1
|
Kida T, Matsuzaki K, Yokota I, Kawase N, Kadoya M, Inoue H, Kukida Y, Kaneshita S, Inoue T, Wada M, Kohno M, Fukuda W, Kawahito Y, Iwami T. Latent trajectory modelling of pulmonary artery pressure in systemic sclerosis: a retrospective cohort study. RMD Open 2022; 8:rmdopen-2022-002673. [PMID: 36581382 PMCID: PMC9806097 DOI: 10.1136/rmdopen-2022-002673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES To visualise the trajectories of pulmonary arterial pressure (PAP) in systemic sclerosis (SSc) and identify the clinical phenotypes for each trajectory, by applying latent trajectory modelling for PAP repeatedly estimated by echocardiography. METHODS This was a multicentre, retrospective cohort study conducted at four referral hospitals in Kyoto, Japan. Patients with SSc who were treated at study sites between 2008 and 2021 and who had at least three echocardiographic measurements of systolic PAP (sPAP) were included. A group-based trajectory model was applied to the change in sPAP over time, and patients were classified into distinct subgroups that followed similar trajectories. Pulmonary hypertension (PH)-free survival was compared for each trajectory. Multinomial logistic regression analysis was performed for baseline clinical characteristics associated with trajectory assignment. RESULTS A total of 236 patients with 1097 sPAP measurements were included. We identified five trajectories: rapid progression (n=9, 3.8%), early elevation (n=30, 12.7%), middle elevation (n=54, 22.9%), late elevation (n=24, 10.2%) and low stable (n=119, 50.4%). The trajectories, in the listed order, showed progressively earlier elevation of sPAP and shorter PH-free survival. In the multinomial logistic regression analysis with the low stable as a reference, cardiac involvement was associated with rapid progression, diffuse cutaneous SSc was associated with early elevation and anti-centromere antibody was associated with middle elevation; older age of onset was associated with all three of these trajectories. CONCLUSION The pattern of changes in PAP over time in SSc can be classified into five trajectories with distinctly different clinical characteristics and outcomes.
Collapse
Affiliation(s)
- Takashi Kida
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan,Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Matsuzaki
- Agency for Health, Safety and Environment, Kyoto University, Kyoto, Japan
| | - Isao Yokota
- Department of Biostatistics, Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Nozomu Kawase
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Masatoshi Kadoya
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Hironori Inoue
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan,Department of Rheumatology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Yuji Kukida
- Department of Rheumatology, Japanese Red Cross Kyoto Daini Hospital, Kyoto, Japan
| | - Shunya Kaneshita
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan,Department of Rheumatology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Takuya Inoue
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan,Department of Rheumatology, Fukuchiyama City Hospital, Fukuchiyama, Japan
| | - Makoto Wada
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masataka Kohno
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Wataru Fukuda
- Center for Rheumatic Disease, Japanese Red Cross Kyoto Daiichi Hospital, Kyoto, Japan
| | - Yutaka Kawahito
- Inflammation and Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Taku Iwami
- Department of Preventive Services, School of Public Health, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
2
|
Hersi K, Elinoff JM. Pulmonary Hypertension Caused by Interstitial Lung Disease: A New iNK(T)ling into Disease Pathobiology. Am J Respir Crit Care Med 2022; 206:930-932. [PMID: 35772120 PMCID: PMC9801987 DOI: 10.1164/rccm.202206-1186ed] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Kadija Hersi
- Pulmonary Vascular Biology Section of the Critical Care Medicine DepartmentNational Institutes of Health Clinical CenterBethesda, Maryland,Division of Pulmonary and Critical Care MedicineUniversity of Maryland School of MedicineBaltimore, Maryland,National Heart, Lung and Blood InstituteNational Institutes of HealthBethesda, Maryland
| | - Jason M. Elinoff
- Pulmonary Vascular Biology Section of the Critical Care Medicine DepartmentNational Institutes of Health Clinical CenterBethesda, Maryland
| |
Collapse
|
3
|
