1
|
Gao G, Liao W, Shu P, Ma Q, He X, Zhang B, Qin D, Wang Y. Targeting sphingosine 1-phosphate receptor 3 inhibits T-cell exhaustion and regulates recruitment of proinflammatory macrophages to improve antitumor efficacy of CAR-T cells against solid tumor. J Immunother Cancer 2023; 11:e006343. [PMID: 37591632 PMCID: PMC10441059 DOI: 10.1136/jitc-2022-006343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUNDS Chimeric antigen receptor (CAR)-modified T cells (CAR-T) are limited in solid tumors due to the hostile tumor microenvironment (TME). Combination therapy could be a promising approach to overcome this obstacle. Recent studies have shown that sphingosine 1-phosphate receptor (S1PR)3 has tremendous potential in regulating the immune environment. However, the functional significance of S1PR3 in T-cell-based immunotherapies and the molecular mechanisms have not been fully understood. METHODS Here, we studied the combination of EpCAM-specific CAR T-cell therapy with pharmacological blockade of S1PR3 against solid tumor. We have applied RNA sequencing, flow cytometry, ELISA, cellular/molecular immunological technology, and mouse models of solid cancers. RESULTS Our study provided evidence that S1PR3 high expression is positively associated with resistance to programmed cell death protein-1 (PD-1)-based immunotherapy and increased T-cell exhaustion. In addition, pharmacological inhibition of S1PR3 improves the efficacy of anti-PD-1 therapy. Next, we explored the possible combination of S1PR3 antagonist with murine EpCAM-targeted CAR-T cells in immunocompetent mouse models of breast cancer and colon cancer. The results indicated that the S1PR3 antagonist could significantly enhance the efficacy of murine EpCAM CAR-T cells in vitro and in vivo. Mechanistically, the S1PR3 antagonist improved CAR-T cell activation, regulated the central memory phenotype, and reduced CAR-T cell exhaustion in vitro. Targeting S1PR3 was shown to remodel the TME through the recruitment of proinflammatory macrophages by promoting macrophage activation and proinflammatory phenotype polarization, resulting in improved CAR-T cell infiltration and amplified recruitment of CD8+T cells. CONCLUSIONS This work demonstrated targeting S1PR3 could increase the antitumor activities of CAR-T cell therapy at least partially by inhibiting T-cell exhaustion and remodeling the TME through the recruitment of proinflammatory macrophages. These findings provided additional rationale for combining S1PR3 inhibitor with CAR-T cells for the treatment of solid tumor.
Collapse
Affiliation(s)
- Ge Gao
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Weiting Liao
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Pei Shu
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Qizhi Ma
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Xia He
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Department of Clinical Research Management, Sichuan University West China Hospital, Chengdu,Sichuan, China
| | - Benxia Zhang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Diyuan Qin
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
- Clinical Trial Center, National Medical Products Administration Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, Sichuan University West China Hospital, Chengdu, Sichuan, China
| | - Yongsheng Wang
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center, Sichuan University West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Chen H, Wang J, Zhang C, Ding P, Tian S, Chen J, Ji G, Wu T. Sphingosine 1-phosphate receptor, a new therapeutic direction in different diseases. Biomed Pharmacother 2022; 153:113341. [PMID: 35785704 DOI: 10.1016/j.biopha.2022.113341] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/01/2022] Open
Abstract
Sphingosine 1-phosphate receptor (S1PR), as a kind of G protein-coupled receptor, has five subtypes, including S1PR1, S1PR2, S1PR3, S1PR4, and S1PR5. Sphingosine 1-phosphate receptor (S1P) and S1PR regulate the trafficking of neutrophils and some cells, which has great effects on immune systems, lung tissue, and liver tissue. Presently, many related reports have proved that S1PR has a strong effect on the migration of lymphocytes, tumor cells, neutrophils, and many other cells via the regulation of signals, pathways, and enzymes. In this way, S1PR can regulate the relative response of the organism. Thus, S1PR has become a possible target for the treatment of autoimmune diseases, pulmonary disease, liver disease, and cancer. In this review, we mainly focus on the research of the S1PR for the new therapeutic directions of different diseases and is expected to assist support in the clinic and drug use.
