1
|
Chauhan P, Datta I, Dhiman A, Shankar U, Kumar A, Vashist A, Sharma TK, Tyagi JS. DNA Aptamer Targets Mycobacterium tuberculosis DevR/DosR Response Regulator Function by Inhibiting Its Dimerization and DNA Binding Activity. ACS Infect Dis 2022; 8:2540-2551. [PMID: 36332135 DOI: 10.1021/acsinfecdis.2c00414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tuberculosis is recognized as one of the major public health threats worldwide. The DevR-DevS (DosR/DosS) two-component system is considered a novel drug target in Mycobacterium tuberculosis (Mtb), the etiological agent of tuberculosis, owing to its central role in bacterial adaptation and long-term persistence. An increase in DevR levels and the decreased permeability of the mycobacterial cell wall during hypoxia-associated dormancy pose formidable challenges to the development of anti-DevR compounds. Using an in vitro evolution approach of Systematic Evolution of Ligands by EXponential enrichment (SELEX), we developed a panel of single-stranded DNA aptamers that interacted with Mtb DevR protein in solid-phase binding assays. The best-performing aptamer, APT-6, forms a G-quadruplex structure and inhibits DevR-dependent transcription in Mycobacterium smegmatis. Mechanistic studies indicate that APT-6 functions by inhibiting the dimerization and DNA binding activity of DevR protein. In silico studies reveal that APT-6 interacts majorly with C-terminal domain residues that participate in DNA binding and formation of active dimer species of DevR. To the best of our knowledge, this is the first report of a DNA aptamer that inhibits the function of a cytosolic bacterial response regulator. By inhibiting the dimerization of DevR, APT-6 targets an essential step in the DevR activation mechanism, and therefore, it has the potential to universally block the expression of DevR-regulated genes for intercepting dormancy pathways in mycobacteria. These findings also pave the way for exploring aptamer-based approaches to design and develop potent inhibitors against intracellular proteins of various bacterial pathogens of global concern.
Collapse
Affiliation(s)
- Priyanka Chauhan
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Ishara Datta
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Abhijeet Dhiman
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Uma Shankar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore453552, India
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| | - Tarun Kumar Sharma
- Translational Health Science and Technology Institute (THSTI), Faridabad, Haryana121001, India
| | - Jaya Sivaswami Tyagi
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi110029, India
| |
Collapse
|
2
|
Mapping Gene-by-Gene Single-Nucleotide Variation in 8,535 Mycobacterium tuberculosis Genomes: a Resource To Support Potential Vaccine and Drug Development. mSphere 2021; 6:6/2/e01224-20. [PMID: 33692198 PMCID: PMC8546714 DOI: 10.1128/msphere.01224-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tuberculosis (TB) is responsible for millions of deaths annually. More effective vaccines and new antituberculous drugs are essential to control the disease. Numerous genomic studies have advanced our knowledge about M. tuberculosis drug resistance, population structure, and transmission patterns. At the same time, reverse vaccinology and drug discovery pipelines have identified potential immunogenic vaccine candidates or drug targets. However, a better understanding of the sequence variation of all the M. tuberculosis genes on a large scale could aid in the identification of new vaccine and drug targets. Achieving this was the focus of the current study. Genome sequence data were obtained from online public sources covering seven M. tuberculosis lineages. A total of 8,535 genome sequences were mapped against M. tuberculosis H37Rv reference genome, in order to identify single nucleotide polymorphisms (SNPs). The results of the initial mapping were further processed, and a frequency distribution of nucleotide variants within genes was identified and further analyzed. The majority of genomic positions in the M. tuberculosis H37Rv genome were conserved. Genes with the highest level of conservation were often associated with stress responses and maintenance of redox balance. Conversely, genes with high levels of nucleotide variation were often associated with drug resistance. We have provided a high-resolution analysis of the single-nucleotide variation of all M. tuberculosis genes across seven lineages as a resource to support future drug and vaccine development. We have identified a number of highly conserved genes, important in M. tuberculosis biology, that could potentially be used as targets for novel vaccine candidates and antituberculous medications. IMPORTANCE Tuberculosis is an infectious disease caused by the bacterium Mycobacterium tuberculosis. In the first half of the 20th century, the discovery of the Mycobacterium bovis BCG vaccine and antituberculous drugs heralded a new era in the control of TB. However, combating TB has proven challenging, especially with the emergence of HIV and drug resistance. A major hindrance in TB control is the lack of an effective vaccine, as the efficacy of BCG is geographically variable and provides little protection against pulmonary disease in high-risk groups. Our research is significant because it provides a resource to support future drug and vaccine development. We have achieved this by developing a better understanding of the nucleotide variation of all of the M. tuberculosis genes on a large scale and by identifying highly conserved genes that could potentially be used as targets for novel vaccine candidates and antituberculous medications.