Carlsen J, Henriksen HH, Marin de Mas I, Johansson PI. An explorative metabolomic analysis of the endothelium in pulmonary hypertension. Sci Rep 2022; 12:13284. [PMID: 35918401 PMCID: PMC9345936 DOI: 10.1038/s41598-022-17374-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/25/2022] [Indexed: 11/18/2022] Open
Abstract
Pulmonary hypertension (PH) is classified into five clinical diagnostic groups, including group 1 [idiopathic pulmonary arterial hypertension (IPAH) and connective tissue disease-associated PAH (CTD-aPAH)] and group 4 (chronic thromboembolic pulmonary hypertension (CTEPH)). PH is a progressive, life-threatening, incurable disease. The pathological mechanisms underlying PH remain elusive; recent evidence has revealed that abnormal metabolic activities in the endothelium may play a crucial role. This research introduces a novel approach for studying PH endothelial function, building on the genome-scale metabolic reconstruction of the endothelial cell (EC) to investigate intracellular metabolism. We demonstrate that the intracellular metabolic activities of ECs in PH patients cluster into four phenotypes independent of the PH diagnosis. Notably, the disease severity differs significantly between the metabolic phenotypes, suggesting their clinical relevance. The significant metabolic differences between the PH phenotypes indicate that they may require different therapeutic interventions. In addition, diagnostic capabilities enabling their identification is warranted to investigate whether this opens a novel avenue of precision medicine.
Collapse
Affiliation(s)
- J Carlsen
- Department of Cardiology, 2141 Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, 2100, Copenhagen, Denmark. .,CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.
| | - H H Henriksen
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - I Marin de Mas
- CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,Novo Nordisk Foundation Center for Biosustainability, Danish Technical University, Lyngby, Denmark
| | - P I Johansson
- Department of Clinical Immunology, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark.,CAG Center for Endotheliomics, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
4
|
Direct pixel to pixel principal strain mapping from tagging MRI using end to end deep convolutional neural network (DeepStrain). Sci Rep 2021; 11:23021. [PMID: 34836988 PMCID: PMC8626490 DOI: 10.1038/s41598-021-02279-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 10/26/2021] [Indexed: 11/08/2022] Open
Abstract
Regional soft tissue mechanical strain offers crucial insights into tissue's mechanical function and vital indicators for different related disorders. Tagging magnetic resonance imaging (tMRI) has been the standard method for assessing the mechanical characteristics of organs such as the heart, the liver, and the brain. However, constructing accurate artifact-free pixelwise strain maps at the native resolution of the tagged images has for decades been a challenging unsolved task. In this work, we developed an end-to-end deep-learning framework for pixel-to-pixel mapping of the two-dimensional Eulerian principal strains [Formula: see text] and [Formula: see text] directly from 1-1 spatial modulation of magnetization (SPAMM) tMRI at native image resolution using convolutional neural network (CNN). Four different deep learning conditional generative adversarial network (cGAN) approaches were examined. Validations were performed using Monte Carlo computational model simulations, and in-vivo datasets, and compared to the harmonic phase (HARP) method, a conventional and validated method for tMRI analysis, with six different filter settings. Principal strain maps of Monte Carlo tMRI simulations with various anatomical, functional, and imaging parameters demonstrate artifact-free solid agreements with the corresponding ground-truth maps. Correlations with the ground-truth strain maps were R = 0.90 and 0.92 for the best-proposed cGAN approach compared to R = 0.12 and 0.73 for the best HARP method for [Formula: see text] and [Formula: see text], respectively. The proposed cGAN approach's error was substantially lower than the error in the best HARP method at all strain ranges. In-vivo results are presented for both healthy subjects and patients with cardiac conditions (Pulmonary Hypertension). Strain maps, obtained directly from their corresponding tagged MR images, depict for the first time anatomical, functional, and temporal details at pixelwise native high resolution with unprecedented clarity. This work demonstrates the feasibility of using the deep learning cGAN for direct myocardial and liver Eulerian strain mapping from tMRI at native image resolution with minimal artifacts.
