) or emphysema (ELA). In ELA group, animals received four intratracheal instillations of pancreatic porcine elastase (PPE) at 1-week intervals. The C group received saline under the same protocol. Five weeks after the last instillation, C and ELA animals received saline (SAL) or E. coli lipopolysaccharide (LPS) (200 μg in 200 μl) intratracheally. Twenty-four hours after saline or endotoxin administration, arterial blood gases, lung inflammation and morphometry, collagen fiber content, and lung mechanics were analyzed. Echocardiography, diaphragm ultrasonography (US), and computed tomography (CT) of the chest were done. ELA-LPS animals, compared to ELA-SAL, exhibited decreased arterial oxygenation; increases in alveolar collapse (p < 0.0001), relative neutrophil counts (p = 0.007), levels of cytokine-induced neutrophil chemoattractant-1, interleukin (IL)-1β, tumor necrosis factor-α, IL-6, and vascular endothelial growth factor in lung tissue, collagen fiber deposition in alveolar septa, airways, and pulmonary vessel walls, and dynamic lung elastance (p < 0.0001); reduced pulmonary acceleration time/ejection time ratio, (an indirect index of pulmonary arterial hypertension); decreased diaphragm thickening fraction and excursion; and areas of emphysema associated with heterogeneous alveolar opacities on chest CT. In conclusion, we developed a model of endotoxin-induced emphysema exacerbation that affected not only the lungs but also the heart and diaphragm, thus resembling several features of human disease. This model of emphysema should allow preclinical testing of novel therapies with potential for translation into clinical practice.
Collapse
Affiliation(s)
- Milena Vasconcellos de Oliveira
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Nazareth de Novaes Rocha
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Department of Physiology and Pharmacology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Raquel Souza Santos
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marcella Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Ferreira de Magalhães
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Johnatas Dutra Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio Augusto Lopes Souza
- Department of Radiology, Faculty of Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vera Luiza Capelozzi
- Department of Pathology, Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Paolo Pelosi
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Genoa, Italy.,San Martino Policlinico Hospital, IRCCS for Oncology and Neurosciences, Genoa, Italy
| | - Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia Rieken Macedo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
38
|
Gallagher JJ. Alternative Modes of Mechanical Ventilation. AACN Adv Crit Care 2019; 29:396-404. [PMID: 30523010 DOI: 10.4037/aacnacc2018372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Modern mechanical ventilators are more complex than those first developed in the 1950s. Newer ventilation modes can be difficult to understand and implement clinically, although they provide more treatment options than traditional modes. These newer modes, which can be considered alternative or nontraditional, generally are classified as either volume controlled or pressure controlled. Dual-control modes incorporate qualities of pressure-controlled and volume-controlled modes. Some ventilation modes provide variable ventilatory support depending on patient effort and may be classified as closed-loop ventilation modes. Alternative modes of ventilation are tools for lung protection, alveolar recruitment, and ventilator liberation. Understanding the function and application of these alternative modes prior to implementation is essential and is most beneficial for the patient.
Collapse
Affiliation(s)
- John J Gallagher
- John J. Gallagher is Trauma Program Manager/Clinical Nurse Specialist at Penn Presbyterian Medical Center, 51 N 39th Street, Medical Office Building, Suite 120, Philadelphia, PA 19104
| |
Collapse
|
39
|
Circulatory Collapse due to Hyperinflation in a Patient with Tracheobronchomalacia: A Case Report and Brief Review. Case Rep Crit Care 2019; 2019:2921819. [PMID: 30838137 PMCID: PMC6374882 DOI: 10.1155/2019/2921819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/13/2019] [Indexed: 11/30/2022] Open
Abstract
We present a case of repeated cardiac arrests derived from dynamic hyperinflation in a patient with severe tracheobronchomalacia. Mechanical ventilation led to auto-PEEP with hemodynamic impairment and pulseless electric activity. Adjusted ventilation settings, deep sedation, and muscle paralysis followed by acute stenting of the affected collapsing airways restored ventilation and prevented recurrent circulatory collapse. We briefly review the pathophysiology and treatment options in patients with dynamic hyperinflation.