Collapse
|
3
|
Yadav D, Kaur S, Banerjee D, Bhattacharyya R. Metformin and Rifampicin combination augments active to latent tuberculosis conversion: A computational study. Biotechnol Appl Biochem 2020; 68:1307-1312. [PMID: 33059386 DOI: 10.1002/bab.2052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 10/07/2020] [Indexed: 11/10/2022]
Abstract
Tuberculosis, a global threat, is a highly infectious disease intensified by the emergence of drug-resistant strains. In tuberculosis disease spectrum, a typical situation is a dormant or latent phase where a person exposed to Mycobacterium tuberculosis has the reservoir of the disease that may or may not result in an active state. Existence of the dormant state is retarding the eradication of tuberculosis. Transcription of several genes helps M. tuberculosis to survive in nonreplicative mode. DosR transcription factor is the hallmark for this genesis. Diabetes mellitus is a predisposition factor leading to the development of tuberculosis and latent tuberculosis. High plasma insulin concentrations in the prediabetic state can increase the tuberculosis bacterium. On the other hand, antidiabetic drug metformin is known to reduce active tuberculosis disease when provided in combination with antitubercular therapy. However, the effect of the same on latent tuberculosis is still unknown. In the present work using tools of computational biology, we have tried to find the consequence of adding metformin in combination with rifampicin, a well-known antitubercular drug, on molecular mechanisms of latent tuberculosis. We have investigated whether metformin and rifampicin interact with DosR machinery or not. Our results indicate that if metformin-bound DosR-DNA complex binds with rifampicin, it will result in the conversion of active tuberculosis to latent tuberculosis.
Collapse
Affiliation(s)
- Deepak Yadav
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sumanpreet Kaur
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Dibyajyoti Banerjee
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rajasri Bhattacharyya
- Department of Experimental Medicine and Biotechnology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
4
|
Garg R, Borbora SM, Bansia H, Rao S, Singh P, Verma R, Balaji KN, Nagaraja V. Mycobacterium tuberculosis Calcium Pump CtpF Modulates the Autophagosome in an mTOR-Dependent Manner. Front Cell Infect Microbiol 2020; 10:461. [PMID: 33042857 PMCID: PMC7525011 DOI: 10.3389/fcimb.2020.00461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/28/2020] [Indexed: 12/17/2022] Open
Abstract
Calcium is a very important second messenger, whose concentration in various cellular compartments is under tight regulation. A disturbance in the levels of calcium in these compartments can play havoc in the cell, as it regulates various cellular processes by direct or indirect mechanisms. Here, we have investigated the functional importance of a calcium transporting P2A ATPase, CtpF of Mycobacterium tuberculosis (Mtb) in the pathogen's interaction with the host. Among its uncanny ways of dealing with the host with umpteen strategies for survival and persistence in humans, CtpF is identified as a new player. The levels of ctpF are upregulated in macrophage stresses like hypoxia, high nitric oxide levels and acidic pH. Using confocal microscopy and fluorimetry, we show that CtpF effluxes calcium in macrophages in early stages of Mtb infection. Downregulation of ctpF expression by conditional knockdown resulted in perturbation of host calcium levels and consequent decreased activation of mTOR. We present a mechanism how calcium efflux by the pathogen inhibits mTOR-dependent autophagy and enhances bacterial survival. Our work highlights how Mtb engages its metal efflux pumps to exploit host autophagic process for its proliferation.
Collapse
Affiliation(s)
- Rajni Garg
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| | - Salik Miskat Borbora
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Harsh Bansia
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Sandhya Rao
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Prakruti Singh
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | - Rinkee Verma
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India
| | | | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India
| |
Collapse
|
5
|
Koenig SP, Furin J. Update in Tuberculosis/Pulmonary Infections 2015. Am J Respir Crit Care Med 2017; 194:142-6. [PMID: 27420359 DOI: 10.1164/rccm.201601-0129up] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Serena P Koenig
- 1 Division of Global Health Equity, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts; and
| | - Jennifer Furin
- 2 Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
6
|
A temporal proteome dynamics study reveals the molecular basis of induced phenotypic resistance in Mycobacterium smegmatis at sub-lethal rifampicin concentrations. Sci Rep 2017; 7:43858. [PMID: 28262820 PMCID: PMC5338346 DOI: 10.1038/srep43858] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/31/2017] [Indexed: 12/24/2022] Open
Abstract
In the last 40 years only one new antitubercular drug has been approved, whilst resistance to current drugs, including rifampicin, is spreading. Here, we used the model organism Mycobacterium smegmatis to study mechanisms of phenotypic mycobacterial resistance, employing quantitative mass spectrometry-based proteomics to investigate the temporal effects of sub-lethal concentrations of rifampicin on the mycobacterial proteome at time-points corresponding to early response, onset of bacteriostasis and early recovery. Across 18 samples, a total of 3,218 proteins were identified from 31,846 distinct peptides averaging 16,250 identified peptides per sample. We found evidence that two component signal transduction systems (e.g. MprA/MprB) play a major role during initial mycobacterial adaptive responses to sub-lethal rifampicin and that, after dampening an initial SOS response, the bacteria supress the DevR (DosR) regulon and also upregulate their transcriptional and translational machineries. Furthermore, we found a co-ordinated dysregulation in haeme and mycobactin synthesis. Finally, gradual upregulation of the M. smegmatis-specific rifampin ADP-ribosyl transferase was observed which, together with upregulation of transcriptional and translational machinery, likely explains recovery of normal growth. Overall, our data indicates that in mycobacteria, sub-lethal rifampicin triggers a concerted phenotypic response that contrasts significantly with that observed at higher antimicrobial doses.