Collapse
|
5
|
Gillmeyer KR, Miller DR, Glickman ME, Qian SX, Klings ES, Maron BA, Hanlon JT, Rinne ST, Wiener RS. Outcomes of pulmonary vasodilator use in Veterans with pulmonary hypertension associated with left heart disease and lung disease. Pulm Circ 2021; 11:20458940211001714. [PMID: 33868640 PMCID: PMC8020250 DOI: 10.1177/20458940211001714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 02/20/2021] [Indexed: 01/16/2023] Open
Abstract
Randomized trials of pulmonary vasodilators in pulmonary hypertension due to left heart disease (Group 2) and lung disease (Group 3) have demonstrated potential for harm. Yet these therapies are commonly used in practice. Little is known of the effects of treatment outside of clinical trials. We aimed to establish outcomes of vasodilator treatment for Groups 2/3 pulmonary hypertension in real-world practice. We conducted a retrospective cohort study of 132,552 Medicare-eligible Veterans with incident Groups 2/3 pulmonary hypertension between 2006 and 2016, and a secondary nested case-control study. Our primary outcome was a composite of death by any cause or selected acute organ failures. In our cohort analysis, we calculated adjusted risks of time to our outcome using Cox proportional hazards models with facility-specific random effects. In our case-control analysis, we used logistic mixed-effects models to estimate the effect of any past, recent, and cumulative exposure on our outcome. From our cohort study, 3249 (2.5%) Veterans were exposed to pulmonary vasodilators. Exposure to vasodilators was associated with increased risk of our primary outcome, in both Group 3 (HR: 1.58 (95% CI: 1.37-1.82)) and Group 2 (HR: 1.26 (95% CI: 1.12-1.41)) pulmonary hypertension patients. The case-control study determined odds of our outcome increased by 11% per year of exposure (OR: 1.11 (95% CI: 1.07-1.16)). Treating Groups 2/3 pulmonary hypertension with vasodilators in clinical practice is associated with increased risk of harm. This extension of trial findings to a real-world setting offers further evidence to limit use of vasodilators in Groups 2/3 pulmonary hypertension outside of clinical trials.
Collapse
Affiliation(s)
- Kari R. Gillmeyer
- Center for Healthcare Organization & Implementation
Research, Edith Nourse Rogers Veterans Hospital, Bedford, MA, USA
- The Pulmonary Center, Boston University School of Medicine,
Boston, MA, USA
| | - Donald R. Miller
- Center for Healthcare Organization & Implementation
Research, Edith Nourse Rogers Veterans Hospital, Bedford, MA, USA
- Center for Population Health, University of Massachusetts,
Lowell, MA, USA
| | - Mark E. Glickman
- Center for Healthcare Organization & Implementation
Research, Edith Nourse Rogers Veterans Hospital, Bedford, MA, USA
- Department of Statistics, Harvard University, Cambridge, MA,
USA
| | - Shirley X. Qian
- Center for Healthcare Organization & Implementation
Research, Edith Nourse Rogers Veterans Hospital, Bedford, MA, USA
| | | | - Bradley A. Maron
- Department of Cardiology, Veterans Affairs Boston Healthcare
System, Boston, MA, USA
- Division of Cardiovascular Medicine, Brigham and Women’s
Hospital, Boston, MA, USA
| | - Joseph T. Hanlon
- Center for Health Equity Research and Promotion, Veterans
Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
- Geriatric Research Education and Clinical Center, Veterans
Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Seppo T. Rinne
- Center for Healthcare Organization & Implementation
Research, Edith Nourse Rogers Veterans Hospital, Bedford, MA, USA
- The Pulmonary Center, Boston University School of Medicine,
Boston, MA, USA
| | - Renda S. Wiener
- Center for Healthcare Organization & Implementation
Research, Edith Nourse Rogers Veterans Hospital, Bedford, MA, USA
- Center for Healthcare Organization & Implementation
Research, Veterans Affairs Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
6
|