Collapse
|
40
|
Silva PL, Rocco PRM. The basics of respiratory mechanics: ventilator-derived parameters. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:376. [PMID: 30460250 DOI: 10.21037/atm.2018.06.06] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mechanical ventilation is a life-support system used to maintain adequate lung function in patients who are critically ill or undergoing general anesthesia. The benefits and harms of mechanical ventilation depend not only on the operator's setting of the machine (input), but also on their interpretation of ventilator-derived parameters (outputs), which should guide ventilator strategies. Once the inputs-tidal volume (VT), positive end-expiratory pressure (PEEP), respiratory rate (RR), and inspiratory airflow (V')-have been adjusted, the following outputs should be measured: intrinsic PEEP, peak (Ppeak) and plateau (Pplat) pressures, driving pressure (ΔP), transpulmonary pressure (PL), mechanical energy, mechanical power, and intensity. During assisted mechanical ventilation, in addition to these parameters, the pressure generated 100 ms after onset of inspiratory effort (P0.1) and the pressure-time product per minute (PTP/min) should also be evaluated. The aforementioned parameters should be seen as a set of outputs, all of which need to be strictly monitored at bedside in order to develop a personalized, case-by-case approach to mechanical ventilation. Additionally, more clinical research to evaluate the safe thresholds of each parameter in injured and uninjured lungs is required.
Collapse
Affiliation(s)
- Pedro Leme Silva
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Satalin J, Habashi NM, Nieman GF. Never give the lung the opportunity to collapse. TRENDS IN ANAESTHESIA AND CRITICAL CARE 2018. [DOI: 10.1016/j.tacc.2018.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
42
|
Schmidt J, Wenzel C, Mahn M, Spassov S, Cristina Schmitz H, Borgmann S, Lin Z, Haberstroh J, Meckel S, Eiden S, Wirth S, Buerkle H, Schumann S. Improved lung recruitment and oxygenation during mandatory ventilation with a new expiratory ventilation assistance device: A controlled interventional trial in healthy pigs. Eur J Anaesthesiol 2018; 35:736-744. [PMID: 29734208 PMCID: PMC6133202 DOI: 10.1097/eja.0000000000000819] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND In contrast to conventional mandatory ventilation, a new ventilation mode, expiratory ventilation assistance (EVA), linearises the expiratory tracheal pressure decline. OBJECTIVE We hypothesised that due to a recruiting effect, linearised expiration oxygenates better than volume controlled ventilation (VCV). We compared the EVA with VCV mode with regard to gas exchange, ventilation volumes and pressures and lung aeration in a model of peri-operative mandatory ventilation in healthy pigs. DESIGN Controlled interventional trial. SETTING Animal operating facility at a university medical centre. ANIMALS A total of 16 German Landrace hybrid pigs. INTERVENTION The lungs of anaesthetised pigs were ventilated with the EVA mode (n=9) or VCV (control, n=7) for 5 h with positive end-expiratory pressure of 5 cmH2O and tidal volume of 8 ml kg. The respiratory rate was adjusted for a target end-tidal CO2 of 4.7 to 6 kPa. MAIN OUTCOME MEASURES Tracheal pressure, minute volume and arterial blood gases were recorded repeatedly. Computed thoracic tomography was performed to quantify the percentages of normally and poorly aerated lung tissue. RESULTS Two animals in the EVA group were excluded due to unstable ventilation (n=1) or unstable FiO2 delivery (n=1). Mean tracheal pressure and PaO2 were higher in the EVA group compared with control (mean tracheal pressure: 11.6 ± 0.4 versus 9.0 ± 0.3 cmH2O, P < 0.001 and PaO2: 19.2 ± 0.7 versus 17.5 ± 0.4 kPa, P = 0.002) with comparable peak inspiratory tracheal pressure (18.3 ± 0.9 versus 18.0 ± 1.2 cmH2O, P > 0.99). Minute volume was lower in the EVA group compared with control (5.5 ± 0.2 versus 7.0 ± 1.0 l min, P = 0.02) with normoventilation in both groups (PaCO2 5.4 ± 0.3 versus 5.5 ± 0.3 kPa, P > 0.99). In the EVA group, the percentage of normally aerated lung tissue was higher (81.0 ± 3.6 versus 75.8 ± 3.0%, P = 0.017) and of poorly aerated lung tissue lower (9.5 ± 3.3 versus 15.7 ± 3.5%, P = 0.002) compared with control. CONCLUSION EVA ventilation improves lung aeration via elevated mean tracheal pressure and consequently improves arterial oxygenation at unaltered positive end-expiratory pressure (PEEP) and peak inspiratory pressure (PIP). These findings suggest the EVA mode is a new approach for protective lung ventilation.
