1
|
Caceres JD, Venkata A. Combined pulmonary fibrosis and emphysema. Curr Opin Pulm Med 2024; 30:167-173. [PMID: 38164807 DOI: 10.1097/mcp.0000000000001044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
PURPOSE OF REVIEW Combined pulmonary fibrosis and emphysema (CPFE) is a syndrome characterized by upper lobe emphysema with lower lobe fibrosis. We aim to bring some clarity about its definition, nature, pathophysiology, and clinical implications. RECENT FINDINGS Although multiple genetic and molecular pathways have been implicated in the development of CPFE, smoking is considered the most prevalent risk factor. CPFE is most prevalent in middle-aged men with more than 40 pack-years of smoking and can be seen in about 8% of all chronic obstructive pulmonary disease (COPD) patients. Given its nature, it is a radiological diagnosis, better defined by computed tomography (CT). Spirometry can be normal despite severe disease or can have restrictive or obstructive patterns, but the diffusing capacity of the lungs (DLCO) is consistently low regardless of the spirometry pattern. The disease is progressive, with high occurrences of lung cancer and pulmonary hypertension, complications that limit survival. Unfortunately, there is no treatment found to be beneficial other than supportive care and guideline-directed medical therapy. SUMMARY CPFE is best described as a clinical and radiological syndrome where smokers are particularly at greater risk. Although simplistic, the earliest definition based chiefly on radiographic findings can identify a patient population with similar physiology. The most recent consensus proposes the definition based on mainly radiological findings with impaired gas exchange.
Collapse
Affiliation(s)
| | - Anand Venkata
- Pulmonary and Critical Care Medicine, University of Arkansas Medical Science, Little Rock, Arkansas, USA
| |
Collapse
|
2
|
Nemoto M, Koo CW, Scanlon PD, Ryu JH. Combined Pulmonary Fibrosis and Emphysema: A Narrative Review. Mayo Clin Proc 2023; 98:1685-1696. [PMID: 37923525 DOI: 10.1016/j.mayocp.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 11/07/2023]
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) syndrome refers to co-occurrence of two disease processes in the lung that can be difficult to diagnose but is associated with high morbidity and mortality burden. Diagnosis of CPFE is challenging because the two diseases can counterbalance respective impairments resulting in deceivingly normal-appearing chest radiography and spirometry in a dyspneic patient. Although an international committee published the terminology and definitions of CPFE in 2022, consensus on exact diagnostic criteria and optimal management strategy is yet to be determined. Herein, we provide a narrative review summarizing the literature on CPFE from 1990 to 2022, including historical background, epidemiology, pathogenesis, clinical features, imaging and pulmonary function findings, diagnosis, prognosis, complications, and treatment. Although CPFE was initially conceived as a variant presentation of idiopathic pulmonary fibrosis, it has been recognized to occur in patients with a wide variety of interstitial lung diseases, including connective tissue disease-associated interstitial lung diseases, and hypersensitivity pneumonitis. The affected patients have a heightened risk for pulmonary hypertension and lung cancer. Clinicians need to recognize the characteristic presenting features of CPFE along with prognostic implications of this entity.
Collapse
Affiliation(s)
- Masahiro Nemoto
- Department of Immunology, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Rheumatology, Teikyo University Chiba Medical Center, Ichihara, Japan
| | - Chi Wan Koo
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Paul D Scanlon
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
3
|
Gredic M, Karnati S, Ruppert C, Guenther A, Avdeev SN, Kosanovic D. Combined Pulmonary Fibrosis and Emphysema: When Scylla and Charybdis Ally. Cells 2023; 12:1278. [PMID: 37174678 PMCID: PMC10177208 DOI: 10.3390/cells12091278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/17/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome.
Collapse
Affiliation(s)
- Marija Gredic
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
| | - Srikanth Karnati
- Institute for Anatomy and Cell Biology, Julius-Maximilians-University Würzburg, 97070 Würzburg, Germany
| | - Clemens Ruppert
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
| | - Andreas Guenther
- Cardio-Pulmonary Institute (CPI), Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Justus Liebig University, 35392 Giessen, Germany
- UGMLC Giessen Biobank & European IPF Registry/Biobank, 35392 Giessen, Germany
- Institute for Lung Health (ILH), 35392 Giessen, Germany
- Lung Clinic, Evangelisches Krankenhaus Mittelhessen, 35398 Giessen, Germany
| | - Sergey N. Avdeev
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Djuro Kosanovic
- Department of Pulmonology, I.M. Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
4
|
Borie R, Kannengiesser C, Antoniou K, Bonella F, Crestani B, Fabre A, Froidure A, Galvin L, Griese M, Grutters JC, Molina-Molina M, Poletti V, Prasse A, Renzoni E, van der Smagt J, van Moorsel CHM. European Respiratory Society statement on familial pulmonary fibrosis. Eur Respir J 2023; 61:13993003.01383-2022. [PMID: 36549714 DOI: 10.1183/13993003.01383-2022] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 10/26/2022] [Indexed: 12/24/2022]
Abstract
Genetic predisposition to pulmonary fibrosis has been confirmed by the discovery of several gene mutations that cause pulmonary fibrosis. Although genetic sequencing of familial pulmonary fibrosis (FPF) cases is embedded in routine clinical practice in several countries, many centres have yet to incorporate genetic sequencing within interstitial lung disease (ILD) services and proper international consensus has not yet been established. An international and multidisciplinary expert Task Force (pulmonologists, geneticists, paediatrician, pathologist, genetic counsellor, patient representative and librarian) reviewed the literature between 1945 and 2022, and reached consensus for all of the following questions: 1) Which patients may benefit from genetic sequencing and clinical counselling? 2) What is known of the natural history of FPF? 3) Which genes are usually tested? 4) What is the evidence for telomere length measurement? 5) What is the role of common genetic variants (polymorphisms) in the diagnostic workup? 6) What are the optimal treatment options for FPF? 7) Which family members are eligible for genetic sequencing? 8) Which clinical screening and follow-up parameters may be considered in family members? Through a robust review of the literature, the Task Force offers a statement on genetic sequencing, clinical management and screening of patients with FPF and their relatives. This proposal may serve as a basis for a prospective evaluation and future international recommendations.
Collapse
Affiliation(s)
- Raphael Borie
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | | | - Katerina Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, School of Medicine, University of Crete, Heraklion, Greece
| | - Francesco Bonella
- Center for Interstitial and Rare Lung Diseases, Pneumology Department, Ruhrlandklinik, University Hospital, University of Essen, European Reference Network (ERN)-LUNG, ILD Core Network, Essen, Germany
| | - Bruno Crestani
- Université Paris Cité, Inserm, PHERE, Hôpital Bichat, AP-HP, Service de Pneumologie A, Centre Constitutif du Centre de Référence des Maladies Pulmonaires Rares, FHU APOLLO, Paris, France
| | - Aurélie Fabre
- Department of Histopathology, St Vincent's University Hospital and UCD School of Medicine, University College Dublin, Dublin, Ireland
| | - Antoine Froidure
- Pulmonology Department, Cliniques Universitaires Saint-Luc and Institut de Recherche Expérimentale et Clinique, UCLouvain, Brussels, Belgium
| | - Liam Galvin
- European Pulmonary Fibrosis Federation, Blackrock, Ireland
| | - Matthias Griese
- Dr von Haunersches Kinderspital, University of Munich, German Center for Lung Research (DZL), Munich, Germany
| | - Jan C Grutters
- ILD Center of Excellence, St Antonius Hospital, Nieuwegein, The Netherlands
- Division of Heart and Lungs, UMC Utrecht, Utrecht, The Netherlands
| | - Maria Molina-Molina
- Interstitial Lung Disease Unit, Respiratory Department, University Hospital of Bellvitge, IDIBELL, Hospitalet de Llobregat (Barcelona), CIBERES, Barcelona, Spain
| | - Venerino Poletti
- Department of Diseases of the Thorax, Ospedale GB Morgagni, Forlì, Italy
- Department of Experimental, Diagnostics and Speciality Medicine, University of Bologna, Bologna, Italy
| | - Antje Prasse
- Department of Pulmonology, Hannover Medical School, German Center for Lung Research (DZL), BREATH, Hannover, Germany
- Fraunhofer ITEM, Hannover, Germany
| | - Elisabetta Renzoni
- Interstitial Lung Disease Unit, Royal Brompton and Harefield Clinical Group, Guy's and St Thomas' NHS Foundation Trust, London, UK
- Margaret Turner Warwick Centre for Fibrosing Lung Disease, National Heart and Lung Institute, Imperial College London, London, UK
| | - Jasper van der Smagt
- Division of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
5
|
Lahmar Z, Ahmed E, Fort A, Vachier I, Bourdin A, Bergougnoux A. Hedgehog pathway and its inhibitors in chronic obstructive pulmonary disease (COPD). Pharmacol Ther 2022; 240:108295. [PMID: 36191777 DOI: 10.1016/j.pharmthera.2022.108295] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 08/22/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022]
Abstract
COPD affects millions of people and is now ranked as the third leading cause of death worldwide. This largely untreatable chronic airway disease results in irreversible destruction of lung architecture. The small lung hypothesis is now supported by epidemiological, physiological and clinical studies. Accordingly, the early and severe COPD phenotype carries the most dreadful prognosis and finds its roots during lung growth. Pathophysiological mechanisms remain poorly understood and implicate individual susceptibility (genetics), a large part of environmental factors (viral infections, tobacco consumption, air pollution) and the combined effects of those triggers on gene expression. Genetic susceptibility is most likely involved as the disease is severe and starts early in life. The latter observation led to the identification of Mendelian inheritance via disease-causing variants of SERPINA1 - known as the basis for alpha-1 anti-trypsin deficiency, and TERT. In the last two decades multiple genome wide association studies (GWAS) identified many single nucleotide polymorphisms (SNPs) associated with COPD. High significance SNPs are located in 4q31 near HHIP which encodes an evolutionarily highly conserved physiological inhibitor of the Hedgehog signaling pathway (HH). HHIP is critical to several in utero developmental lung processes. It is also implicated in homeostasis, injury response, epithelial-mesenchymal transition and tumor resistance to apoptosis. A few studies have reported decreased HHIP RNA and protein levels in human adult COPD lungs. HHIP+/- murine models led to emphysema. HH pathway inhibitors, such as vismodegib and sonidegib, are already validated in oncology, whereas other drugs have evidenced in vitro effects. Targeting the Hedgehog pathway could lead to a new therapeutic avenue in COPD. In this review, we focused on the early and severe COPD phenotype and the small lung hypothesis by exploring genetic susceptibility traits that are potentially treatable, thus summarizing promising therapeutics for the future.
