1
|
Karampitsakos T, Juan-Guardela BM, Tzouvelekis A, Herazo-Maya JD. Precision medicine advances in idiopathic pulmonary fibrosis. EBioMedicine 2023; 95:104766. [PMID: 37625268 PMCID: PMC10469771 DOI: 10.1016/j.ebiom.2023.104766] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/07/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a highly heterogeneous, unpredictable and ultimately lethal chronic lung disease. Over the last decade, two anti-fibrotic agents have been shown to slow disease progression, however, both drugs are administered uniformly with minimal consideration of disease severity and inter-individual molecular, genetic, and genomic differences. Advances in biological understanding of disease endotyping and the emergence of precision medicine have shown that "a one-size-fits-all approach" to the management of chronic lung diseases is no longer appropriate. While precision medicine approaches have revolutionized the management of other diseases such as lung cancer and asthma, the implementation of precision medicine in IPF clinical practice remains an unmet need despite several reports demonstrating a large number of diagnostic, prognostic and theragnostic biomarker candidates in IPF. This review article aims to summarize our current knowledge of precision medicine in IPF and highlight barriers to translate these research findings into clinical practice.
Collapse
Affiliation(s)
- Theodoros Karampitsakos
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Brenda M Juan-Guardela
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | | | - Jose D Herazo-Maya
- Division of Pulmonary, Critical Care and Sleep Medicine, Ubben Center for Pulmonary Fibrosis Research, Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, USA.
| |
Collapse
|
3
|
Zhang L, Xie T, Li Y, Zhang B, Fu Y, Ding Y, Wu H. Diagnostic value and safety of medical thoracoscopy under local anesthesia for unexplained diffuse interstitial lung disease: A retrospective study. Chron Respir Dis 2022; 19:14799731221133389. [PMID: 36206158 PMCID: PMC9549086 DOI: 10.1177/14799731221133389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Objective We aimed to explore the safety and diagnostic value of medical thoracoscopic
lung biopsy in patients with unexplained diffuse interstitial lung disease
(ILD) in a single center pilot study. Method We retrospectively analyzed clinical and pathological diagnostic data from 52
patients with diffuse ILD undergoing medical thoracoscopic lung biopsy. Results Forty-four cases of diffuse ILD were confirmed pathologically, giving a
diagnostic rate of 84.6%. Among these 44 patients, 11 patients were
diagnosed with cancer, including eight patients with lung adenocarcinoma,
three patients with metastases; two from a gastrointestinal malignancy, and
one from a granulosa cell tumor of the ovary. There were 17 cases of
idiopathic interstitial pneumonia, including nine cases of usual
interstitial pneumonia (UIP), four cases of non-specific interstitial
pneumonia (NSIP), three cases of cryptogenic organizing pneumonia (COP), and
one case of acute interstitial pneumonia (AIP). There were 12 cases of rare
interstitial pneumonias, which included six cases of pulmonary alveolar
proteinosis, one case each of pulmonary Langerhans cell histiocytosis (LCH)
and pulmonary lymphangiomyomatosis, two cases of nodular sarcoidosis, and
two cases of chronic eosinophilic pneumonia. We recorded various
complications, including bleeding, infection, and pneumothorax. A total of
28 patients (53.8%) experienced at least one of the above complications, but
there were no deaths associated with biopsy. Conclusions Medical thoracoscopic lung biopsy appears a safe and effective method for
diagnosing diffuse ILD of unknown cause but further prospective studies,
with larger numbers, including comparison with other established techniques
are required.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haihong Wu
- Haihong Wu, Department of Pulmonary and
Critical Care Medicine, Hainan General Hospital, Hainan Affiliated Hospital of
Hainan Medical University, No.19, Xiuhua Road, Xiuying District, Haikou City,
Hainan Province 570311, China.