Collapse
Affiliation(s)
- Johannes Schmidt
- From the Department of Anesthesiology and Critical Care (JS, CW, MM, SS, HCS, SB, ZL, SW, HB, SS), Experimental Surgery, Centre for Experimental Models and Transgenic Service (JH) and Department of Neuroradiology (SM, SE), Medical Centre - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Alviar CL, Miller PE, McAreavey D, Katz JN, Lee B, Moriyama B, Soble J, van Diepen S, Solomon MA, Morrow DA. Positive Pressure Ventilation in the Cardiac Intensive Care Unit. J Am Coll Cardiol 2018; 72:1532-1553. [PMID: 30236315 PMCID: PMC11032173 DOI: 10.1016/j.jacc.2018.06.074] [Citation(s) in RCA: 137] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 06/18/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022]
Abstract
Contemporary cardiac intensive care units (CICUs) provide care for an aging and increasingly complex patient population. The medical complexity of this population is partly driven by an increased proportion of patients with respiratory failure needing noninvasive or invasive positive pressure ventilation (PPV). PPV often plays an important role in the management of patients with cardiogenic pulmonary edema, cardiogenic shock, or cardiac arrest, and those undergoing mechanical circulatory support. Noninvasive PPV, when appropriately applied to selected patients, may reduce the need for invasive mechanical PPV and improve survival. Invasive PPV can be lifesaving, but has both favorable and unfavorable interactions with left and right ventricular physiology and carries a risk of complications that influence CICU mortality. Effective implementation of PPV requires an understanding of the underlying cardiac and pulmonary pathophysiology. Cardiologists who practice in the CICU should be proficient with the indications, appropriate selection, potential cardiopulmonary interactions, and complications of PPV.
Collapse
Affiliation(s)
- Carlos L Alviar
- Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, Florida
| | - P Elliott Miller
- Division of Cardiovascular Medicine, Yale University School of Medicine, New Haven, Connecticut; Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Dorothea McAreavey
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Jason N Katz
- Divisions of Cardiology and Pulmonary and Critical Care Medicine, University of North Carolina, Center for Heart and Vascular Care Chapel Hill, Chapel Hill, North Carolina
| | - Burton Lee
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Brad Moriyama
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland
| | - Jeffrey Soble
- Division of Cardiovascular Medicine, Rush University Medical Center, Chicago, Illinois
| | - Sean van Diepen
- Department of Critical Care and Division of Cardiology, University of Alberta, Edmonton, Alberta, Canada
| | - Michael A Solomon
- Critical Care Medicine, National Institutes of Health Clinical Center, Bethesda, Maryland; Cardiovascular Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland
| | - David A Morrow
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
44
|
Cortes-Puentes GA, Oeckler RA, Marini JJ. Physiology-guided management of hemodynamics in acute respiratory distress syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:353. [PMID: 30370280 DOI: 10.21037/atm.2018.04.40] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Skillfully implemented mechanical ventilation (MV) may prove of immense benefit in restoring physiologic homeostasis. However, since hemodynamic instability is a primary factor influencing mortality in acute respiratory distress syndrome (ARDS), clinicians should be vigilant regarding the potentially deleterious effects of MV on right ventricular (RV) function and pulmonary vascular mechanics (PVM). During