Collapse
Affiliation(s)
- Z Lahmar
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France
| | - E Ahmed
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Fort
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - I Vachier
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bourdin
- Department of Respiratory Diseases, CHU de Montpellier, Montpellier, France; PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France
| | - A Bergougnoux
- PhyMedExp, Univ Montpellier, Inserm U1046, CNRS UMR 9214, Montpellier, France; Laboratoire de Génétique Moléculaire et de Cytogénomique, CHU de Montpellier, Montpellier, France.
| |
Collapse
|
6
|
Cottin V, Selman M, Inoue Y, Wong AW, Corte TJ, Flaherty KR, Han MK, Jacob J, Johannson KA, Kitaichi M, Lee JS, Agusti A, Antoniou KM, Bianchi P, Caro F, Florenzano M, Galvin L, Iwasawa T, Martinez FJ, Morgan RL, Myers JL, Nicholson AG, Occhipinti M, Poletti V, Salisbury ML, Sin DD, Sverzellati N, Tonia T, Valenzuela C, Ryerson CJ, Wells AU. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am J Respir Crit Care Med 2022; 206:e7-e41. [PMID: 35969190 PMCID: PMC7615200 DOI: 10.1164/rccm.202206-1041st] [Citation(s) in RCA: 90] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: The presence of emphysema is relatively common in patients with fibrotic interstitial lung disease. This has been designated combined pulmonary fibrosis and emphysema (CPFE). The lack of consensus over definitions and diagnostic criteria has limited CPFE research. Goals: The objectives of this task force were to review the terminology, definition, characteristics, pathophysiology, and research priorities of CPFE and to explore whether CPFE is a syndrome. Methods: This research statement was developed by a committee including 19 pulmonologists, 5 radiologists, 3 pathologists, 2 methodologists, and 2 patient representatives. The final document was supported by a focused systematic review that identified and summarized all recent publications related to CPFE. Results: This task force identified that patients with CPFE are predominantly male, with a history of smoking, severe dyspnea, relatively preserved airflow rates and lung volumes on spirometry, severely impaired DlCO, exertional hypoxemia, frequent pulmonary hypertension, and a dismal prognosis. The committee proposes to identify CPFE as a syndrome, given the clustering of pulmonary fibrosis and emphysema, shared pathogenetic pathways, unique considerations related to disease progression, increased risk of complications (pulmonary hypertension, lung cancer, and/or mortality), and implications for clinical trial design. There are varying features of interstitial lung disease and emphysema in CPFE. The committee offers a research definition and classification criteria and proposes that studies on CPFE include a comprehensive description of radiologic and, when available, pathological patterns, including some recently described patterns such as smoking-related interstitial fibrosis. Conclusions: This statement delineates the syndrome of CPFE and highlights research priorities.
Collapse
Affiliation(s)
- Vincent Cottin
- National Reference Center for Rare Pulmonary Diseases, Louis Pradel Hospital, Hospices Civils de Lyon, University of Lyon, INRAE, Lyon, France
| | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | | | - Tamera J. Corte
- Royal Prince Alfred Hospital and University of Sydney, Sydney, Australia
| | | | | | - Joseph Jacob
- University College London, London, United Kingdom
| | - Kerri A. Johannson
- Department of Medicine and Community Health Sciences, University of Calgary, Calgary, AB, Canada
| | | | - Joyce S. Lee
- University of Colorado Denver Anschutz Medical Campus, School of Medicine, Aurora, CO, USA
| | - Alvar Agusti
- Respiratory Institute, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERES, Barcelona, Spain
| | - Katerina M. Antoniou
- Laboratory of Molecular and Cellular Pneumonology, Department of Respiratory Medicine, University of Crete, Heraklion, Greece
| | | | - Fabian Caro
- Hospital de Rehabilitación Respiratoria "María Ferrer", Buenos Aires, Argentina
| | | | - Liam Galvin
- European idiopathic pulmonary fibrosis and related disorders federation
| | - Tae Iwasawa
- Kanagawa Cardiovascular and Respiratory Center, Yokohama, Japan
| | | | | | | | - Andrew G. Nicholson
- Royal Brompton and Harefield Hospitals, Guy’s and St Thomas’ NHS Foundation Trust and National Heart and Lung Institute, Imperial College, London, United Kingdom
| | | | | | | | - Don D. Sin
- University of British Columbia, Vancouver, Canada
| | - Nicola Sverzellati
- Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Italy
| | - Thomy Tonia
- Institute of Social and Preventive Medicine, University of Bern, Switzerland
| | - Claudia Valenzuela
- Pulmonology Department, Hospital Universitario de la Princesa, Departamento Medicina, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | |
Collapse
|
7
|
Guérin C, Crestani B, Dupin C, Kawano-Dourado L, Ba I, Kannengiesser C, Borie R. [Telomeres and lung]. Rev Mal Respir 2022; 39:595-606. [PMID: 35715316 DOI: 10.1016/j.rmr.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 02/26/2022] [Indexed: 10/18/2022]
Abstract
Genetic studies of familial forms of interstitial lung disease (ILD) have led to the discovery of telomere-related gene (TRG) mutations (TERT, TERC, RTEL1, PARN, DKC1, TINF2, NAF1, NOP10, NHP2, ACD, ZCCH8) in approximately 30% of familial ILD forms. ILD patients with TRG mutation are also subject to extra-pulmonary (immune-hematological, hepatic and/or mucosal-cutaneous) manifestations. TRG mutations may be associated not only with idiopathic pulmonary fibrosis (IPF), but also with non-IPF ILDs, including idiopathic and secondary ILDs, such as hypersensitivity pneumonitis (HP). The presence of TRG mutation may also be associated with an accelerated decline of forced vital capacity (FVC) or poorer prognosis after lung transplantation, notwithstanding which, usual ILD treatments may be proposed. Lastly, patients and their relatives are called upon to reduce their exposure to environmental lung toxicity, and are likely to derive benefit from specific genetic counseling and pre-symptomatic genetic testing.
Collapse
Affiliation(s)
- C Guérin
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France..
| | - B Crestani
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - C Dupin
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - L Kawano-Dourado
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; HCor Research Institute, Hôpital de Caracao, Sao Paulo, Brésil.; Département de Pneumologie, InCor, Université de Sao Paulo, Sao Paulo, Brésil
| | - I Ba
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - C Kannengiesser
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.; Département de Génétique, AP-HP, Hôpital Bichat, Paris, France
| | - R Borie
- Service de Pneumologie A, Centre de compétences maladies pulmonaires rares, AP-HP, Hôpital Bichat, Paris, France.; INSERM, Unité 1152; Université Paris Diderot, Paris, France
| |
Collapse
|
8
|
Cho MH, Hobbs BD, Silverman EK. Genetics of chronic obstructive pulmonary disease: understanding the pathobiology and heterogeneity of a complex disorder. THE LANCET. RESPIRATORY MEDICINE 2022; 10:485-496. [PMID: 35427534 PMCID: PMC11197974 DOI: 10.1016/s2213-2600(21)00510-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/20/2021] [Accepted: 11/09/2021] [Indexed: 12/20/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a deadly and highly morbid disease. Susceptibility to and heterogeneity of COPD are incompletely explained by environmental factors such as cigarette smoking. Family-based and population-based studies have shown that a substantial proportion of COPD risk is related to genetic variation. Genetic association studies have identified hundreds of genetic variants that affect risk for COPD, decreased lung function, and other COPD-related traits. These genetic variants are associated with other pulmonary and non-pulmonary traits, demonstrate a genetic basis for at least part of COPD heterogeneity, have a substantial effect on COPD risk in aggregate, implicate early-life events in COPD pathogenesis, and often involve genes not previously suspected to have a role in COPD. Additional progress will require larger genetic studies with more ancestral diversity, improved profiling of rare variants, and better statistical methods. Through integration of genetic data with other omics data and comprehensive COPD phenotypes, as well as functional description of causal mechanisms for genetic risk variants, COPD genetics will continue to inform novel approaches to understanding the pathobiology of COPD and developing new strategies for management and treatment.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Brian D Hobbs
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Edwin K Silverman
- Channing Division of Network Medicine and Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Luppi F, Kalluri M, Faverio P, Kreuter M, Ferrara G. Idiopathic pulmonary fibrosis beyond the lung: understanding disease mechanisms to improve diagnosis and management. Respir Res 2021; 22:109. [PMID: 33865386 PMCID: PMC8052779 DOI: 10.1186/s12931-021-01711-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive disorder with an estimated median survival time of 3–5 years after diagnosis. This condition occurs primarily in elderly subjects, and epidemiological studies suggest that the main risk factors, ageing and exposure to cigarette smoke, are associated with both pulmonary and extrapulmonary comorbidities (defined as the occurrence of two or more disorders in a single individual). Ageing and senescence, through interactions with environmental factors, may contribute to the pathogenesis of IPF by various mechanisms, causing lung epithelium damage and increasing the resistance of myofibroblasts to apoptosis, eventually resulting in extracellular matrix accumulation and pulmonary fibrosis. As a paradigm, syndromes featuring short telomeres represent archetypal premature ageing syndromes and are often associated with pulmonary fibrosis. The pathophysiological features induced by ageing and senescence in patients with IPF may translate to pulmonary and extrapulmonary features, including emphysema, pulmonary hypertension, lung cancer, coronary artery disease, gastro-oesophageal reflux, diabetes mellitus and many other chronic diseases, which may lead to substantial negative consequences in terms of various outcome parameters in IPF. Therefore, the careful diagnosis and treatment of comorbidities may represent an outstanding chance to improve quality of life and survival, and it is necessary to contemplate all possible management options for IPF, including early identification and treatment of comorbidities.