| |
Collapse
|
4
|
Tzouvelekis A, Yu G, Lino Cardenas CL, Herazo-Maya JD, Wang R, Woolard T, Zhang Y, Sakamoto K, Lee H, Yi JS, DeIuliis G, Xylourgidis N, Ahangari F, Lee PJ, Aidinis V, Herzog EL, Homer R, Bennett AM, Kaminski N. SH2 Domain-Containing Phosphatase-2 Is a Novel Antifibrotic Regulator in Pulmonary Fibrosis. Am J Respir Crit Care Med 2017; 195:500-514. [PMID: 27736153 DOI: 10.1164/rccm.201602-0329oc] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
RATIONALE Idiopathic pulmonary fibrosis (IPF) is a chronic fatal lung disease with dismal prognosis and no cure. The potential role of the ubiquitously expressed SH2 domain-containing tyrosine phosphatase-2 (SHP2) as a therapeutic target has not been studied in IPF. OBJECTIVES To determine the expression, mechanistic role, and potential therapeutic usefulness of SHP2 in pulmonary fibrosis. METHODS The effects of SHP2 overexpression and inhibition on fibroblast response to profibrotic stimuli were analyzed in vitro in primary human and mouse lung fibroblasts. In vivo therapeutic effects were assessed in the bleomycin model of lung fibrosis by SHP2-lentiviral administration and transgenic mice carrying a constitutively active SHP2 mutation. MEASUREMENTS AND MAIN RESULTS SHP2 was down-regulated in lungs and lung fibroblasts obtained from patients with IPF. Immunolocalization studies revealed that SHP2 was absent within fibroblastic foci. Loss of SHP2 expression or activity was sufficient to induce fibroblast-to-myofibroblast differentiation in primary human lung fibroblasts. Overexpression of constitutively active SHP2 reduced the responsiveness of fibroblasts to profibrotic stimuli, including significant reductions in cell survival and myofibroblast differentiation. SHP2 effects were mediated through deactivation of fibrosis-relevant tyrosine kinase and serine/threonine kinase signaling pathways. Mice carrying the Noonan syndrome-associated gain-of-function SHP2 mutation (SHP2D61G/+) were resistant to bleomycin-induced pulmonary fibrosis. Restoration of SHP2 levels in vivo through lentiviral delivery blunted bleomycin-induced pulmonary fibrosis. CONCLUSIONS Our data suggest that SHP2 is an important regulator of fibroblast differentiation, and its loss as observed in IPF facilitates profibrotic phenotypic changes. Augmentation of SHP2 activity or expression should be investigated as a novel therapeutic strategy for IPF.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Guoying Yu
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Christian L Lino Cardenas
- 2 Thoracic Aortic Center, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Jose D Herazo-Maya
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Rong Wang
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Tony Woolard
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Yi Zhang
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Koji Sakamoto
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Hojin Lee
- 3 Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Jae-Sung Yi
- 3 Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Giuseppe DeIuliis
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Nikolaos Xylourgidis
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Farida Ahangari
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Patty J Lee
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Vassilis Aidinis
- 4 Biomedical Sciences Research Center "Alexander Fleming," Vari, Athens, Greece; and
| | - Erica L Herzog
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Robert Homer
- 5 Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Anton M Bennett
- 3 Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut
| | - Naftali Kaminski
- 1 Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
5
|
Tomos IP, Tzouvelekis A, Aidinis V, Manali ED, Bouros E, Bouros D, Papiris SA. Extracellular matrix remodeling in idiopathic pulmonary fibrosis. It is the 'bed' that counts and not 'the sleepers'. Expert Rev Respir Med 2017; 11:299-309. [PMID: 28274188 DOI: 10.1080/17476348.2017.1300533] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease characterized by irreversible fibrosis. Current disease pathogenesis assumes an aberrant wound healing process in response to repetitive injurious stimuli leading to apoptosis of epithelial cells, activation of fibroblasts and accumulation of extracellular matrix (ECM). Particularly, lung ECM is a highly dynamic structure that lies at the core of several physiological and developmental pathways. The scope of this review article is to summarize current knowledge on the role of ECM in the pathogenesis of IPF, unravel novel mechanistic data and identify future more effective therapeutic targets. Areas covered: The exact mechanisms through which lung microenvironment activates fibroblasts and inflammatory cells, regulates profibrotic signaling cascades through growth factors, integrins and degradation enzymes ultimately leading to excessive matrix deposition are discussed. Furthermore, the potential therapeutic usefulness of specific inhibitors of matrix deposition or activators of matrix degradation pathways are also presented. Expert commentary: With a gradually increasing worldwide incidence IPF still present a major challenge in clinical research due to its unknown etiopathogenesis and current ineffective treatment approaches. Today, there is an amenable need for more effective therapeutic targets and ECM components may represent one.
Collapse
Affiliation(s)
- Ioannis P Tomos
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Argyrios Tzouvelekis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Vassilis Aidinis
- b Division of Immunology , Biomedical Sciences Research Center 'Alexander Fleming,' , Athens , Greece
| | - Effrosyni D Manali
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| | - Evangelos Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Demosthenes Bouros
- c First Academic Department of Pneumonology, Hospital for Diseases of the Chest, 'Sotiria,' Medical School , National and Kapodistrian University of Athens , Athens , Greece
| | - Spyros A Papiris
- a Respiratory Medicine Department , 'Attikon' University Hospital, Athens Medical School, National and Kapodistrian University of Athens , Athens , Greece
| |
Collapse
|