both spontaneous and positive pressure MV (PPMV), tidal changes in pleural pressure (PPL), transpulmonary pressure (PTP, the difference between alveolar pressure and PPL), and lung volume influence key components of hemodynamics: preload, afterload, heart rate, and myocardial contractility. Acute cor pulmonale (ACP), which occurs in 20-25% of ARDS cases, emerges from negative effects of lung pathology and inappropriate changes in PPL and PTP on the pulmonary microcirculation during PPMV. Functional, minimally invasive hemodynamic monitoring for tracking cardiac performance and output adequacy is integral to effective care. In this review we describe a physiology-based approach to the management of hemodynamics in the setting of ARDS: avoiding excessive cardiac demand, regulating fluid balance, optimizing heart rate, and keeping focus on the pulmonary circuit as cornerstones of effective hemodynamic management for patients in all forms of respiratory failure.
Collapse
Affiliation(s)
| | - Richard A Oeckler
- Department of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - John J Marini
- Department of Pulmonary and Critical Care Medicine, University of Minnesota, Regions Hospital, St Paul, MN, USA
| |
Collapse
|
45
|
Bernardi E, Pisani L, Fasano L, Lauria G, Comellini V, Appendini L, Conti G, Tosello F, Pizzolato E, Nava S. A New Ultrasound Method for Estimating Dynamic Intrinsic Positive Airway Pressure: A Prospective Clinical Trial. Am J Respir Crit Care Med 2018; 198:392-396. [DOI: 10.1164/rccm.201706-1292le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Lara Pisani
- Policlinico Sant’Orsola-MalpighiBologna, Italy
| | - Luca Fasano
- Policlinico Sant’Orsola-MalpighiBologna, Italy
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Biologic Impact of Mechanical Power at High and Low Tidal Volumes in Experimental Mild Acute Respiratory Distress Syndrome. Anesthesiology 2018; 128:1193-1206. [DOI: 10.1097/aln.0000000000002143] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
Background
The authors hypothesized that low tidal volume (VT) would minimize ventilator-induced lung injury regardless of the degree of mechanical power. The authors investigated the impact of power, obtained by different combinations of VT and respiratory rate (RR), on ventilator-induced lung injury in experimental mild acute respiratory distress syndrome (ARDS).
Methods
Forty Wistar rats received Escherichia coli lipopolysaccharide intratracheally. After 24 h, 32 rats were randomly assigned to be mechanically ventilated (2 h) with a combination of different VT (6 ml/kg and 11 ml/kg) and RR that resulted in low and high power. Power was calculated as energy (ΔP,L2/E,L) × RR (ΔP,L = transpulmonary driving pressure; E,L = lung elastance), and was threefold higher in high than in low power groups. Eight rats were not mechanically ventilated and used for molecular biology analysis.
Results
Diffuse alveolar damage score, which represents the severity of edema, atelectasis, and overdistension, was increased in high VT compared to low VT, in both low (low VT: 11 [9 to 14], high VT: 18 [15 to 20]) and high (low VT: 19 [16 to 25], high VT: 29 [27 to 30]) power groups. At high VT, interleukin-6 and amphiregulin expressions were higher in high-power than in low-power groups. At high power, amphiregulin and club cell protein 16 expressions were higher in high VT than in low VT. Mechanical energy and power correlated well with diffuse alveolar damage score and interleukin-6, amphiregulin, and club cell protein 16 expression.
Conclusions
In experimental mild ARDS, even at low VT, high mechanical power promoted ventilator-induced lung injury. To minimize ventilator-induced lung injury, low VT should be combined with low power.