Collapse
Affiliation(s)
- Fabrizio Luppi
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Meena Kalluri
- Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada
| | - Paola Faverio
- Respiratory Unit, University of Milano Bicocca, S. Gerardo Hospital, ASST Monza, Monza, Italy
| | - Michael Kreuter
- Centre for Interstitial and Rare Lung Diseases, Pneumology and Respiratory Critical Care Medicine, University of Heidelberg, German Center for Lung Research, ThoraxklinikHeidelberg, Germany
| | - Giovanni Ferrara
- Sensory Motor Adaptive Rehabilitation Technology (SMART) Network, University of Alberta, Edmonton, AB, Canada. .,Division of Pulmonary Medicine, Department of Medicine, University of Alberta, 3-134 Clinical Sciences Building, 11304 83 Ave., Edmonton, AB, T6G 2G3, Canada.
| |
Collapse
|
10
|
Le Beller A, Nasser M, Traclet J, Blanchet-Legens AS, Kannengiesser C, Mornex JF, Cottin V. Combined pulmonary fibrosis and emphysema in alpha-1-antitrypsin deficiency. Respir Med Res 2021; 79:100819. [PMID: 33862498 DOI: 10.1016/j.resmer.2021.100819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/24/2022]
Affiliation(s)
- A Le Beller
- Hospices Civils de Lyon, Department of Respiratory Medicine, National Coordinating Reference Center for Rare Pulmonary Diseases, Louis Pradel hospital, Lyon, France
| | - M Nasser
- Hospices Civils de Lyon, Department of Respiratory Medicine, National Coordinating Reference Center for Rare Pulmonary Diseases, Louis Pradel hospital, Lyon, France
| | - J Traclet
- Hospices Civils de Lyon, Department of Respiratory Medicine, National Coordinating Reference Center for Rare Pulmonary Diseases, Louis Pradel hospital, Lyon, France
| | | | - C Kannengiesser
- Bichat Hospital, department of genetics; Paris Descartes University, Paris, France
| | - J-F Mornex
- Hospices Civils de Lyon, Department of Respiratory Medicine, National Coordinating Reference Center for Rare Pulmonary Diseases, Louis Pradel hospital, Lyon, France; Claude-Bernard Lyon 1 University, University of Lyon, INRAE, IVPC, Lyon, France
| | - V Cottin
- Hospices Civils de Lyon, Department of Respiratory Medicine, National Coordinating Reference Center for Rare Pulmonary Diseases, Louis Pradel hospital, Lyon, France; Claude-Bernard Lyon 1 University, University of Lyon, INRAE, IVPC, Lyon, France.
| |
Collapse
|
11
|
Mild catalytic defects of tert rs61748181 polymorphism affect the clinical presentation of chronic obstructive pulmonary disease. Sci Rep 2021; 11:4333. [PMID: 33619289 PMCID: PMC7900122 DOI: 10.1038/s41598-021-83686-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 02/03/2021] [Indexed: 11/29/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a disorder of accelerated lung aging. Multiple pieces of evidence support that the aging biomarker short telomeres, which can be caused by mutations in telomerase reverse transcriptase (TERT), contribute to COPD pathogenesis. We hypothesized that short telomere risk-associated single nucleotide polymorphisms (SNPs) in TERT, while not able to drive COPD development, nonetheless modify the disease presentation. We set out to test the SNP carrying status in a longitudinal study of smokers with COPD and found that rapid decline of FEV1 in lung function was associated with the minor allele of rs61748181 (adjusted odds ratio 2.49, p = 0.038). Biochemical evaluation of ex vivo engineered human cell models revealed that primary cells expressing the minor allele of rs61748181 had suboptimal telomere length maintenance due to reduced telomerase catalytic activity, despite having comparable cell growth kinetics as WT-TERT expressing cells. This ex vivo observation translated clinically in that shorter telomeres were found in minor allele carriers in a sub-population of COPD patients with non-declining lung function, over the 5-year period of the longitudinal study. Collectively, our data suggest that functional TERT SNPs with mild catalytic defects are nonetheless implicated in the clinical presentation of COPD.
Collapse
|
12
|
Accelerated epigenetic aging as a risk factor for chronic obstructive pulmonary disease and decreased lung function in two prospective cohort studies. Aging (Albany NY) 2020; 12:16539-16554. [PMID: 32747609 PMCID: PMC7485704 DOI: 10.18632/aging.103784] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/14/2020] [Indexed: 12/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is a frequent diagnosis in older individuals and contributor to global morbidity and mortality. Given the link between lung disease and aging, we need to understand how molecular indicators of aging relate to lung function and disease. Using data from the population-based KORA (Cooperative Health Research in the Region of Augsburg) surveys, we associated baseline epigenetic (DNA methylation) age acceleration with incident COPD and lung function. Models were adjusted for age, sex, smoking, height, weight, and baseline lung disease as appropriate. Associations were replicated in the Normative Aging Study. Of 770 KORA participants, 131 developed incident COPD over 7 years. Baseline accelerated epigenetic aging was significantly associated with incident COPD. The change in age acceleration (follow-up - baseline) was more strongly associated with COPD than baseline aging alone. The association between the change in age acceleration between baseline and follow-up and incident COPD replicated in the Normative Aging Study. Associations with spirometric lung function parameters were weaker than those with COPD, but a meta-analysis of both cohorts provide suggestive evidence of associations. Accelerated epigenetic aging, both baseline measures and changes over time, may be a risk factor for COPD and reduced lung function.
Collapse
|
13
|
Chen X, Wang T, Qiu X, Que C, Zhang H, Zhang L, Zhu T. Susceptibility of individuals with chronic obstructive pulmonary disease to air pollution exposure in Beijing, China: A case-control panel study (COPDB). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137285. [PMID: 32092811 DOI: 10.1016/j.scitotenv.2020.137285] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/11/2020] [Accepted: 02/11/2020] [Indexed: 06/10/2023]
Abstract
Exposure to air pollution is one of the major risk factors contributing to the occurrence and development of chronic obstructive pulmonary disease (COPD). However, few studies have investigated the susceptibility of patients with COPD to air pollution. Here, we provided a study protocol. A panel study of a total of 480 samples to compare the response to air pollution exposure between 60 patients with COPD and 60 healthy control subjects has been performed in Beijing (the COPDB study) since May 2016. The health assessment and exposure evaluation methods used in this COPDB study are summarized here. Throat, exhaled breath and condensate, urine, serum, plasma, and blood samples, as well as cardiopulmonary function indexes were repeatedly collected over four visits. Indicators of inflammation, oxidative stress, infection, metabolic changes, and genetic differences were then analyzed. Personal and ambient levels of fine particles and their components, as well as gaseous pollutants were monitored during the follow-up period. Linear mixed-effects models were used to evaluate the associations between changes in biomarkers and exposure to air pollution in both patients with COPD and healthy control subjects. Based on the COPDB study, the susceptibility of COPD patients and underlying mechanisms, involving difference in inflammatory, infection, metabolic, and genetic response to different air pollutants, were investigated. Our preliminary result shows that air pollution-associated changes in heart rate were higher in COPD patients than the healthy controls. More investigations of the underlying mechanisms of the susceptibility are ongoing. This study has been registered in ChiCTR with the number of ChiCTR1900023692.
Collapse
Affiliation(s)
- Xi Chen
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; The Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing, China; GRiC, Shenzhen Institute of Building Research Co., Ltd., Shenzhen, China.
| | - Teng Wang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; The Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Xinghua Qiu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Chengli Que
- Peking University First Hospital, Peking University, Beijing, China.
| | - Hanxiyue Zhang
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| | - Lina Zhang
- Beijing Xicheng District Shichahai Community Health Center, Beijing, China.
