1
|
Identification of JPX-RABEP1 Pair as an Immune-Related Biomarker and Therapeutic Target in Pulmonary Arterial Hypertension by Bioinformatics and Experimental Analyses. Int J Mol Sci 2022; 23:ijms232415559. [PMID: 36555200 PMCID: PMC9779127 DOI: 10.3390/ijms232415559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/25/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a pulmonary vascular disease characterized by pulmonary vascular remodeling and right heart enlargement the pathogenesis of PAH is complicated; no biologic-based therapy is available for the treatment of PAH, but recent studies suggest that inflammatory response and abnormal proliferation of pulmonary artery smooth muscle cells are the main pathogenic mechanism, while the role of immune-related long non-coding RNAs (lncRNAs) remains unclear. The aim of this study was to systematically analyze immune-related lncRNAs in PAH. Here, we downloaded a publicly available microarray data from PAH and control patients (GSE113439). A total of 243 up-regulated and 203 down-regulated differentially expressed genes (DEGs) were screened, and immune-related DEGs were further obtained from ImmPort. The immune-related lncRNAs were obtained by co-expression analysis of immune-related mRNAs. Then, immune-related lncRNAs-mRNAs network including 2 lncRNAs and 6 mRNAs was constructed which share regulatory miRNAs and have significant correlation. Among the lncRNA-mRNA pairs, one pair (JPX-RABEP1) was verified in the validating dataset GSE53408 and PAH mouse model. Furthermore, the immune cell infiltration analysis of the GSE113439 dataset revealed that the JPX-RABEP1 pair may participate in the occurrence and development of PAH through immune cell infiltration. Together, our findings reveal that the lncRNA-mRNA pair JPX-RABEP1 may be a novel biomarker and therapeutic target for PAH.
Collapse
|
2
|
Brittain EL, Thennapan T, Maron BA, Chan SY, Austin ED, Spiekerkoetter E, Bogaard HJ, Guignabert C, Paulin R, Machado RF, Yu PB. Update in Pulmonary Vascular Disease 2016 and 2017. Am J Respir Crit Care Med 2019. [PMID: 29533671 DOI: 10.1164/rccm.201801-0062up] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Evan L Brittain
- 1 Division of Cardiovascular Medicine, Department of Medicine.,2 Vanderbilt Translational and Clinical Cardiovascular Research Center.,3 Pulmonary Vascular Center, Department of Medicine, and
| | | | - Bradley A Maron
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts.,6 Department of Cardiology, Boston VA Healthcare System, Boston, Massachusetts
| | - Stephen Y Chan
- 7 Center for Pulmonary Vascular Biology and Medicine, Pittsburgh Heart, Lung, Blood, and Vascular Medicine Institute, Division of Cardiology, Department of Medicine, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Eric D Austin
- 3 Pulmonary Vascular Center, Department of Medicine, and.,8 Pediatric Pulmonary Hypertension Program, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Edda Spiekerkoetter
- 9 Division of Pulmonary and Critical Care Medicine, Department of Medicine, and.,10 Vera Moulton Wall Center for Pulmonary Vascular Disease, Cardiovascular Institute, Stanford University, Stanford, California
| | - Harm J Bogaard
- 11 Pulmonary Hypertension Expert Center, VU University Medical Center, Amsterdam, the Netherlands
| | - Christophe Guignabert
- 12 INSERM UMR-S 999, Le Plessis-Robinson, France.,13 Université Paris-Sud and Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Roxane Paulin
- 14 Quebec Heart and Lung Institute, Laval University, Quebec, Quebec, Canada; and
| | - Roberto F Machado
- 15 Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
| | - Paul B Yu
- 5 Division of Cardiovascular Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
3
|
New Nitric Oxide Donor NCX 1443: Therapeutic Effects on Pulmonary Hypertension in the SAD Mouse Model of Sickle Cell Disease. J Cardiovasc Pharmacol 2019; 71:283-292. [PMID: 29438213 DOI: 10.1097/fjc.0000000000000570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Nitric oxide (NO) donors may be useful for treating pulmonary hypertension (PH) complicating sickle cell disease (SCD), as endogenous NO is inactivated by hemoglobin released by intravascular hemolysis. Here, we investigated the effects of the new NO donor NCX1443 on PH in transgenic SAD mice, which exhibit mild SCD without severe hemolytic anemia. In SAD and wild-type (WT) mice, the pulmonary pressure response to acute hypoxia was similar and was abolished by 100 mg/kg NCX1443. The level of PH was also similar in SAD and WT mice exposed to chronic hypoxia (9% O2) alone or with SU5416 and was similarly reduced by daily NCX1443 gavage. Compared with WT mice, SAD mice exhibited higher levels of HO-1, endothelial NO synthase, and PDE5 but similar levels of lung cyclic guanosine monophosphate. Cultured pulmonary artery smooth muscle cells from SAD mice grew faster than those from WT mice and had higher PDE5 protein levels. Combining NCX1443 and a PDE5 inhibitor suppressed the growth rate difference between SAD and WT cells and induced a larger reduction in hypoxic PH severity in SAD than in WT mice. By amplifying endogenous protective mechanisms, NCX1443 in combination with PDE5 inhibition may prove useful for treating PH complicating SCD.