Lahm T, Hess E, Barón AE, Maddox TM, Plomondon ME, Choudhary G, Maron BA, Zamanian RT, Leary PJ. Renin-Angiotensin-Aldosterone System Inhibitor Use and Mortality in Pulmonary Hypertension: Insights From the Veterans Affairs Clinical Assessment Reporting and Tracking Database. Chest 2020; 159:1586-1597. [PMID: 33031831 DOI: 10.1016/j.chest.2020.09.258] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/25/2020] [Accepted: 09/17/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The renin-angiotensin-aldosterone system (RAAS) contributes to pulmonary hypertension (PH) pathogenesis. Although animal data suggest that RAAS inhibition attenuates PH, it is unknown if RAAS inhibition is beneficial in PH patients. RESEARCH QUESTION Is RAAS inhibitor use associated with lower mortality in a large cohort of patients with hemodynamically confirmed PH? STUDY DESIGN AND METHODS We used the Department of Veterans Affairs Clinical Assessment Reporting and Tracking Database to study retrospectively relationships between RAAS inhibitors (angiotensin converting enzyme inhibitors [ACEIs], angiotensin receptor blockers [ARBs], and aldosterone antagonists [AAs]) and mortality in 24,221 patients with hemodynamically confirmed PH. We evaluated relationships in the full and in propensity-matched cohorts. Analyses were adjusted for demographics, socioeconomic status, comorbidities, disease severity, and comedication use in staged models. RESULTS ACEI and ARB use was associated with improved survival in unadjusted Kaplan-Meier survival analyses in the full cohort and the propensity-matched cohort. This relationship was insensitive to adjustment, independent of pulmonary artery wedge pressure, and also was observed in a cohort restricted to individuals with precapillary PH. AA use was associated with worse survival in unadjusted Kaplan-Meier survival analyses in the full cohort; however, AA use was associated less robustly with mortality in the propensity-matched cohort and was not associated with worse survival after adjustment for disease severity, indicating that AAs in real-world practice are used preferentially in sicker patients and that the unadjusted association with increased mortality may be an artifice of confounding by indication of severity. INTERPRETATION ACEI and ARB use is associated with lower mortality in veterans with PH. AA use is a marker of disease severity in PH. ACEIs and ARBs may represent a novel treatment strategy for diverse PH phenotypes.
Collapse
Affiliation(s)
- Tim Lahm
- Richard L. Roudebush Veterans Affairs Medical Center, Indianapolis, IN; Indiana University School of Medicine, Indianapolis, IN.
| | - Edward Hess
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Anna E Barón
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO; Colorado School of Public Health, Denver, CO
| | - Thomas M Maddox
- Washington University School of Medicine Division of Cardiology and Healthcare Innovation Lab, St. Louis, MO
| | - Mary E Plomondon
- Veterans Affairs Eastern Colorado Health Care System, Denver, CO
| | - Gaurav Choudhary
- Providence Veterans Affairs Medical Center, Providence, RI; Alpert Medical School of Brown University, Providence, RI
| | - Bradley A Maron
- Veterans Affairs Boston Healthcare System, Boston, MA; Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA
| | - Roham T Zamanian
- Stanford University Division of Pulmonary, Allergy, and Critical Care Medicine and Vera Moulton Wall Center for Pulmonary Vascular Disease, Stanford, CA
| | | |
Collapse
|
7
|
Park JB, Suh M, Park JY, Park JK, Kim YI, Kim H, Cho YS, Kang H, Kim K, Choi JH, Nam JW, Kim HK, Lee YS, Jeong JM, Kim YJ, Paeng JC, Lee SP. Assessment of Inflammation in Pulmonary Artery Hypertension by 68Ga-Mannosylated Human Serum Albumin. Am J Respir Crit Care Med 2020; 201:95-106. [PMID: 31322420 DOI: 10.1164/rccm.201903-0639oc] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Rationale: Diagnosis and monitoring of patients with pulmonary artery hypertension (PAH) is currently difficult.Objectives: We aimed to develop a noninvasive imaging modality for PAH that tracks the infiltration of macrophages into the pulmonary vasculature, using a positron emission tomography (PET) agent, 68Ga-2-(p-isothiocyanatobenzyl)-1,4,7-triazacyclononane-1,4,7-triacetic acid (NOTA) mannosylated human serum albumin (MSA), that targets the mannose receptor (MR).Methods: We induced PAH in rats by monocrotaline injection. Tissue analysis, echocardiography, and 68Ga-NOTA-MSA PET were performed weekly in rats after monocrotaline injection and in those treated with either sildenafil or macitentan. The translational potential of 68Ga-NOTA-MSA PET was explored in patients with PAH.Measurements and Main Results: Gene sets related to macrophages were significantly enriched on whole transcriptome sequencing of the lung tissue in PAH rats. Serial PET images of PAH rats demonstrated increasing uptake of 68Ga-NOTA-MSA in the lung by time that corresponded with the MR-positive macrophage recruitment observed in immunohistochemistry. In