| | - Tong Zhu
- State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, China; The Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
14
|
Borie R, Le Guen P, Ghanem M, Taillé C, Dupin C, Dieudé P, Kannengiesser C, Crestani B. The genetics of interstitial lung diseases. Eur Respir Rev 2019; 28:28/153/190053. [PMID: 31554702 PMCID: PMC9488931 DOI: 10.1183/16000617.0053-2019] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/01/2019] [Indexed: 12/21/2022] Open
Abstract
Interstitial lung diseases (ILDs) are a set of heterogeneous lung diseases characterised by inflammation and, in some cases, fibrosis. These lung conditions lead to dyspnoea, cough, abnormalities in gas exchange, restrictive physiology (characterised by decreased lung volumes), hypoxaemia and, if progressive, respiratory failure. In some cases, ILDs can be caused by systemic diseases or environmental exposures. The ability to treat or cure these ILDs varies based on the subtype and in many cases lung transplantation remains the only curative therapy. There is a growing body of evidence that both common and rare genetic variants contribute to the development and clinical manifestation of many of the ILDs. Here, we review the current understanding of genetic risk and ILD. Common and rare genetic variants contribute to the development and clinical manifestation of many interstitial lung diseaseshttp://bit.ly/31loHLh
Collapse
Affiliation(s)
- Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Pierre Le Guen
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Mada Ghanem
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Camille Taillé
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Clairelyne Dupin
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France.,INSERM U1152, Paris, France
| | - Philippe Dieudé
- INSERM U1152, Paris, France.,Département de Génétique, Hôpital Bichat, AP-HP, Paris, France
| | - Caroline Kannengiesser
- INSERM U1152, Paris, France.,Service de Rhumatologie, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, AP-HP, Paris, France .,INSERM U1152, Paris, France
| |
Collapse
|
15
|
Niewisch MR, Savage SA. An update on the biology and management of dyskeratosis congenita and related telomere biology disorders. Expert Rev Hematol 2019; 12:1037-1052. [PMID: 31478401 DOI: 10.1080/17474086.2019.1662720] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Telomere biology disorders (TBDs) encompass a group of illnesses caused by germline mutations in genes regulating telomere maintenance, resulting in very short telomeres. Possible TBD manifestations range from complex multisystem disorders with onset in childhood such as dyskeratosis congenita (DC), Hoyeraal-Hreidarsson syndrome, Revesz syndrome and Coats plus to adults presenting with one or two DC-related features.Areas covered: The discovery of multiple genetic causes and inheritance patterns has led to the recognition of a spectrum of clinical features affecting multiple organ systems. Patients with DC and associated TBDs are at high risk of bone marrow failure, cancer, liver and pulmonary disease. Recently, vascular diseases, including pulmonary arteriovenous malformations and gastrointestinal telangiectasias, have been recognized as additional manifestations. Diagnostics include detection of very short leukocyte telomeres and germline genetic testing. Hematopoietic cell transplantation and lung transplantation are the only current therapeutic modalities but are complicated by numerous comorbidities. This review summarizes the pathophysiology underlying TBDs, associated clinical features, management recommendations and therapeutic options.Expert opinion: Understanding TBDs as complex, multisystem disorders with a heterogenous genetic background and diverse phenotypes, highlights the importance of clinical surveillance and the urgent need to develop new therapeutic strategies to improve health outcomes.
Collapse
Affiliation(s)
- Marena R Niewisch
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sharon A Savage
- Clinical Genetics Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
Combined pulmonary fibrosis and emphysema: How does cohabitation affect respiratory functions? Adv Med Sci 2019; 64:285-291. [PMID: 30947142 DOI: 10.1016/j.advms.2019.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 01/07/2019] [Accepted: 03/25/2019] [Indexed: 12/14/2022]
Abstract
PURPOSE Combined pulmonary fibrosis and emphysema (CPFE) has emerged as a new syndrome with characteristics of both fibrosis and emphysema. We determined the impacts of radiologic emphysema severity on pulmonary function tests (PFTs), exercise capacity and mortality. PATIENTS AND METHODS IPF patients (n = 110) diagnosed at the Chest Diseases Clinic between September 2013 and January 2016 were enrolled in the study and followed up until June 2017. Visual and digital emphysema scores, PFTs, pulmonary artery pressure (sPAP), 6-minute walking test, composite physiologic index (CPI), and survival status were recorded. Patients with emphysema and those with pure IPF were compared. RESULTS The CPFE-group had a significantly greater ratio of men(p < 0.001), lower BMI (p < 0.001), lower mean PaO2 (p = 0.005), higher mean sPAP (p = 0.014), and higher exercise desaturation (p < 0.001). The CPFE group had a significantly higher FVC(L)(p = 0.016), and lower FEV1/FVC ratio (p = 0.002), DLCO, and DLCO/VA ratio(p = 0.03 and p = 0.005, respectively). Lung volumes of the CPFE group had significantly higher VC(p = 0.017), FRC (p < 0.001), RV(p < 0.001), RV/TLC(p < 0.001), and TLC(p < 0.001). There were significant correlations between emphysema scores and FVC (L)(p = 0.01), FEV1/FVC(p = 0.001), DLCO (p = 0.003), VC(p = 0.014), FRC (L)(p < 0.001), RV(p < 0.001), TLC(p < 0.001), and RV/TLC (p < 0.001). Mortality rates were comparable between the two groups. CPI (p = 0.02) and sPAP (p = 0.01) were independent predictors of mortality in patients with CPFE. CONCLUSIONS The presence and severity of emphysema affects pulmonary function in IPF. Patients with CPFE have reduced diffusion capacity, more severe air trapping, worse muscle weakness, more severe exercise desaturation, and pulmonary hypertension. CPI and pulmonary hypertension are two independent risk factors for mortality in subjects with CPFE.
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW Telomere attrition has been proposed as one of the aging hallmarks in pulmonary fibrosis. Telomere shortening and telomerase gene mutations have been widely evaluated in recent years. Reduced telomere length may be identified in a quarter of patients with sporadic idiopathic pulmonary fibrosis (IPF) and half of those cases with family aggregation. However, telomere studies have not transferred from the research field to the clinic. This review is focused on our current understanding of the pathogenic implication of telomere dysfunction in lung fibrosis and its relevance in the clinical setting. RECENT FINDINGS The most prevalent clinical expression of telomere dysfunction is IPF. Disease onset is usually seen at a younger age and family aggregation is frequently present. Short telomere syndrome is associated in a minority of cases and includes premature hair greying, bone marrow failure and liver cirrhosis. However, patients often present with some extrapulmonary associated telomeric features and related comorbidities that may help to suspect telomere defects. Telomere shortening confers a poor prognosis and reduced lung-transplant free survival time in IPF and other nonidiopathic pulmonary fibrotic entities. SUMMARY Telomere dysfunction associates some common clinical features that could modify patient management in pulmonary fibrosis.
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Genomic mutations in telomere-related genes have been recognized as a cause of familial forms of idiopathic pulmonary fibrosis (IPF). However, it has become increasingly clear that telomere syndromes and telomere shortening are associated with various types of pulmonary disease. Additionally, it was found that also single nucleotide polymorphisms (SNPs) in telomere-related genes are risk factors for the development of pulmonary disease. This review focuses on recent updates on pulmonary phenotypes associated with genetic variation in telomere-related genes. RECENT FINDINGS Genomic mutations in seven telomere-related genes cause pulmonary disease. Pulmonary phenotypes associated with these mutations range from many forms of pulmonary fibrosis to emphysema and pulmonary vascular disease. Telomere-related mutations account for up to 10% of sporadic IPF, 25% of familial IPF, 10% of connective-tissue disease-associated interstitial lung disease, and 1% of COPD. Mixed disease forms have also been found. Furthermore, SNPs in TERT, TERC, OBFC1, and RTEL1, as well as short telomere length, have been associated with several pulmonary diseases. Treatment of pulmonary disease caused by telomere-related gene variation is currently based on disease diagnosis and not on the underlying cause. SUMMARY Pulmonary phenotypes found in carriers of telomere-related gene mutations and SNPs are primarily pulmonary fibrosis, sometimes emphysema and rarely pulmonary vascular disease. Genotype-phenotype relations are weak, suggesting that environmental factors and genetic background of patients determine disease phenotypes to a large degree. A disease model is presented wherever genomic variation in telomere-related genes cause specific pulmonary disease phenotypes whenever triggered by environmental exposure, comorbidity, or unknown factors.
Collapse
|
19
|
Borie R, Bouvry D, Cottin V, Gauvain C, Cazes A, Debray MP, Cadranel J, Dieude P, Degot T, Dominique S, Gamez AS, Jaillet M, Juge PA, Londono-Vallejo A, Mailleux A, Mal H, Boileau C, Menard C, Nunes H, Prevot G, Quetant S, Revy P, Traclet J, Wemeau-Stervinou L, Wislez M, Kannengiesser C, Crestani B. Regulator of telomere length 1 ( RTEL1) mutations are associated with heterogeneous pulmonary and extra-pulmonary phenotypes. Eur Respir J 2019; 53:13993003.00508-2018. [PMID: 30523160 DOI: 10.1183/13993003.00508-2018] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 11/06/2018] [Indexed: 01/10/2023]
Abstract
Regulator of telomere length 1 (RTEL1) mutations have been evidenced in 5-9% of familial pulmonary fibrosis; however, the phenotype of patients with interstitial lung disease (ILD) and RTEL1 mutations is poorly understood.Whole exome sequencing was performed in 252 probands with ILD and we included all patients with ILD and RTEL1 mutation. RTEL1 expression was evaluated by immunochemistry in the lungs of controls, as well as in RTEL1 and telomerase reverse transcriptase (TERT) mutation carriers.We identified 35 subjects from 17 families. Median age at diagnosis of ILD was 53.1 years (range 28.0-80.6). The most frequent pulmonary diagnoses were idiopathic pulmonary fibrosis (n=20, 57%), secondary ILD (n=7, 20%) and unclassifiable fibrosis or interstitial pneumonia with autoimmune features (n=7, 20%). The median transplant-free and overall survival periods were 39.2 months and 45.3 months, respectively. Forced vital capacity at diagnosis was the only factor associated with decreased transplant-free survival. Extra-pulmonary manifestations were less frequent as compared to other telomere-related gene mutation carriers. A systematic analysis of the literature identified 110 patients with ILD and RTEL1 mutations (including this series) and confirmed the heterogeneity of the pulmonary phenotype, the prevalence of non-idiopathic diseases and the low prevalence of extra-pulmonary manifestations.Immunohistochemistry showed that RTEL1 was expressed by bronchial and alveolar epithelial cells, as well as by alveolar macrophages and lymphocytes, but not by fibroblasts.
