1
|
FitzPatrick AM. Is Estrogen a Missing Culprit in Thyroid Eye Disease? Sex Steroid Hormone Homeostasis Is Key to Other Fibrogenic Autoimmune Diseases - Why Not This One? Front Immunol 2022; 13:898138. [PMID: 35784325 PMCID: PMC9248759 DOI: 10.3389/fimmu.2022.898138] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Sex bias in autoimmune disease (AID) prevalence is known, but the role of estrogen in disease progression is more complex. Estrogen can even be protective in some AIDs; but in systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and systemic sclerosis (SSc), estrogen, its metabolites, and its receptors have been demonstrated to play critical, localized inflammatory roles. Estrogen is instrumental to the fibrosis seen in RA, SLE, SSc and other disease states, including breast cancer and uterine leiomyomas. Fibrotic diseases tend to share a common pattern in which lymphocyte-monocyte interactions generate cytokines which stimulate the deposition of fibrogenic connective tissue. RA, SLE, SSc and thyroid eye disease (TED) have very similar inflammatory and fibrotic patterns-from pathways to tissue type. The thorough investigations that demonstrated estrogen's role in the pathology of RA, SLE, and SSc could, and possibly should, be carried out in TED. One might even expect to find an even greater role for estrogen, and sex steroid homeostasis in TED, given that TED is typically sequalae to Graves' disease (GD), or Hashimoto's disease (HD), and these are endocrine disorders that can create considerable sex steroid hormone dysregulation. This paper highlights the pathophysiology similarities in 4 AIDs, examines the evidence of sex steroid mediated pathology across 3 AIDs and offers a case study and speculation on how this may be germane to TED.
Collapse
|
2
|
2-Methoxyestradiol Attenuates the Development and Retards the Progression of Hypoxia-And Alpha-Naphthylthiourea-Induced Pulmonary Hypertension. ACTA ACUST UNITED AC 2021; 42:41-51. [PMID: 33894125 DOI: 10.2478/prilozi-2021-0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pulmonary arterial hypertension (PH), a progressive, incurable, and deadly disease, predominantly develops in women. Growing body of evidence suggest that dysregulated estradiol (E2) metabolism influences the development of PH and that some of the biological effects of E2 are mediated by its major non-estrogenic metabolite, 2-metyhoxyestradiol (2ME). The objective of this study was to examine effects of 2ME in chronic hypoxia (CH)-induced PH and alpha-naphthylthiourea (ANTU)-induced acute lung injury and PH. In addition, we investigated the effects of exposure to different levels of CH on development of PH. Chronic exposure to 15% or 10% oxygen produced similar increases in right ventricle peak systolic pressure (RVPSP) and pulmonary vascular remodeling, but oxygen concentration-dependent increase in hematocrit. Notably, right ventricle (RV) hypertrophy correlated with level of hypoxia and hematocrit, rather than with magnitude of RVPSP. The latter suggests that, in addition to increased afterload, hypoxia (via increased hematocrit) significantly contributes to RV hypertrophy in CH model of PH. In CH-PH rats, preventive and curative 2ME treatments reduced both elevated RVPSP and pulmonary vascular remodeling. Curative treatment with 2ME was more effective in reducing hematocrit and right ventricular hypertrophy, as compared to preventive treatment. Single ANTU injection produced lung injury, i.e., increased lungs weight and induced pleural effusion. Treatment with 2ME significantly reduced pleural effusion and, more importantly, eliminated acute mortality induced by ANTU (33% vs 0%, ANTU vs. ANTU+2ME group). Chronic treatment with ANTU induced PH and RV hypertrophy and increased lungs weight. 2-ME significantly attenuated severity of disease (i.e., reduced RVPSP, RV hypertrophy and pulmonary vascular injury). This study demonstrates that 2ME has beneficial effects in chronic hypoxia- and acute lung injury-induced PH and provides preclinical justification for clinical evaluation of 2ME in pulmonary hypertension.
Collapse
|
3
|
Anbar HS, Isa Z, Elounais JJ, Jameel MA, Zib JH, Samer AM, Jawad AF, El-Gamal MI. Steroid sulfatase inhibitors: the current landscape. Expert Opin Ther Pat 2021; 31:453-472. [PMID: 33783295 DOI: 10.1080/13543776.2021.1910237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Steroid sulfatase (STS) enzyme is responsible for transforming the inactive sulfate metabolites of steroid sex hormones into the active free steroids. Both the deficiency and the over-expression of STS are associated with the pathophysiology of certain diseases. This article provides the readership with a comprehensive review about STS enzyme and its recently reported inhibitors.Areas covered: In the present article, we reviewed the structure, location, and substrates of STS enzyme, physiological functions of STS, and disease states related to over-expression or deficiency of STS enzyme. STS inhibitors reported during the last five years (2016-present) have been reviewed as well.Expert opinion: Irosustat is the most successful STS inhibitor drug candidate so far. It is currently under investigation in clinical trials for treatment of estrogen-dependent breast cancer. Non-steroidal sulfamate is the most favorable scaffold for STS inhibitor design. They can be beneficial for the treatment of hormone-dependent cancers and neurodegenerative disorders without significant estrogenic side effects. Moreover, dual-acting molecules (inhibitors of STS + another synergistic mechanism) can be therapeutically efficient.