sildenafil- or macitentan-treated PAH rats, the infiltration of MR-positive macrophages by histology and the uptake of 68Ga-NOTA-MSA on PET was significantly lower than that of the PAH-only group. The pulmonary uptake of 68Ga-NOTA-MSA was significantly higher in patients with PAH than normal subjects (P = 0.009) or than those with pulmonary hypertension by left heart disease (P = 0.019) (n = 5 per group).Conclusions: 68Ga-NOTA-MSA PET can help diagnose PAH and monitor the inflammatory status by imaging the degree of macrophage infiltration into the lung. These observations suggest that 68Ga-NOTA-MSA PET has the potential to be used as a novel noninvasive diagnostic and monitoring tool of PAH.
Collapse
Affiliation(s)
- Jun-Bean Park
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | - Jin Kyun Park
- Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital and Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Il Kim
- Department of Nuclear Medicine, University of Ulsan College of Medicine and Asan Medical Center, Seoul, Republic of Korea; and
| | - Hyunah Kim
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Ye Seul Cho
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyejeong Kang
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kibyung Kim
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jae-Hoon Choi
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Jin-Wu Nam
- Department of Life Science, College of Natural Sciences, Hanyang University, Seoul, Republic of Korea
| | - Hyung-Kwan Kim
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | | | - Yong-Jin Kim
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | | | - Seung-Pyo Lee
- Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea.,Division of Cardiology, Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Dubroff J, Melendres L, Lin Y, Beene DR, Ketai L. High geographic prevalence of pulmonary artery hypertension: associations with ethnicity, drug use, and altitude. Pulm Circ 2020; 10:2045894019894534. [PMID: 32110384 PMCID: PMC7000864 DOI: 10.1177/2045894019894534] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 11/19/2019] [Indexed: 12/14/2022] Open
Abstract
While estimates of pulmonary arterial hypertension incidence and prevalence commonly range from 1-3/million and 15-25/million, respectively, clinical experience at our institution suggested much higher rates. We sought to describe the disease burden of pulmonary arterial hypertension in the geographic area served by our Pulmonary Hypertension Clinic and compare it to the REVEAL registry. Our secondary objectives were to document pulmonary arterial hypertension prevalence in minorities underrepresented in REVEAL (Hispanics and Native Americans) and to address the association of pulmonary arterial hypertension with exposure to drugs and moderately increased residential altitude in this population. Retrospective review of pulmonary arterial hypertension clinic patients alive during 2016 identified 154 patients. Hispanic patients made up 35.7% of the cohort, a much greater percentage than REVEAL, p < .001 but smaller than the percentage of Hispanic patients (48.4%) in geographic area served by the clinic. Pulmonary arterial hypertension due to drug exposure was more common and idiopathic pulmonary arterial hypertension was less common than in REVEAL (p < .001). Overall, pulmonary arterial hypertension incidence was 14 cases per million, greater than the REVEAL registry, odds ratio 6.3 (95% CI: 4.2-9.5), (p < .001). Annual period prevalence of pulmonary arterial hypertension was 93 cases per million, also greater than the REVEAL, odds ratio = 7.5 (95% CI: 6.4-8.8) and remained greater when the clinic cohort was constrained to patients with hemodynamic severity comparable to REVEAL, odds ratio = 3.8 (95% CI: 3.0-4.6), (p < .001). There was a strong association between pulmonary arterial hypertension prevalence and residence at altitude > 4000 ft, odds ratio = 26.6 (95% CI: 8.5-83.5), p < .001; however, this was potentially confounded by pulmonary arterial hypertension treatment referral patterns. These findings document a much higher local pulmonary arterial hypertension incidence and prevalence than previously reported in REVEAL. While population ethnicity differed markedly from REVEAL, the disease burden was not driven by these differences. The possible association of moderately increased residential altitude with pulmonary arterial hypertension warrants further evaluation.