Collapse
Affiliation(s)
- Hongyu Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China; Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Caiyun Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Peilun Ding
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Shuxia Tian
- Minhang Hospital, Fudan University, Shanghai 201199, China
| | - Junming Chen
- Minhang Hospital, Fudan University, Shanghai 201199, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Almalki WH, Ghoneim MM, Alshehri S, Imam SS, Kazmi I, Gupta G. Sepsis triggered oxidative stress-inflammatory axis: the pathobiology of reprogramming in the normal sleep-wake cycle. Mol Cell Biochem 2022; 477:2203-2211. [PMID: 35451739 DOI: 10.1007/s11010-022-04432-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/30/2022] [Indexed: 10/18/2022]
Abstract
In individuals with sepsis-related neurodegenerative illness, sleep and circadian rhythm disturbance are common. The alteration in genomic expression linked with the immune-directed oxidative stress-inflammatory axis is thought to cause these individuals' abnormal sleep. On the other hand, sleep is linked to normal brain activity through common neurotransmitter systems and regulatory mechanisms. Ailments (ranging from cognitive to metabolic abnormalities) are seldom related to aberrant sleep that is made worse by sleep disturbance, which throws off the body's sleep-wake cycle. PubMed/Springer link /Public library of science/ScienceDirect/ Mendeley/Medline and Google Scholar were used to find possibly relevant studies. For the literature search, many keywords were considered, both individually and in combination. 'Sepsis,' 'Epidemiology of sepsis,' 'Sepsis-related hyper inflammation,' 'Relationship of sepsis-associated clock gene expression and relationship of inflammation with the reprogramming of genetic alterations' were some of the key terms utilized in the literature search. Our main objective is to understand better how traumatic infections during sepsis affect CNS processes, particularly sleep, by investigating the pathobiology of circadian reprogramming associated with immune-directed oxidative stress-inflammatory pathway responsive gene expression and sleep-wake behaviour in this study.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Ad Diriyah, 13713, Saudi Arabia
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Syed Sarim Imam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Gaurav Gupta
- Department of Pharmacology, School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Jaipur, India.,Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.,Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| |
Collapse
|
4
|
Jiang H, Gu J, Zhao H, Joshi S, Perlmutter JS, Gropler RJ, Klein RS, Benzinger TLS, Tu Z. PET Study of Sphingosine-1-phosphate Receptor 1 Expression in Response to S. aureus Infection. Mol Imaging 2021; 2021:9982020. [PMID: 34934406 PMCID: PMC8654346 DOI: 10.1155/2021/9982020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 09/02/2021] [Indexed: 11/22/2022] Open
Abstract
Sphingosine-1-phosphate receptor 1 (S1PR1) plays a crucial role in infectious diseases. Targeting S1PR1 provides protection against pathogens, such as influenza viruses. This study is aimed at investigating S1PR1 in response to bacterial infection by assessing S1PR1 expression in S. aureus-infected mice. A rodent local muscle bacterial infection model was developed by injecting S. aureus to the lower hind limb of Balb/c mice. The changes of S1PR1 expression in response to bacterial infection and blocking treatment were assessed using ex vivo biodistribution and in vivo positron emission tomography (PET) after intravenous injection of an S1PR1-specific radiotracer [18F]TZ4877. The specificity of [18F]TZ4877 was assessed using S1PR1-specific antagonist, NIBR-0213, and S1PR1-specific DsiRNA pretreated the animals. Immunohistochemical studies were performed to confirm the increase of S1PR1 expression in response to infection. Ex vivo biodistribution data showed that the uptake of [18F]TZ4877 was increased 30.6%, 54.3%, 74.3%, and 115.3% in the liver, kidney, pancreas, and thymus of the infected mice, respectively, compared to that in normal control mice, indicating that S1PR1 is involved in the early immune response to bacterial infection. NIBR-0213 or S1PR1-specific DsiRNA pretreatment reduced the tissue uptake of [18F]TZ4877, suggesting that uptake of [18F]TZ4877 is specific. Our PET/CT study data also confirmed that infected mice have increased [18F]TZ4877 uptake in several organs comparing to that in normal control mice. Particularly, compared to control mice, a 39% increase of [18F]TZ4877 uptake was observed in the infected muscle of S. aureus mice, indicating that S1PR1 expression was directly involved in the inflammatory response to infection. Overall, our study suggested that S1PR1 plays an important role in the early immune response to bacterial infection. The uptake of [18F]TZ4877 is tightly correlated with the S1R1 expression in response to S. aureus infection. PET with S1PR1-specific radiotracer [18F]TZ4877 could provide a noninvasive tool for detecting the early S1PR1 immune response to infectious diseases.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Jiwei Gu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Haiyang Zhao
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Sumit Joshi
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Joel S. Perlmutter
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robert J. Gropler
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Robyn S. Klein
- Department of Neuroscience, Neurology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Medicine, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Tammie L. S. Benzinger
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, MO 63110, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St Louis, MO 63110, USA
| |
Collapse
|
5
|
Feng A, Ma W, Faraj R, Kelly GT, Black SM, Fallon MB, Wang T. Identification of S1PR3 gene signature involved in survival of sepsis patients. BMC Med Genomics 2021; 14:43. [PMID: 33549110 PMCID: PMC7866676 DOI: 10.1186/s12920-021-00886-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 01/25/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sepsis is a life-threatening complication of infection that rapidly triggers tissue damage in multiple organ systems and leads to multi-organ deterioration. Up to date, prognostic biomarkers still have limitations in predicting the survival of patients with sepsis. We need to discover more prognostic biomarkers to improve the sensitivity and specificity of the prognosis of sepsis patients. Sphingosine-1-phosphate (S1P) receptor 3 (S1PR3), as one of the S1P receptors, is a prospective prognostic biomarker regulating sepsis-relevant events, including compromised vascular integrity, antigen presentation, and cytokine secretion. Until now, no S1PR3-related prognostic gene signatures for sepsis patients have been found. METHODS This study intends to obtain an S1PR3-associated gene signature from whole blood samples to be utilized as a probable prognostic tool for patients with sepsis. RESULTS We obtained an 18-gene S1PR3-related molecular signature (S3MS) from the intersection of S1PR3-associated genes and survival-associated genes. Numerous important immunity pathways that regulate the progression of sepsis are enriched among our 18 genes. Significantly, S3MS functions greatly in both the discovery and validation cohort. Furthermore, we demonstrated that S3MS obtains significantly better classification performance than random 18-gene signatures. CONCLUSIONS Our results confirm the key role of S1PR3-associated genes in the development of sepsis, which will be a potential prognostic biomarker for patients with sepsis. Our results also focus on the classification performance of our S3MS as biomarkers for sepsis, which could also provide an early warning system for patients with sepsis.