Collapse
Affiliation(s)
- Hanan S Anbar
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Zahraa Isa
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Jana J Elounais
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mariam A Jameel
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Joudi H Zib
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya M Samer
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Aya F Jawad
- Department of Clinical Pharmacy and Pharmacotherapeutics, Dubai Pharmacy College for Girls, Dubai, United Arab Emirates
| | - Mohammed I El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.,Department of Medicinal Chemistry, Faculty of Pharmacy, University of Mansoura, Mansoura, Egypt
| |
Collapse
|
4
|
Tofovic SP, Jackson EK. Estradiol Metabolism: Crossroads in Pulmonary Arterial Hypertension. Int J Mol Sci 2019; 21:ijms21010116. [PMID: 31877978 PMCID: PMC6982327 DOI: 10.3390/ijms21010116] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/17/2019] [Indexed: 12/17/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a debilitating and progressive disease that predominantly develops in women. Over the past 15 years, cumulating evidence has pointed toward dysregulated metabolism of sex hormones in animal models and patients with PAH. 17β-estradiol (E2) is metabolized at positions C2, C4, and C16, which leads to the formation of metabolites with different biological/estrogenic activity. Since the first report that 2-methoxyestradiol, a major non-estrogenic metabolite of E2, attenuates the development and progression of experimental pulmonary hypertension (PH), it has become increasingly clear that E2, E2 precursors, and E2 metabolites exhibit both protective and detrimental effects in PH. Furthermore, both experimental and clinical data suggest that E2 has divergent effects in the pulmonary vasculature versus right ventricle (estrogen paradox in PAH). The estrogen paradox is of significant clinical relevance for understanding the development, progression, and prognosis of PAH. This review updates experimental and clinical findings and provides insights into: (1) the potential impacts that pathways of estradiol metabolism (EMet) may have in PAH; (2) the beneficial and adverse effects of estrogens and their precursors/metabolites in experimental PH and human PAH; (3) the co-morbidities and pathological conditions that may alter EMet and influence the development/progression of PAH; (4) the relevance of the intracrinology of sex hormones to vascular remodeling in PAH; and (5) the advantages/disadvantages of different approaches to modulate EMet in PAH. Finally, we propose the three-tier-estrogen effects in PAH concept, which may offer reconciliation of the opposing effects of E2 in PAH and may provide a better understanding of the complex mechanisms by which EMet affects the pulmonary circulation–right ventricular interaction in PAH.
Collapse
Affiliation(s)
- Stevan P. Tofovic
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, BST E1240, 200 Lothrop Street, Pittsburgh, PA 15261, USA
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
- Correspondence: ; Tel.: +1-412-648-3363
| | - Edwin K. Jackson
- Department of Pharmacology and Chemical Biology University of Pittsburgh School of Medicine, 100 Technology Drive, PA 15219, USA;
| |
Collapse
|
5
|
Wang C, Zhang W, Wang Y, Wan H, Chen Y, Xia F, Zhang K, Wang N, Lu Y. Novel associations between sex hormones and diabetic vascular complications in men and postmenopausal women: a cross-sectional study. Cardiovasc Diabetol 2019; 18:97. [PMID: 31366359 PMCID: PMC6668151 DOI: 10.1186/s12933-019-0901-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023] Open
Abstract
Background Associations between sex hormones and vascular remodeling have been extensively studied, but the results vary widely among different races and sex. We aimed to investigate whether total testosterone (TT), estrogen (E2), and dehydroepiandrosterone (DHEA) associate with macrovascular complications and diabetic kidney disease (DKD) among community-dwelling patients with diabetes. Methods A total of 4720 participants with type 2 diabetes were recruited from Shanghai, China. Common carotid artery (CCA) plaques and diameter were assessed by ultrasound. Cardiovascular disease (CVD) was defined by prior diagnosis of coronary heart disease, myocardial infarction or stroke. DKD was defined according to the ADA Guidelines. Results (1) In men, TT was negatively associated with CCA diameter (regression coefficient (β) − 0.044, 95% CI − 0.087, 0). E2 levels were positively associated with CVD and CCA plaque prevalence (OR 1.151, 95% CI 1.038, 1.277 and OR 1.13, 95% CI 1.017, 1.255, respectively). DHEA was negatively associated with CVD (OR 0.809, 95% CI 0.734, 0.893). In postmenopausal women, TT levels were negatively associated with CCA diameter (β − 0.046, 95% CI − 0.083, − 0.010) and positively associated with CVD (OR 1.154, 95% CI 1.038, 1.284). (2) In both men and postmenopausal women, TT levels were negatively associated with the albumin/creatinine ratio and DKD (β − 0.098, 95% CI − 0.154, − 0.043 and OR 0.887, 95% CI 0.790, 0.997 vs. β − 0.084, 95% CI − 0.137, − 0.031 and OR 0.822, 95% CI 0.731, 0.924, respectively) and DHEA levels were positively associated with DKD (OR 1.167, 95% CI 1.038, 1.313 vs. OR 1.251, 95% CI 1.104, 1.418, respectively). Conclusions Our study indicates that macrovascular complications were associated with low TT, DHEA and high E2 in men and with high TT in postmenopausal women. DKD was associated with low TT and high DHEA levels in both genders. Sex hormone replacement therapy requires careful and comprehensive consideration. Trial registration ChiCTR1800017573, http://www.chictr.org.cn. Registered 04 August 2018 Electronic supplementary material The online version of this article (10.1186/s12933-019-0901-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Chiyu Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Wen Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuying Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Heng Wan