Collapse
|
47
|
Junhasavasdikul D, Telias I, Grieco DL, Chen L, Gutierrez CM, Piraino T, Brochard L. Expiratory Flow Limitation During Mechanical Ventilation. Chest 2018; 154:948-962. [PMID: 29432712 DOI: 10.1016/j.chest.2018.01.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 01/27/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022] Open
Abstract
Expiratory flow limitation (EFL) is present when the flow cannot rise despite an increase in the expiratory driving pressure. The mechanisms of EFL are debated but are believed to be related to the collapsibility of small airways. In patients who are mechanically ventilated, EFL can exist during tidal ventilation, representing an extreme situation in which lung volume cannot decrease, regardless of the expiratory driving forces. It is a key factor for the generation of auto- or intrinsic positive end-expiratory pressure (PEEP) and requires specific management such as positioning and adjustment of external PEEP. EFL can be responsible for causing dyspnea and patient-ventilator dyssynchrony, and it is influenced by the fluid status of the patient. EFL frequently affects patients with COPD, obesity, and heart failure, as well as patients with ARDS, especially at low PEEP. EFL is, however, most often unrecognized in the clinical setting despite being associated with complications of mechanical ventilation and poor outcomes such as postoperative pulmonary complications, extubation failure, and possibly airway injury in ARDS. Therefore, prompt recognition might help the management of patients being mechanically ventilated who have EFL and could potentially influence outcome. EFL can be suspected by using different means, and this review summarizes the methods to specifically detect EFL during mechanical ventilation.
Collapse
Affiliation(s)
- Detajin Junhasavasdikul
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Irene Telias
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Domenico Luca Grieco
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada; Department of Anesthesiology and Intensive Care Medicine, Catholic University of the Sacred Heart, Fondazione "Policlinico Universitario A. Gemelli," Rome, Italy
| | - Lu Chen
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada
| | - Cinta Millan Gutierrez
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Critical Care Center, Parc Taulí Hospital Universitari, Institut d'Investigació i Innovació Parc Taulí (I3PT), Universitat Autònoma de Barcelona, Sabadell, Spain
| | - Thomas Piraino
- Department of Respiratory Therapy, St. Michael's Hospital, Toronto, ON, Canada; Department of Anesthesia, McMaster University, Hamilton, ON, Canada
| | - Laurent Brochard
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada; Keenan Research Centre, Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada.
| |
Collapse
|
48
|
Pettenuzzo T, Fan E, Del Sorbo L. Extracorporeal carbon dioxide removal in acute exacerbations of chronic obstructive pulmonary disease. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:31. [PMID: 29430448 PMCID: PMC5799148 DOI: 10.21037/atm.2017.12.11] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 11/30/2017] [Indexed: 01/15/2023]
Abstract
Extracorporeal carbon dioxide removal (ECCO2R) has been proposed as an adjunctive intervention to avoid worsening respiratory acidosis, thereby preventing or shortening the duration of invasive mechanical ventilation (IMV) in patients with exacerbation of chronic obstructive pulmonary disease (COPD). This review will present a comprehensive summary of the pathophysiological rationale and clinical evidence of ECCO2R in patients suffering from severe COPD exacerbations.