Collapse
Affiliation(s)
- Jason Dubroff
- Department of Internal Medicine,
University of Utah, Salt Lake City, UT, USA
| | - Lana Melendres
- Department of Internal Medicine,
University of New Mexico, Albuquerque, NM, USA
| | - Yan Lin
- Department of Geography and
Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Daniel Raley Beene
- Department of Geography and
Environmental Studies, University of New Mexico, Albuquerque, NM, USA
| | - Loren Ketai
- Department of Radiology, University of
New Mexico, Albuquerque, NM, USA
| |
Collapse
|
9
|
Hung G, Mercurio V, Hsu S, Mathai SC, Shah AA, Mukherjee M. Progress in Understanding, Diagnosing, and Managing Cardiac Complications of Systemic Sclerosis. Curr Rheumatol Rep 2019; 21:68. [PMID: 31813082 PMCID: PMC11151284 DOI: 10.1007/s11926-019-0867-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF THE REVIEW Systemic sclerosis (scleroderma) is a complex autoimmune disease that commonly involves the cardiovascular system. Even if often subclinical, cardiac involvement is considered a poor prognostic factor as it is a leading cause of death in scleroderma patients. We review the cardiac manifestations of scleroderma, the diagnostic methods useful in detection, and current advances in therapeutic management. RECENT FINDINGS Beside the routine exams for the assessment of cardiac status (including EKG, standard echocardiography, provocative tests) novel techniques such as myocardial strain imaging on echocardiography, cardiac magnetic resonance imaging, invasive hemodynamic assessment, and endomyocardial biopsy have been demonstrated to be useful in understanding the cardiac alterations that typically affect scleroderma patients. Recent application of novel cardiac detection strategies is providing increased insight into the breadth and pathogenesis of cardiac complications of scleroderma. Further studies coupling exercise provocation, invasive and imaging assessment, and mechanistic studies in scleroderma cardiac tissue are needed to develop the optimal approach to early detection of cardiac disease in scleroderma and targeted therapies.
Collapse
Affiliation(s)
- George Hung
- Division of Internal Medicine, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Valentina Mercurio
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Steven Hsu
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Stephen C Mathai
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Ami A Shah
- Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, 5200 Eastern Avenue, Suite 4100, Baltimore, MD, 21224, USA
| | - Monica Mukherjee
- Division of Cardiology, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
10
|
Hoffmann-Vold AM, Fretheim H, Halse AK, Seip M, Bitter H, Wallenius M, Garen T, Salberg A, Brunborg C, Midtvedt Ø, Lund MB, Aaløkken TM, Molberg Ø. Tracking Impact of Interstitial Lung Disease in Systemic Sclerosis in a Complete Nationwide Cohort. Am J Respir Crit Care Med 2019; 200:1258-1266. [DOI: 10.1164/rccm.201903-0486oc] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Affiliation(s)
| | - Håvard Fretheim
- Department of Rheumatology
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Marit Seip
- Department of Rheumatology, University Hospital of North Norway, Tromso, Norway
| | - Helle Bitter
- Department of Rheumatology, Hospital of Southern Norway, Kristiansand, Norway
| | - Marianne Wallenius
- Norwegian National Advisory Unit of Pregnancy and Rheumatic Diseases, Department of Rheumatology, Trondheim University Hospital, Trondheim, Norway
- Institute of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Norwegian University of Science and Technology, Trondheim, Norway; and
| | | | - Anne Salberg
- Department of Rheumatology, Lillehammer Hospital, Lillehammer, Norway
| | - Cathrine Brunborg
- Oslo Centre for Biostatistics and Epidemiology, Research Support Services
| | | | - May Brit Lund
- Department of Respiratory Medicine, and
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Trond M. Aaløkken
- Department of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Øyvind Molberg
- Department of Rheumatology
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Abstract