Collapse
Affiliation(s)
- Anlin Feng
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, 475 N. 5th Street, Phoenix, AZ, 85004, USA
| | - Wenli Ma
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, 475 N. 5th Street, Phoenix, AZ, 85004, USA
| | - Reem Faraj
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, 475 N. 5th Street, Phoenix, AZ, 85004, USA
| | - Gabriel T Kelly
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, 475 N. 5th Street, Phoenix, AZ, 85004, USA
| | - Stephen M Black
- Department of Medicine, College of Medicine-Tucson, University of Arizona, Tucson, AZ, USA
| | - Michael B Fallon
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, 475 N. 5th Street, Phoenix, AZ, 85004, USA
| | - Ting Wang
- Department of Internal Medicine, College of Medicine-Phoenix, University of Arizona, 475 N. 5th Street, Phoenix, AZ, 85004, USA.
| |
Collapse
|
6
|
Nadella V, Sharma L, Kumar P, Gupta P, Gupta UD, Tripathi S, Pothani S, Qadri SSYH, Prakash H. Sphingosine-1-Phosphate (S-1P) Promotes Differentiation of Naive Macrophages and Enhances Protective Immunity Against Mycobacterium tuberculosis. Front Immunol 2020; 10:3085. [PMID: 32038629 PMCID: PMC6993045 DOI: 10.3389/fimmu.2019.03085] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/17/2019] [Indexed: 12/14/2022] Open
Abstract
Sphingosine-1-phosphate (S-1P) is a key sphingolipid involved in the pathobiology of various respiratory diseases. We have previously demonstrated the significance of S-1P in controlling non-pathogenic mycobacterial infection in macrophages, and here we demonstrate the therapeutic potential of S-1P against pathogenic Mycobacterium tuberculosis (H37Rv) in the mouse model of infection. Our study revealed that S-1P is involved in the expression of iNOS proteins in macrophages, their polarization toward M1 phenotype, and secretion of interferon (IFN)-γ during the course of infection. S-1P is also capable of enhancing infiltration of pulmonary CD11b+ macrophages and expression of S-1P receptor-3 (S-1PR3) in the lungs during the course of infection. We further revealed the influence of S-1P on major signaling components of inflammatory signaling pathways during M. tuberculosis infection, thus highlighting antimycobacterial potential of S-1P in animals. Our data suggest that enhancing S-1P levels by sphingolipid mimetic compounds/drugs can be used as an immunoadjuvant for boosting immunity against pathogenic mycobacteria.
Collapse
Affiliation(s)
- Vinod Nadella
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Lalita Sharma
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Pankaj Kumar
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| | - Pushpa Gupta
- Department of Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Disease, Agra, India
| | - Umesh D Gupta
- Department of Experimental Animal Facility, National JALMA Institute for Leprosy and Other Mycobacterial Disease, Agra, India
| | - Srikant Tripathi
- Department of Bacteriology, National Institute of Research in Tuberculosis, Chennai, India
| | - Suresh Pothani
- National Animal Resource Facility for Biomedical Research, National Institute of Nutrition, Indian Council of Medical Research Hyderabad, Hyderabad, India
| | - S S Y H Qadri
- National Animal Resource Facility for Biomedical Research, National Institute of Nutrition, Indian Council of Medical Research Hyderabad, Hyderabad, India
| | - Hridayesh Prakash
- Laboratory of Translational Medicine, School of Life Science, University of Hyderabad, Hyderabad, India
| |
Collapse
|