Collapse
Affiliation(s)
- Raphael Borie
- Service de Pneumologie A, Hôpital Bichat, AP-HP, DHU FIRE, Paris, France.,Unité 1152, INSERM, Université Paris Diderot, Paris, France
| | - Diane Bouvry
- Service de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | - Vincent Cottin
- Service de Pneumologie, Hôpital Louis Pradel, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Aurélie Cazes
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service d'Anatomopathologie, Hôpital Bichat, AP-HP, Paris, France
| | - Marie-Pierre Debray
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service de Radiologie, Hôpital Bichat, AP-HP, Paris, France
| | | | - Philippe Dieude
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service de Rhumatologie, Hôpital Bichat, AP-HP, Paris, France.,Université Paris Diderot, Paris, France
| | - Tristan Degot
- Service de Pneumologie, CHU Strasbourg, Strasbourg, France
| | | | | | | | | | - Arturo Londono-Vallejo
- UMR 3244 (Telomere and Cancer Lab), CNRS, Institut Curie, PSL Research University, Sorbonne Universités, Paris, France
| | | | - Hervé Mal
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Service de Pneumologie B, Hôpital Bichat, AP-HP, Paris, France
| | - Catherine Boileau
- Université Paris Diderot, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, AP-HP, Paris, France
| | | | - Hilario Nunes
- Service de Pneumologie, Hôpital Avicenne, AP-HP, Bobigny, France
| | | | | | - Patrick Revy
- UMR 1163 (Laboratory of Genome Dynamics in the Immune System), INSERM, Imagine Institute, Paris Descartes-Sorbonne Paris Cité University, Paris, France
| | - Julie Traclet
- Service de Pneumologie, Hôpital Tenon, AP-HP, Paris, France
| | - Lidwine Wemeau-Stervinou
- Service de Pneumologie, Centre de Compétence des Maladies Pulmonaires Rares, CHRU de Lille, Lille, France
| | - Marie Wislez
- Service de Pneumologie, Unité d'Oncologie Thoracique, Hôpital Cochin, Hôpitaux Universitaires Paris Centre, AP-HP, Paris, France
| | - Caroline Kannengiesser
- Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Université Paris Diderot, Paris, France.,Laboratoire de Génétique, Hôpital Bichat, AP-HP, Paris, France
| | - Bruno Crestani
- Service de Pneumologie A, Hôpital Bichat, AP-HP, DHU FIRE, Paris, France.,Unité 1152, INSERM, Université Paris Diderot, Paris, France.,Université Paris Diderot, Paris, France
| |
Collapse
|
20
|
Courtwright AM, El-Chemaly S. Telomeres in Interstitial Lung Disease: The Short and the Long of It. Ann Am Thorac Soc 2019; 16:175-181. [PMID: 30540921 PMCID: PMC6376948 DOI: 10.1513/annalsats.201808-508cme] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023] Open
Abstract
Telomeres are repetitive nucleotide sequences that cap linear chromosomes, thereby limiting progressive chromosomal shortening during cell replication. In conjunction with environmental factors, common single-nucleotide polymorphisms and rare and ultra-rare telomere-related mutations are associated with accelerated telomere shortening resulting in organ dysfunction, including interstitial lung disease (ILD). The most common telomere-related mutation-associated ILD is idiopathic pulmonary fibrosis (IPF). Up to one-third of individuals with familial IPF have shortened telomeres and/or carry a telomere-related mutation, and 1 in 10 individuals with sporadic IPF have telomere-related mutations. Regardless of ILD phenotype, individuals with short telomeres and/or known telomere-related mutations have more rapid disease progression and shorter lung transplant-free survival. Management should include initiation of antifibrotic agents for those with an IPF phenotype and early referral to a transplant center. Patients with ILD being considered for transplant should be screened for short telomeres if there is a significant family history of pulmonary fibrosis or evidence of extrapulmonary organ dysfunction associated with a short telomere syndrome. Post-transplant management of recipients with telomere-related mutations should include careful adjustment of immunosuppression regimens on the basis of bone marrow reserve. Data on the impact of shortened telomeres on post-transplant outcomes, however, remain mixed.
Collapse
Affiliation(s)
- Andrew M. Courtwright
- Division of Pulmonary and Critical Care Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania; and
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
21
|
Champtiaux N, Cottin V, Chassagnon G, Chaigne B, Valeyre D, Nunes H, Hachulla E, Launay D, Crestani B, Cazalets C, Jego P, Bussone G, Bérezné A, Guillevin L, Revel MP, Cordier JF, Mouthon L. Combined pulmonary fibrosis and emphysema in systemic sclerosis: A syndrome associated with heavy morbidity and mortality. Semin Arthritis Rheum 2018; 49:98-104. [PMID: 30409416 DOI: 10.1016/j.semarthrit.2018.10.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 09/10/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND The syndrome of combined pulmonary fibrosis and emphysema (CPFE) primarily due to tobacco smoking has been reported in connective tissue disease, but little is known about its characteristics in systemic sclerosis (SSc). METHODS In this retrospective multi-center case-control study, we identified 36 SSc patients with CPFE, and compared them with 72 SSc controls with interstitial lung disease (ILD) without emphysema. RESULTS Rate of CPFE in SSc patients with CT scan was 3.6%, and 7.6% among SSc patients with ILD. CPFE-SSc patients were more likely to be male (75 % vs 18%, p < 0.0001), smokers (83 % vs 33%, p < 0.0001), and to have limited cutaneous SSc (53 % vs 24% p < 0.01) than ILD-SSc controls. No specific autoantibody was significantly associated with CPFE. At diagnosis, CPFE-SSc patients had a greater decrease in carbon monoxide diffusing capacity (DLCO 39 ± 13 % vs 51 ± 12% of predicted value, p < 0.0001) when compared to SSc-ILD controls, whereas lung volumes (total lung capacity and forced vital capacity) were similar. During follow-up, CPFE-SSc patients more frequently developed precapillary pulmonary hypertension (PH) (44 % vs 11%, p < 10-4), experienced more frequent unscheduled hospitalizations (50 % vs 25%, p < 0.01), and had decreased survival (p < 0.02 by Kaplan-Meier survival analysis) as compared to ILD-SSc controls. CONCLUSIONS The CPFE syndrome is a distinct pulmonary manifestation in SSc, with higher morbidity and mortality. Early diagnosis of CPFE by chest CT in SSc patients (especially smokers) may result in earlier smoking cessation, screening for PH, and appropriate management.
Collapse
Affiliation(s)
- N Champtiaux
- Department of Internal Medicine, Service de Médecine Interne, Hôpital Cochin, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, DHU Authors (Autoimmune and Hormonal Diseases), Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), 27, rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - V Cottin
- Service de Pneumologie, Centre National de Référence des maladies pulmonaire rares, Hospices Civils de Lyon, Hôpital Louis Pradel, Groupe d'Etudes et de Recherche sur les Maladies « Orphelines » Pulmonaires (GERM«O»P), Université Claude Bernard Lyon 1, UMR754, Lyon, France
| | | | - B Chaigne
- Department of Internal Medicine, Service de Médecine Interne, Hôpital Cochin, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, DHU Authors (Autoimmune and Hormonal Diseases), Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), 27, rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - D Valeyre
- Service de Pneumologie, APHP, hôpital Avicenne, Université Paris Nord, 93000 Bobigny, France
| | - H Nunes
- Service de Pneumologie, APHP, hôpital Avicenne, Université Paris Nord, 93000 Bobigny, France
| | - E Hachulla
- Université de Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, Service de Médecine Interne, Hôpital Claude Huriez, Centre de Référence pour la Sclérodermie Systémique, FHU IMMInENT, F-59000 Lille, France
| | - D Launay
- Université de Lille, Inserm, CHU Lille, U995 - LIRIC - Lille Inflammation Research International Center, Service de Médecine Interne, Hôpital Claude Huriez, Centre de Référence pour la Sclérodermie Systémique, FHU IMMInENT, F-59000 Lille, France
| | - B Crestani
- Service de Pneumologie A, Hôpital Bichat, DHU FIRE, Université Paris Diderot, Paris, France
| | - C Cazalets
- Service de médecine interne, CHU de Rennes, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - P Jego
- Service de médecine interne, CHU de Rennes, 2, rue Henri-Le-Guilloux, 35000 Rennes, France
| | - G Bussone
- Department of Internal Medicine, Service de Médecine Interne, Hôpital Cochin, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, DHU Authors (Autoimmune and Hormonal Diseases), Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), 27, rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - A Bérezné
- Department of Internal Medicine, Service de Médecine Interne, Hôpital Cochin, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, DHU Authors (Autoimmune and Hormonal Diseases), Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), 27, rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - L Guillevin
- Department of Internal Medicine, Service de Médecine Interne, Hôpital Cochin, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, DHU Authors (Autoimmune and Hormonal Diseases), Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), 27, rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France
| | - M P Revel
- Service de Radiologie, Hôpital Cochin, France
| | - J F Cordier
- Service de Pneumologie, Centre National de Référence des maladies pulmonaire rares, Hospices Civils de Lyon, Hôpital Louis Pradel, Groupe d'Etudes et de Recherche sur les Maladies « Orphelines » Pulmonaires (GERM«O»P), Université Claude Bernard Lyon 1, UMR754, Lyon, France
| | - L Mouthon
- Department of Internal Medicine, Service de Médecine Interne, Hôpital Cochin, Centre de Référence Maladies Systémiques Autoimmunes Rares d'Ile de France, DHU Authors (Autoimmune and Hormonal Diseases), Université Paris Descartes, Assistance Publique-Hôpitaux de Paris (AP-HP), 27, rue du Faubourg Saint-Jacques, 75679 Paris Cedex 14, France.
| | | |
Collapse
|
22
|
Cottin V. Combined pulmonary fibrosis and emphysema: bad and ugly all the same? Eur Respir J 2017; 50:50/1/1700846. [DOI: 10.1183/13993003.00846-2017] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 04/24/2017] [Indexed: 11/05/2022]
|
23
|
Borie R, Kannengiesser C, Sicre de Fontbrune F, Gouya L, Nathan N, Crestani B. Management of suspected monogenic lung fibrosis in a specialised centre. Eur Respir Rev 2017; 26:26/144/160122. [DOI: 10.1183/16000617.0122-2016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 02/21/2017] [Indexed: 12/20/2022] Open
Abstract
At least 10% of patients with interstitial lung disease present monogenic lung fibrosis suspected on familial aggregation of pulmonary fibrosis, specific syndromes or early age of diagnosis. Approximately 25% of families have an identified mutation in genes mostly involved in telomere homeostasis, and more rarely in surfactant homeostasis.Beyond pathophysiological knowledge, detection of these mutations has practical consequence for patients. For instance, mutations involved in telomere homeostasis are associated with haematological complications after lung transplantation and may require adapted immunosuppression. Moreover, relatives may benefit from a clinical and genetic evaluation that should be specifically managed.The field of genetics of pulmonary fibrosis has made great progress in the last 10 years, raising specific problems that should be addressed by a specialised team.