Collapse
|
4
|
Tzouvelekis A, Herazo-Maya JD, Ryu C, Chu JH, Zhang Y, Gibson KF, Adonteng-Boateng PK, Li Q, Pan H, Cherry B, Ahmad F, Ford HJ, Herzog EL, Kaminski N, Fares WH. S100A12 as a marker of worse cardiac output and mortality in pulmonary hypertension. Respirology 2018; 23:771-779. [PMID: 29611244 PMCID: PMC6047907 DOI: 10.1111/resp.13302] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 02/20/2018] [Accepted: 03/05/2018] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND OBJECTIVE Molecular biomarkers are needed to refine prognostication and phenotyping of pulmonary hypertension (PH) patients. S100A12 is an emerging biomarker of various inflammatory diseases. This study aims to determine the prognostic value of S100A12 in PH. METHODS Exploratory microarray analysis performed on peripheral blood mononuclear cells (PBMC) collected from idiopathic pulmonary fibrosis (IPF) patients suggested an association between S100A12 and both PH and mortality. So the current study was designed to evaluate for an association between S100A12 in peripheral blood collected from two well-phenotyped PH cohorts in two other centres to derive and validate an association between S100A12 protein serum concentrations and mortality. RESULTS The majority of the patients in the discovery and validation cohorts were either World Health Organization (WHO) group 1 (pulmonary arterial hypertension (PAH)) or 3 (lung disease-associated) PH. In the discovery PH cohort, S100A12 was significantly increased in patients with PH (n = 51) compared to controls (n = 22) (29.8 vs 15.7 ng/mL, P < 0.001) and negatively correlated with cardiac output (r = -0.58, P < 0.001) in PH patients. When S100A12 data were pooled from both cohorts, PAH and non-PAH PH patients had higher S100A12 compared to healthy external controls (32.6, 30.9, 15.7 ng/mL; P < 0.001). S100A12 was associated with an increased risk in overall mortality in PH patients in both the discovery (n = 51; P = 0.008) and validation (n = 40; P < 0.001) cohorts. CONCLUSION S100A12 levels are increased in PH patients and are associated with increased mortality.
Collapse
Affiliation(s)
- Argyrios Tzouvelekis
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jose D Herazo-Maya
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Changwan Ryu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jen-Hwa Chu
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Yingze Zhang
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Kevin F Gibson
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Dorothy P. and Richard P. Simmons Center for Interstitial Lung Disease, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Percy K Adonteng-Boateng
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Qin Li
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Hongyi Pan
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Benjamin Cherry
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Ferhaan Ahmad
- Division of Cardiovascular Medicine, Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Hubert J Ford
- Division of Pulmonary and Critical Care Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Erica L Herzog
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Wassim H Fares
- Section of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
5
|
Elinoff JM, Agarwal R, Barnett CF, Benza RL, Cuttica MJ, Gharib AM, Gray MP, Hassoun PM, Hemnes AR, Humbert M, Kolb TM, Lahm T, Leopold JA, Mathai SC, McLaughlin VV, Preston IR, Rosenzweig EB, Shlobin OA, Steen VD, Zamanian RT, Solomon MA. Challenges in Pulmonary Hypertension: Controversies in Treating the Tip of the Iceberg. A Joint National Institutes of Health Clinical Center and Pulmonary Hypertension Association Symposium Report. Am J Respir Crit Care Med 2018; 198:166-174. [PMID: 29425462 PMCID: PMC6058980 DOI: 10.1164/rccm.201710-2093pp] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 01/13/2023] Open
Affiliation(s)
| | - Richa Agarwal
- Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | | | - Raymond L. Benza
- Division of Cardiovascular Disease, Department of Medicine, Allegheny General Hospital, Pittsburgh, Pennsylvania
| | - Michael J. Cuttica
- Division of Pulmonary and Critical Care Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Ahmed M. Gharib
- National Institute of Diabetes, Digestive, and Kidney Diseases, and
| | | | - Paul M. Hassoun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Anna R. Hemnes
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Marc Humbert
- Service de Pneumologie, Hôpital Bicêtre (Assistance Publique–Hôpitaux de Paris), Institut National de la Santé et de la Recherche Médicale U999, University Paris–Sud, Université Paris-Saclay, Le Kremlin-Bicêtre, France
| | - Todd M. Kolb
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Tim Lahm
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Indiana University, Indianapolis, Indiana
- Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Jane A. Leopold
- Division of Cardiovascular Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Stephen C. Mathai
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Vallerie V. McLaughlin
- Division of Cardiology, Department of Medicine, University of Michigan, Ann Arbor, Michigan
| | - Ioana R. Preston
- Department of Medicine, Tufts Medical Center, Tufts University School of Medicine, Boston, Massachusetts
| | | | - Oksana A. Shlobin
- Pulmonary Vascular Disease Program, Inova Fairfax Hospital, Falls Church, Virginia
| | - Virginia D. Steen
- Rheumatology Division, Department of Medicine, Georgetown University, Washington, DC; and
| | | | | |
Collapse
|