Collapse
|
7
|
Namouchi A, Gómez-Muñoz M, Frye SA, Moen LV, Rognes T, Tønjum T, Balasingham SV. The Mycobacterium tuberculosis transcriptional landscape under genotoxic stress. BMC Genomics 2016; 17:791. [PMID: 27724857 PMCID: PMC5057432 DOI: 10.1186/s12864-016-3132-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 09/27/2016] [Indexed: 11/10/2022] Open
Abstract
Background As an intracellular human pathogen, Mycobacterium tuberculosis (Mtb) is facing multiple stressful stimuli inside the macrophage and the granuloma. Understanding Mtb responses to stress is essential to identify new virulence factors and pathways that play a role in the survival of the tubercle bacillus. The main goal of this study was to map the regulatory networks of differentially expressed (DE) transcripts in Mtb upon various forms of genotoxic stress. We exposed Mtb cells to oxidative (H2O2 or paraquat), nitrosative (DETA/NO), or alkylation (MNNG) stress or mitomycin C, inducing double-strand breaks in the DNA. Total RNA was isolated from treated and untreated cells and subjected to high-throughput deep sequencing. The data generated was analysed to identify DE genes encoding mRNAs, non-coding RNAs (ncRNAs), and the genes potentially targeted by ncRNAs. Results The most significant transcriptomic alteration with more than 700 DE genes was seen under nitrosative stress. In addition to genes that belong to the replication, recombination and repair (3R) group, mainly found under mitomycin C stress, we identified DE genes important for bacterial virulence and survival, such as genes of the type VII secretion system (T7SS) and the proline-glutamic acid/proline-proline-glutamic acid (PE/PPE) family. By predicting the structures of hypothetical proteins (HPs) encoded by DE genes, we found that some of these HPs might be involved in mycobacterial genome maintenance. We also applied a state-of-the-art method to predict potential target genes of the identified ncRNAs and found that some of these could regulate several genes that might be directly involved in the response to genotoxic stress. Conclusions Our study reflects the complexity of the response of Mtb in handling genotoxic stress. In addition to genes involved in genome maintenance, other potential key players, such as the members of the T7SS and PE/PPE gene family, were identified. This plethora of responses is detected not only at the level of DE genes encoding mRNAs but also at the level of ncRNAs and their potential targets. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3132-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Amine Namouchi
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | | | - Stephan A Frye
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway
| | - Line Victoria Moen
- Department of Informatics, University of Oslo, Oslo, Norway.,Current address: Department of Nutrition, University of Oslo, Oslo, Norway
| | - Torbjørn Rognes
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Informatics, University of Oslo, Oslo, Norway
| | - Tone Tønjum
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.,Department of Microbiology, University of Oslo, Oslo, Norway
| | - Seetha V Balasingham
- Department of Microbiology, Oslo University Hospital, Postboks 4950, NO-0424, Oslo, Norway.
| |
Collapse
|
8
|
Schluger NW. Host-Pathogen Interactions in Tuberculosis: The Evolving Story. J Infect Dis 2016; 214:1137-8. [PMID: 27534688 DOI: 10.1093/infdis/jiw366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 11/12/2022] Open
|
9
|
Mycobacterium tuberculosis Transcription Machinery: Ready To Respond to Host Attacks. J Bacteriol 2016; 198:1360-73. [PMID: 26883824 DOI: 10.1128/jb.00935-15] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Regulating responses to stress is critical for all bacteria, whether they are environmental, commensal, or pathogenic species. For pathogenic bacteria, successful colonization and survival in the host are dependent on adaptation to diverse conditions imposed by the host tissue architecture and the immune response. Once the bacterium senses a hostile environment, it must enact a change in physiology that contributes to the organism's survival strategy. Inappropriate responses have consequences; hence, the execution of the appropriate response is essential for survival of the bacterium in its niche. Stress responses are most often regulated at the level of gene expression and, more specifically, transcription. This minireview focuses on mechanisms of regulating transcription initiation that are required by Mycobacterium tuberculosis to respond to the arsenal of defenses imposed by the host during infection. In particular, we highlight how certain features of M. tuberculosis physiology allow this pathogen to respond swiftly and effectively to host defenses. By enacting highly integrated and coordinated gene expression changes in response to stress,M. tuberculosis is prepared for battle against the host defense and able to persist within the human population.
Collapse
|
10
|
Elkington P, Zumla A. Update in Mycobacterium tuberculosis lung disease 2014. Am J Respir Crit Care Med 2016; 192:793-8. [PMID: 26426784 DOI: 10.1164/rccm.201505-1009up] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Paul Elkington
- 1 National Institute for Health Research (NIHR) Southampton Respiratory Biomedical Research Unit, Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Alimuddin Zumla
- 2 Centre for Clinical Microbiology, Division of Infection and Immunity, University College London, London, United Kingdom; and.,3 NIHR Biomedical Research Centre, University College London Hospitals National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|