Collapse
|
24
|
Telomere Damage Response and Low-Grade Inflammation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1024:213-224. [PMID: 28921472 DOI: 10.1007/978-981-10-5987-2_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Telomeres at the ends of chromosomes safeguard genome integrity and stability in human nucleated cells. However, telomere repeats shed off during cell proliferation and other stress responses. Our recent studies show that telomere attrition induces not only epithelial stem cell senescence but also low-grade inflammation in the lungs. The senescence-associated low-grade inflammation (SALI) is characteristic of alveolar stem cell replicative senescence, increased proinflammatory and anti-inflammatory cytokines, infiltrated immune cells, and spillover effects. To date, the mechanisms underlying SALI remain unclear. Investigations demonstrate that senescent epithelial stem cells with telomere erosion are not the source of secreted cytokines, containing no significant increase in expression of the genes coding for increased cytokines, suggesting an alternative senescence-associated secretory phenotype (A-SASP). Given that telomere loss results in significant alterations in the genomes and accumulations of the cleaved telomeric DNA in the cells and milieu externe, we conclude that telomere position effects (TPEs) on gene expression and damage-associated molecular patterns (DAMPs) in antigen presentation are involved in A-SASP and SALI in response to telomere damage in mammals.
Collapse
|
25
|
Is Chronic Obstructive Pulmonary Disease an Accelerated Aging Disease? Ann Am Thorac Soc 2016; 13 Suppl 5:S429-S437. [DOI: 10.1513/annalsats.201602-124aw] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
26
|
Borie R, Tabèze L, Thabut G, Nunes H, Cottin V, Marchand-Adam S, Prevot G, Tazi A, Cadranel J, Mal H, Wemeau-Stervinou L, Bergeron Lafaurie A, Israel-Biet D, Picard C, Reynaud Gaubert M, Jouneau S, Naccache JM, Mankikian J, Ménard C, Cordier JF, Valeyre D, Reocreux M, Grandchamp B, Revy P, Kannengiesser C, Crestani B. Prevalence and characteristics of TERT and TERC mutations in suspected genetic pulmonary fibrosis. Eur Respir J 2016; 48:1721-1731. [PMID: 27836952 DOI: 10.1183/13993003.02115-2015] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 09/03/2016] [Indexed: 02/02/2023]
Abstract
Telomerase reverse transcriptase (TERT) or telomerase RNA (TERC) gene mutation is a major monogenic cause of pulmonary fibrosis. Sequencing of TERT/TERC genes is proposed to patients with familial pulmonary fibrosis. Little is known about the possible predictors of this mutation and its impact on prognosis.We retrospectively analysed all the genetic diagnoses made between 2007-2014 in patients with pulmonary fibrosis. We evaluated the prevalence of TERT/TERC disease-associated variant (DAV), factors associated with a DAV, and the impact of the DAV on survival.237 patients with pulmonary fibrosis (153 with familial pulmonary fibrosis, 84 with telomere syndrome features without familial pulmonary fibrosis) were tested for TERT/TERC DAV. DAV was diagnosed in 40 patients (16.8%), including five with non-idiopathic interstitial pneumonia. Prevalence of TERT/TERC DAV did not significantly differ between patients with familial pulmonary fibrosis or with only telomere syndrome features (18.2% versus 16.4%). Young age, red blood cell macrocytosis, and low platelet count were associated with the presence of DAV; the probability of DAV was increased for patients 40-60 years. Transplant-free survival was lower with than without TERT/TERC DAV (4.2 versus 7.2 years; p=0.046).TERT/TERC DAV were associated with specific clinical and biological features and reduced transplant-free survival.
Collapse
Affiliation(s)
- Raphael Borie
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Centre de compétence des maladies pulmonaires rares, Paris, France.,INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - Laure Tabèze
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Centre de compétence des maladies pulmonaires rares, Paris, France.,INSERM, Unité 1152; Université Paris Diderot, Paris, France
| | - Gabriel Thabut
- INSERM, Unité 1152; Université Paris Diderot, Paris, France.,Service de Pneumologie B, APHP, Hôpital Bichat, Paris, France
| | - Hilario Nunes
- APHP, Service de Pneumologie, Hôpital Avicenne, Bobigny, France
| | - Vincent Cottin
- Service de Pneumologie, Centre national de référence des maladies pulmonaires rares, Hôpital Louis Pradel, Université Claude Bernard Lyon 1, Lyon, France
| | | | | | - Abdellatif Tazi
- APHP, Hôpital Saint-Louis, Service de Pneumologie, Paris, France
| | - Jacques Cadranel
- APHP, Service de Pneumologie, Centre de compétence des maladies pulmonaires rares, Hôpital Tenon, Paris, France
| | - Herve Mal
- Service de Pneumologie B, APHP, Hôpital Bichat, Paris, France
| | - Lidwine Wemeau-Stervinou
- Service de Pneumologie, Centre de compétence des maladies pulmonaires rares, CHRU de Lille, Lille, France
| | | | | | | | | | - Stephane Jouneau
- Service de Pneumologie, Centre de compétence des maladies pulmonaires rares, Hôpital Pontchaillou; IRSET UMR 1085, université de Rennes 1, Rennes, France
| | - Jean-Marc Naccache
- APHP, Service de Pneumologie, Centre de compétence des maladies pulmonaires rares, Hôpital Tenon, Paris, France
| | | | - Christelle Ménard
- Departement de Génétique, APHP, Hôpital Bichat, Paris, France; Université Paris Diderot, Paris, France
| | - Jean-François Cordier
- Service de Pneumologie, Centre national de référence des maladies pulmonaires rares, Hôpital Louis Pradel, Université Claude Bernard Lyon 1, Lyon, France
| | | | - Marion Reocreux
- Departement de Génétique, APHP, Hôpital Bichat, Paris, France; Université Paris Diderot, Paris, France
| | - Bernard Grandchamp
- Departement de Génétique, APHP, Hôpital Bichat, Paris, France; Université Paris Diderot, Paris, France
| | - Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Paris Descartes-Sorbonne Paris Cité University, Imagine Institute, Paris, France
| | - Caroline Kannengiesser
- Departement de Génétique, APHP, Hôpital Bichat, Paris, France; Université Paris Diderot, Paris, France.,Both authors contributed equally to this work
| | - Bruno Crestani
- APHP, Hôpital Bichat, Service de Pneumologie A, DHU FIRE, Centre de compétence des maladies pulmonaires rares, Paris, France .,INSERM, Unité 1152; Université Paris Diderot, Paris, France.,Both authors contributed equally to this work
| |
Collapse
|
27
|
Ba Aqeel SH, Biswas A, Sriram PS. The worst of both worlds-combined pulmonary fibrosis and emphysema syndrome. ANNALS OF TRANSLATIONAL MEDICINE 2016; 4:196. [PMID: 27294092 DOI: 10.21037/atm.2016.05.26] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Sheeba Habeeb Ba Aqeel
- 1 Deccan College of Medical Sciences, Hyderabad, India ; 2 Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, USA
| | - Abhishek Biswas
- 1 Deccan College of Medical Sciences, Hyderabad, India ; 2 Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, USA
| | - Peruvemba S Sriram
- 1 Deccan College of Medical Sciences, Hyderabad, India ; 2 Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, USA
| |
Collapse
|
28
|
Papaioannou AI, Kostikas K, Manali ED, Papadaki G, Roussou A, Kolilekas L, Borie R, Bouros D, Papiris SA. Combined pulmonary fibrosis and emphysema: The many aspects of a cohabitation contract. Respir Med 2016; 117:14-26. [PMID: 27492509 DOI: 10.1016/j.rmed.2016.05.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 03/20/2016] [Accepted: 05/05/2016] [Indexed: 12/12/2022]
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) is a clinical entity characterized by the coexistence of upper lobe emphysema and lower lobe fibrosis. Patients with this condition experience severe dyspnea and impaired gas exchange with preserved lung volumes. The diagnosis of the CPFE syndrome is based on HRCT imaging, showing the coexistence of emphysema and pulmonary fibrosis both in varying extent and locations within the lung parenchyma. Individual genetic background seem to predispose to the development of the disease. The risk of the development of pulmonary hypertension in patients with CPFE is high and related to poor prognosis. CPFE patients also present a high risk of lung cancer. Mortality is significant in patients with CPFE and median survival is reported between 2.1 and 8.5 years. Currently, no specific recommendations are available regarding the management of patients with CPFE. In this review we provide information on the existing knowledge on CPFE regarding the pathophysiology, clinical manifestations, imaging, complications, possible therapeutic interventions and prognosis of the disease.