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yi Chen
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Fangzhen Xia
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Kun Zhang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Ningjian Wang
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Yingli Lu
- Institute and Department of Endocrinology and Metabolism, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| |
Collapse
|
6
|
Role of Gender in Regulation of Redox Homeostasis in Pulmonary Arterial Hypertension. Antioxidants (Basel) 2019; 8:antiox8050135. [PMID: 31100969 PMCID: PMC6562572 DOI: 10.3390/antiox8050135] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 04/18/2019] [Accepted: 05/09/2019] [Indexed: 12/21/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is one of the diseases with a well-established gender dimorphism. The prevalence of PAH is increased in females with a ratio of 4:1, while poor survival prognosis is associated with the male gender. Nevertheless, the specific contribution of gender in disease development and progression is unclear due to the complex nature of the PAH. Oxidative and nitrosative stresses are important contributors in PAH pathogenesis; however, the role of gender in redox homeostasis has been understudied. This review is aimed to overview the possible sex-specific mechanisms responsible for the regulation of the balance between oxidants and antioxidants in relation to PAH pathobiology.
Collapse
|
7
|
Badlam JB, Austin ED. Beyond oestrogens: towards a broader evaluation of the hormone profile in pulmonary arterial hypertension. Eur Respir J 2018; 51:51/6/1801058. [PMID: 29954927 DOI: 10.1183/13993003.01058-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 06/06/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Jessica B Badlam
- University of Colorado at Denver - Anschutz Medical Campus, Aurora, CO, USA
| | - Eric D Austin
- Dept of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
8
|
Durack J, Kimes NE, Lin DL, Rauch M, McKean M, McCauley K, Panzer AR, Mar JS, Cabana MD, Lynch SV. Delayed gut microbiota development in high-risk for asthma infants is temporarily modifiable by Lactobacillus supplementation. Nat Commun 2018; 9:707. [PMID: 29453431 PMCID: PMC5816017 DOI: 10.1038/s41467-018-03157-4] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/24/2018] [Indexed: 12/11/2022] Open
Abstract
Gut microbiota dysbiosis and metabolic dysfunction in infancy precedes childhood atopy and asthma development. Here we examined gut microbiota maturation over the first year of life in infants at high risk for asthma (HR), and whether it is modifiable by early-life Lactobacillus supplementation. We performed a longitudinal comparison of stool samples collected from HR infants randomized to daily oral Lactobacillus rhamnosus GG (HRLGG) or placebo (HRP) for 6 months, and healthy (HC) infants. Meconium microbiota of HRP participants is distinct, follows a delayed developmental trajectory, and is primarily glycolytic and depleted of a range of anti-inflammatory lipids at 6 months of age. These deficits are partly rescued in HRLGG infants, but this effect was lost at 12 months of age, 6 months after cessation of supplementation. Thus we show that early-life gut microbial development is distinct, but plastic, in HR infants. Our findings offer a novel strategy for early-life preventative interventions. Gut microbial dysbiosis in infancy is associated with childhood atopy and the development of asthma. Here, the authors show that gut microbiota perturbation is evident in the very earliest stages of postnatal life, continues throughout infancy, and can be partially rescued by Lactobacillus supplementation in high-risk for asthma infants.
Collapse
Affiliation(s)
- Juliana Durack
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Nikole E Kimes
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.,Siolta Therapeutics, 953 Indiana Street, San Francisco, CA, 94107, USA
| | - Din L Lin
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Marcus Rauch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.,Janssen Prevention Center, 2 Royal College Street, London, NW1 0NH, UK
| | - Michelle McKean
- Division of General Pediatrics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Kathryn McCauley
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Ariane R Panzer
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Jordan S Mar
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.,Genentech, 340 Pt. San Bruno Boulevard, South San Francisco, CA, 94080, USA
| | - Michael D Cabana
- Division of General Pediatrics, Department of Pediatrics, University of California San Francisco, San Francisco, CA, 94143, USA.,Division of Clinical Epidemiology, Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Susan V Lynch
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|