Collapse
Affiliation(s)
- Tommaso Pettenuzzo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- The Extracorporeal Life Support Program and Department of Medicine, University Health Network, Toronto, Canada
| | - Eddy Fan
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- The Extracorporeal Life Support Program and Department of Medicine, University Health Network, Toronto, Canada
| | - Lorenzo Del Sorbo
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada
- The Extracorporeal Life Support Program and Department of Medicine, University Health Network, Toronto, Canada
| |
Collapse
|
49
|
Esophageal pressure: research or clinical tool? Med Klin Intensivmed Notfmed 2017; 113:13-20. [PMID: 29134245 DOI: 10.1007/s00063-017-0372-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 10/09/2017] [Indexed: 10/18/2022]
Abstract
Esophageal manometry has traditionally been utilized for respiratory physiology research, but clinicians have recently found numerous applications within the intensive care unit. Esophageal pressure (PEs) is a surrogate for pleural pressures (PPl), and the difference between airway pressure (PAO) and PEs provides a good estimate for the pressure across the lung also known as the transpulmonary pressure (PL). Differentiating the effects of mechanical ventilation and spontaneous breathing on the respiratory system, chest wall, and across the lung allows for improved personalization in clinical decision making. Measuring PL in acute respiratory distress syndrome (ARDS) may help set positive end expiratory pressure (PEEP) to prevent derecruitment and atelectrauma, while assuring peak pressures do not cause over distension during tidal breathing and recruitment maneuvers. Monitoring PEs allows improved insight into patient-ventilator interactions and may help in decisions to adjust sedation and paralytics to correct dyssynchrony. Intrinsic PEEP (auto-PEEP) may be monitored using esophageal manometry, which may also improve patient comfort and synchrony with the ventilator. Finally, during weaning, PEs may be used to better predict weaning success and allow for rapid intervention during failure. Improved consistency in definition and terminology and further outcomes research is needed to encourage more widespread adoption; however, with clear clinical benefit and increased ease of use, it appears time to reintroduce basic physiology into personalized ventilator management in the intensive care unit.
Collapse
|
50
|
Schaper-Magalhães F, Pinho JF, Capuruço CAB, Rodrigues-Machado MG. Positive end-expiratory pressure attenuates hemodynamic effects induced by an overload of inspiratory muscles in patients with COPD. Int J Chron Obstruct Pulmon Dis 2017; 12:2943-2954. [PMID: 29062231 PMCID: PMC5638594 DOI: 10.2147/copd.s138737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Inspiratory muscle training (IMT) using a Threshold® device is commonly used to improve the strength and endurance of inspiratory muscles. However, the effect of IMT, alone or with positive end-expiratory pressure (PEEP), on hemodynamic parameters in patients with chronic obstructive pulmonary disease (COPD) remains unknown. OBJECTIVE To assess the effects of an overload of inspiratory muscles using IMT fixed at 30% of the maximal inspiratory pressure (MIP), and IMT associated with 5 cmH2O of PEEP (IMT + PEEP), on the echocardiographic parameters in healthy subjects and patients with COPD. METHODS Twenty patients with COPD (forced expiratory volume in 1 second 53.19±24.71 pred%) and 15 age-matched healthy volunteers were evaluated using spirometry, MIP, the COPD assessment test (CAT), and the modified Medical Research Council (mMRC) dyspnea scale. The E- (fast-filling phase) and A- (atrial contraction phase) waves were evaluated at the tricuspid and mitral valves during inspiration and expiration in the following sequence: at basal conditions, using IMT, and using IMT + PEEP. RESULTS Patients with COPD had reduced MIPs versus the control group. Ten patients had CAT scores <10 and 12 patients had mMRC scores <2. E-wave values at the mitral valve were significantly decreased with IMT during the inspiratory phase in both groups. These effects were normalized with IMT + PEEP. During the expiratory phase, use of IMT + PEEP normalized the reduction in E-wave values in the COPD group. During inspiration at the tricuspid valve, reduction in E-wave values during IMT was normalized by IMT + PEEP in COPD group. During the expiratory phase, the value of the E-waves was significantly reduced with overload of the inspiratory muscles in both groups, and these effects were normalized with IMT + PEEP. A-waves did not change under any conditions. CONCLUSION Acute hemodynamic effects induced by overloading of the inspiratory muscles were attenuated and/or reversed by the addition of PEEP in COPD patients.
Collapse
Affiliation(s)
- Flavia Schaper-Magalhães
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | - José Felippe Pinho
- Medical Sciences Faculty of Minas Gerais, Post-Graduation Program in Health Sciences, Belo Horizonte, Brazil
| | | | | |
Collapse
|