Collapse
Affiliation(s)
- Andriana I Papaioannou
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Konstantinos Kostikas
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Effrosyni D Manali
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Georgia Papadaki
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Aneza Roussou
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| | - Likurgos Kolilekas
- 7th Department of Pneumonology, "Sotiria" Chest Diseases Hospital, Athens, Greece.
| | - Raphaël Borie
- APHP, Hôpital Bichat, DHU FIRE Service de Pneumologie A, Centre de compétence des maladies pulmonaires rares, INSERM, Unité 1152, Université Paris Diderot, Paris, France.
| | - Demosthenis Bouros
- 1st Respiratory Medicine Department, "Sotiria" Chest Diseases Hospital, Athens, Medical School, National and Kapodistrian University of Athens, Greece.
| | - Spyridon A Papiris
- 2nd Respiratory Medicine Department, "Attikon" University Hospital, Athens Medical School, National and Kapodistrian University of Athens, Greece.
| |
Collapse
|
29
|
Chen R, Zhang K, Chen H, Zhao X, Wang J, Li L, Cong Y, Ju Z, Xu D, Williams BRG, Jia J, Liu JP. Telomerase Deficiency Causes Alveolar Stem Cell Senescence-associated Low-grade Inflammation in Lungs. J Biol Chem 2015; 290:30813-29. [PMID: 26518879 DOI: 10.1074/jbc.m115.681619] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Indexed: 12/16/2022] Open
Abstract
Mutations of human telomerase RNA component (TERC) and telomerase reverse transcriptase (TERT) are associated with a subset of lung aging diseases, but the mechanisms by which TERC and TERT participate in lung diseases remain unclear. In this report, we show that knock-out (KO) of the mouse gene Terc or Tert causes pulmonary alveolar stem cell replicative senescence, epithelial impairment, formation of alveolar sacs, and characteristic inflammatory phenotype. Deficiency in TERC or TERT causes a remarkable elevation in various proinflammatory cytokines, including IL-1, IL-6, CXCL15 (human IL-8 homolog), IL-10, TNF-α, and monocyte chemotactic protein 1 (chemokine ligand 2 (CCL2)); decrease in TGF-β1 and TGFβRI receptor in the lungs; and spillover of IL-6 and CXCL15 into the bronchoalveolar lavage fluids. In addition to increased gene expressions of α-smooth muscle actin and collagen 1α1, suggesting myofibroblast differentiation, TERC deficiency also leads to marked cellular infiltrations of a mononuclear cell population positive for the leukocyte common antigen CD45, low-affinity Fc receptor CD16/CD32, and pattern recognition receptor CD11b in the lungs. Our data demonstrate for the first time that telomerase deficiency triggers alveolar stem cell replicative senescence-associated low-grade inflammation, thereby driving pulmonary premature aging, alveolar sac formation, and fibrotic lesion.
Collapse
Affiliation(s)
- Ruping Chen
- From the Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong Province 250012, China, the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Kexiong Zhang
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Hao Chen
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Xiaoyin Zhao
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Jianqiu Wang
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Li Li
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Yusheng Cong
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Zhenyu Ju
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China
| | - Dakang Xu
- the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China, the Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, the Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, Victoria 3168, Australia, and
| | - Bryan R G Williams
- the Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, the Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, Victoria 3168, Australia, and
| | - Jihui Jia
- From the Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong Province 250012, China
| | - Jun-Ping Liu
- From the Department of Microbiology/Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, Shandong Province 250012, China, the Institute of Aging Research, Hangzhou Normal University, School of Medicine, Hangzhou, Zhejiang Province 311121, China, the Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia, the Department of Molecular and Translational Science, Faculty of Medicine, Monash University, Clayton, Victoria 3168, Australia, and the Department of Immunology, Faculty of Medicine, Central Clinical School, Monash University, Prahran, Victoria 3018, Australia
| |
Collapse
|
30
|
Cho MH, Castaldi PJ, Hersh CP, Hobbs BD, Barr RG, Tal-Singer R, Bakke P, Gulsvik A, San José Estépar R, Van Beek EJR, Coxson HO, Lynch DA, Washko GR, Laird NM, Crapo JD, Beaty TH, Silverman EK. A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes. Am J Respir Crit Care Med 2015; 192:559-69. [PMID: 26030696 PMCID: PMC4595690 DOI: 10.1164/rccm.201501-0148oc] [Citation(s) in RCA: 115] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
Abstract
RATIONALE Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow limitation on spirometry, yet subjects with COPD can have marked differences in computed tomography imaging. These differences may be driven by genetic factors. We hypothesized that a genome-wide association study (GWAS) of quantitative imaging would identify loci not previously identified in analyses of COPD or spirometry. In addition, we sought to determine whether previously described genome-wide significant COPD and spirometric loci were associated with emphysema or airway phenotypes. OBJECTIVES To identify genetic determinants of quantitative imaging phenotypes. METHODS We performed a GWAS on two quantitative emphysema and two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), NETT (National Emphysema Treatment Trial), and GenKOLS (Genetics of COPD, Norway) studies and on percentage gas trapping in COPDGene. We also examined specific loci reported as genome-wide significant for spirometric phenotypes related to airflow limitation or COPD. MEASUREMENTS AND MAIN RESULTS The total sample size across all cohorts was 12,031, of whom 9,338 were from COPDGene. We identified five loci associated with emphysema-related phenotypes, one with airway-related phenotypes, and two with gas trapping. These loci included previously reported associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near SERPINA10 and DLC1. All previously reported COPD and a significant number of spirometric GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway phenotypes. CONCLUSIONS Genome-wide analysis may identify novel risk factors for quantitative imaging characteristics in COPD and also identify imaging features associated with previously identified lung function loci.
Collapse
Affiliation(s)
- Michael H. Cho
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | | | - Craig P. Hersh
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Brian D. Hobbs
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - R. Graham Barr
- Department of Medicine, College of Physicians and Surgeons, and
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, New York
| | - Ruth Tal-Singer
- GlaxoSmithKline Research and Development, King of Prussia, Pennsylvania
| | - Per Bakke
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Amund Gulsvik
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Raúl San José Estépar
- Laboratory of Mathematics in Imaging, Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Edwin J. R. Van Beek
- Queens Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
- Department of Radiology and
- Department of Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - Harvey O. Coxson
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| | - Nan M. Laird
- Harvard School of Public Health, Boston, Massachusetts; and
| | - James D. Crapo
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - Terri H. Beaty
- Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Edwin K. Silverman
- Channing Division of Network Medicine and
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, and
| |
Collapse
|
31
|
Adnot S, Amsellem V, Boyer L, Marcos E, Saker M, Houssaini A, Kebe K, Dagouassat M, Lipskaia L, Boczkowski J. Telomere Dysfunction and Cell Senescence in Chronic Lung Diseases: Therapeutic Potential. Pharmacol Ther 2015; 153:125-34. [DOI: 10.1016/j.pharmthera.2015.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 06/15/2015] [Indexed: 12/27/2022]
|
32
|
George G, Rosas IO, Cui Y, McKane C, Hunninghake GM, Camp PC, Raby BA, Goldberg HJ, El-Chemaly S. Short telomeres, telomeropathy, and subclinical extrapulmonary organ damage in patients with interstitial lung disease. Chest 2015; 147:1549-1557. [PMID: 25393420 DOI: 10.1378/chest.14-0631] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Human telomere disease consists of a wide spectrum of disorders, including pulmonary, hepatic, and bone marrow abnormalities. The extent of bone marrow and liver abnormalities in patients with interstitial lung disease (ILD) and short telomeres is unknown. METHODS The lung transplant clinic established a prospective protocol to identify short telomeres in patients with ILD not related to connective tissue disease or sarcoidosis. Patients with short telomeres underwent bone marrow biopsies, liver biopsies, or both as part of the evaluation for transplant candidacy. RESULTS One hundred twenty-seven patients met ILD categorization for inclusion. Thirty were suspected to have short telomeres, and 15 had the diagnosis confirmed. Eight of 13 (53%) patients had bone marrow abnormalities. Four patients had hypocellular marrow associated with macrocytosis and relatively normal blood counts, which resulted in changes to planned immunosuppression at the time of transplant. Four patients with more severe hematologic abnormalities were not listed because of myelodysplastic syndrome (two); monoclonal gammopathy of unclear significance (one); and hypocellular marrow, decreased megakaryocyte lineage associated with thrombocytopenia (one). Seven patients underwent liver biopsies, and six had abnormal liver pathology. These abnormalities did not affect listing for lung transplant, and liver biopsies are no longer routinely obtained. CONCLUSIONS Subclinical bone marrow and liver abnormalities can be seen in patients with ILD and short telomeres, in some cases in the absence of clinically significant abnormalities in peripheral blood counts and liver function tests. A larger study examining the implication of these findings on the outcome of patients with ILD and short telomeres is needed.
Collapse
Affiliation(s)
- Gautam George
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ivan O Rosas
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Ye Cui
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Caitlin McKane
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Gary M Hunninghake
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Phillip C Camp
- Department of Thoracic Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Benjamin A Raby
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA; Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Hilary J Goldberg
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA
| | - Souheil El-Chemaly
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
33
|
Lin H, Jiang S. Combined pulmonary fibrosis and emphysema (CPFE): an entity different from emphysema or pulmonary fibrosis alone. J Thorac Dis 2015; 7:767-79. [PMID: 25973246 DOI: 10.3978/j.issn.2072-1439.2015.04.17] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Accepted: 02/04/2015] [Indexed: 11/14/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic interstitial pneumonias (IIP), with different radiological, pathological, functional and prognostic characteristics, have been regarded as separate entities for a long time. However, there is an increasing recognition of the coexistence of emphysema and pulmonary fibrosis in individuals. The association was first described as a syndrome by Cottin in 2005, named "combined pulmonary fibrosis and emphysema (CPFE)", which is characterized by exertional dyspnea, upper-lobe emphysema and lower-lobe fibrosis, preserved lung volume and severely diminished capacity of gas exchange. CPFE is frequently complicated by pulmonary hypertension, acute lung injury and lung cancer and prognosis of it is poor. Treatments for CPFE patients with severe pulmonary hypertension are less effective other than lung transplantation. However, CPFE has not yet attracted wide attention of clinicians and there is no research systematically contrasting the differences among CPFE, emphysema/COPD and IIP at the same time. The authors will review the existing knowledge of CPFE and compare them to either entity alone for the first time, with the purpose of improving the awareness of this syndrome and exploring novel effective therapeutic strategies in clinical practice.
Collapse
Affiliation(s)
- Huijin Lin
- 1 Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China ; 2 Sun Yat-Sen University Institute of Respiratory Disease, Guangzhou 510275, China
| | - Shanping Jiang
- 1 Department of Respiratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510120, China ; 2 Sun Yat-Sen University Institute of Respiratory Disease, Guangzhou 510275, China
| |
Collapse
|
34
|
Thannickal VJ, Murthy M, Balch WE, Chandel NS, Meiners S, Eickelberg O, Selman M, Pardo A, White ES, Levy BD, Busse PJ, Tuder RM, Antony VB, Sznajder JI, Budinger GRS. Blue journal conference. Aging and susceptibility to lung disease. Am J Respir Crit Care Med 2015; 191:261-9. [PMID: 25590812 DOI: 10.1164/rccm.201410-1876pp] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The aging of the population in the United States and throughout the developed world has increased morbidity and mortality attributable to lung disease, while the morbidity and mortality from other prevalent diseases has declined or remained stable. Recognizing the importance of aging in the development of lung disease, the American Thoracic Society (ATS) highlighted this topic as a core theme for the 2014 annual meeting. The relationship between aging and lung disease was discussed in several oral symposiums and poster sessions at the annual ATS meeting. In this article, we used the input gathered at the conference to develop a broad framework and perspective to stimulate basic, clinical, and translational research to understand how the aging process contributes to the onset and/or progression of lung diseases. A consistent theme that emerged from the conference was the need to apply novel, systems-based approaches to integrate a growing body of genomic, epigenomic, transcriptomic, and proteomic data and elucidate the relationship between biologic hallmarks of aging, altered lung function, and increased susceptibility to lung diseases in the older population. The challenge remains to causally link the molecular and cellular changes of aging with age-related changes in lung physiology and disease susceptibility. The purpose of this review is to stimulate further research to identify new strategies to prevent or treat age-related lung disease.
Collapse
|
35
|
Abstract
Ageing is the main risk factor for major non-communicable chronic lung diseases, including chronic obstructive pulmonary disease, most forms of lung cancer and idiopathic pulmonary fibrosis. While the prevalence of these diseases continually increases with age, their respective incidence peaks at different times during the lifespan, suggesting specific effects of ageing on the onset and/or pathogenesis of chronic obstructive pulmonary disease, lung cancer and idiopathic pulmonary fibrosis. Recently, the nine hallmarks of ageing have been defined as cell-autonomous and non-autonomous pathways involved in ageing. Here, we review the available evidence for the involvement of each of these hallmarks in the pathogenesis of chronic obstructive pulmonary disease, lung cancer, or idiopathic pulmonary fibrosis. Importantly, we propose an additional hallmark, “dysregulation of the extracellular matrix”, which we argue acts as a crucial modifier of cell-autonomous changes and functions, and as a key feature of the above-mentioned lung diseases.
Collapse
|
36
|
Dias OM, Baldi BG, Costa AN, Carvalho CRR. Combined pulmonary fibrosis and emphysema: an increasingly recognized condition. J Bras Pneumol 2015; 40:304-12. [PMID: 25029654 PMCID: PMC4109203 DOI: 10.1590/s1806-37132014000300014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 05/19/2014] [Indexed: 12/25/2022] Open
Abstract
Combined pulmonary fibrosis and emphysema (CPFE) has been increasingly recognized in the literature. Patients with CPFE are usually heavy smokers or former smokers with concomitant lower lobe fibrosis and upper lobe emphysema on chest HRCT scans. They commonly present with severe breathlessness and low DLCO, despite spirometry showing relatively preserved lung volumes. Moderate to severe pulmonary arterial hypertension is common in such patients, who are also at an increased risk of developing lung cancer. Unfortunately, there is currently no effective treatment for CPFE. In this review, we discuss the current knowledge of the pathogenesis, clinical characteristics, and prognostic factors of CPFE. Given that most of the published data on CPFE are based on retrospective analysis, more studies are needed in order to address the role of emphysema and its subtypes; the progression of fibrosis/emphysema and its correlation with inflammation; treatment options; and prognosis.
Collapse
Affiliation(s)
- Olívia Meira Dias
- Instituto do Coração, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Bruno Guedes Baldi
- Instituto do Coração, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - André Nathan Costa
- Instituto do Coração, Hospital das Clínicas, School of Medicine, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
37
|
Stanley SE, Chen JJL, Podlevsky JD, Alder JK, Hansel NN, Mathias RA, Qi X, Rafaels NM, Wise RA, Silverman EK, Barnes KC, Armanios M. Telomerase mutations in smokers with severe emphysema. J Clin Invest 2014; 125:563-70. [PMID: 25562321 DOI: 10.1172/jci78554] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Accepted: 11/25/2014] [Indexed: 11/17/2022] Open
Abstract
Mutations in the essential telomerase genes TERT and TR cause familial pulmonary fibrosis; however, in telomerase-null mice, short telomeres predispose to emphysema after chronic cigarette smoke exposure. Here, we tested whether telomerase mutations are a risk factor for human emphysema by examining their frequency in smokers with chronic obstructive pulmonary disease (COPD). Across two independent cohorts, we found 3 of 292 severe COPD cases carried deleterious mutations in TERT (1%). This prevalence is comparable to the frequency of alpha-1 antitrypsin deficiency documented in this population. The TERT mutations compromised telomerase catalytic activity, and mutation carriers had short telomeres. Telomerase mutation carriers with emphysema were predominantly female and had an increased incidence of pneumothorax. In families, emphysema showed an autosomal dominant inheritance pattern, along with pulmonary fibrosis and other telomere syndrome features, but manifested only in smokers. Our findings identify germline mutations in telomerase as a Mendelian risk factor for COPD susceptibility that clusters in autosomal dominant families with telomere-mediated disease including pulmonary fibrosis.
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Recent genetic findings have identified new targets of investigation in the field of pulmonary fibrosis and have the potential to change clinical care. RECENT FINDINGS These findings implicate alterations in host defense, cell-to-cell adhesion, and aging and senescence in the pathophysiology of pulmonary fibrosis. At least one common genetic variant strongly associated with pulmonary fibrosis appears to have prognostic implications for patients. SUMMARY The inherited risk for pulmonary fibrosis is substantial, and recent data suggest that genetic risk for familial and sporadic forms of the disease are similar. Further characterizing this genetic risk will influence clinical practice in terms of categorization, diagnosis, and screening of individuals for this disease.
Collapse
Affiliation(s)
- Susan K. Mathai
- University of Colorado Denver, Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Aurora, Colorado
| | - David A. Schwartz
- University of Colorado Denver, Department of Medicine, Division of Pulmonary Sciences and Critical Care Medicine, Aurora, Colorado
- National Jewish Health, Denver, Colorado
| | - Laura A. Warg
- University of Colorado Denver, Medical Scientist Training Program, Aurora, Colorado
| |
Collapse
|
39
|
[Pulmonary hypertension in chronic respiratory diseases]. Presse Med 2014; 43:945-56. [PMID: 25123317 DOI: 10.1016/j.lpm.2014.07.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 07/09/2014] [Indexed: 11/23/2022] Open
Abstract
Pulmonary hypertension is frequent in advanced chronic respiratory diseases, with an estimated prevalence at the time of pulmonary transplantation of 30-50 % in idiopathic pulmonary fibrosis, 30-50 % in chronic obstructive pulmonary disease, 50 % in combined pulmonary fibrosis and emphysema, 75 % in sarcoidosis, and more than 75 % of cases in pulmonary Langerhans cell histiocytosis. Histologic features include varying degrees of pulmonary arterial remodeling (prominent), vascular rarefaction (emphysema), fibrosis or specific involvement of the pulmonary arteries (idiopathic pulmonary fibrosis, sarcoidosis, lymphangioleiomyomatosis, pulmonary Langerhans cell histiocytosis), in situ thrombosis, and frequently associated involvement of the pulmonary veins (idiopathic pulmonary fibrosis, sarcoidosis). Pulmonary hypertension is usually detected using echocardiography with Doppler, however right heart catheterisation is required to confirm precapillary pulmonary hypertension defined by pulmonary artery pressure ≥ 25 mm Hg, with pulmonary artery wedge pressure ≤ 15 mm Hg. When present, it is associated with decreased exercise capacity and worse mortality. Pulmonary hypertension in chronic respiratory disease is almost invariably multifactorial; hypoxia is one of its main determinants, however supplemental oxygen therapy rarely reverses pulmonary hypertension. Management of pulmonary hypertension in chronic respiratory disease is mostly based on the optimal treatment of the underlying disease. Available data do not support the use of drug therapies specific for pulmonary hypertension in the setting of chronic respiratory diseases, however very few clinical studies have been conducted so far specifically in this context.
Collapse
|
40
|
|