Pulmonary hypertension (PH) is a common finding that can result from many different pathological conditions. Depending on the etiology, treatment may be quite different, but early diagnosis and correct classification of PH is difficult. With an aging population and recently suggested decreased pulmonary arterial pressure threshold defining PH, we are facing even more diagnostic uncertainties. A new approach to patients' phenotyping is needed. Here we present available data and future perspectives on employing an in-depth analysis of the omics cascade to allow an earlier and more reliable diagnosis and classification of PH. Indeed, with the help of super-fast computing, it became possible to simultaneously consider the levels of thousands of potential biomarkers to find patterns specific for clinically suspected disease. The omics cascade is an invaluable source of information. However, while the genome can be perceived as providing possibilities, transcriptome-as carving them this is metabolome that may tell us 'what is really going on' in an individual living organism. Metabolomics research requires blinded search for characteristic patterns of discreet changes in the levels of detectable metabolites. Since as many as 40,000 various substances are produced as a 'side effect of staying alive', metabolite profiling can be compared to fishing up for organized signals in a universe of chaos. Although difficult, such search for metabolic patterns that might lead to replacing the term biomarker by metabolic fingerprinting in the area of pulmonary circulation has already begun.
Collapse
|
12
|
PFKFB3-mediated endothelial glycolysis promotes pulmonary hypertension. Proc Natl Acad Sci U S A 2019; 116:13394-13403. [PMID: 31213542 DOI: 10.1073/pnas.1821401116] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Increased glycolysis in the lung vasculature has been connected to the development of pulmonary hypertension (PH). We therefore investigated whether glycolytic regulator 6-phosphofructo-2-kinase/fructose-2, 6-bisphosphatase (PFKFB3)-mediated endothelial glycolysis plays a critical role in the development of PH. Heterozygous global deficiency of Pfkfb3 protected mice from developing hypoxia-induced PH, and administration of the PFKFB3 inhibitor 3PO almost completely prevented PH in rats treated with Sugen 5416/hypoxia, indicating a causative role of PFKFB3 in the development of PH. Immunostaining of lung sections and Western blot with isolated lung endothelial cells showed a dramatic increase in PFKFB3 expression and activity in pulmonary endothelial cells of rodents and humans with PH. We generated mice that were constitutively or inducibly deficient in endothelial Pfkfb3 and found that these mice were incapable of developing PH or showed slowed PH progression. Compared with control mice, endothelial Pfkfb3-knockout mice exhibited less severity of vascular smooth muscle cell proliferation, endothelial inflammation, and leukocyte recruitment in the lungs. In the absence of PFKFB3, lung endothelial cells from rodents and humans with PH produced lower levels of growth factors (such as PDGFB and FGF2) and proinflammatory factors (such as CXCL12 and IL1β). This is mechanistically linked to decreased levels of HIF2A in lung ECs following PFKFB3 knockdown. Taken together, these results suggest that targeting PFKFB3 is a promising strategy for the treatment of PH.
Collapse
|
13
|
Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, Oudiz R, Satoh T, Torres F, Torbicki A. Diagnosis of pulmonary hypertension. Eur Respir J 2019; 53:1801904. [PMID: 30545972 PMCID: PMC6351333 DOI: 10.1183/13993003.01904-2018] [Citation(s) in RCA: 291] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
A revised diagnostic algorithm provides guidelines for the diagnosis of patients with suspected pulmonary hypertension, both prior to and following referral to expert centres, and includes recommendations for expedited referral of high-risk or complicated patients and patients with confounding comorbidities. New recommendations for screening high-risk groups are given, and current diagnostic tools and emerging diagnostic technologies are reviewed.
Collapse
Affiliation(s)
- Adaani Frost
- Dept of Medicine, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David Badesch
- Divisions of Pulmonary Sciences and Critical Care Medicine, and Cardiology, University of Colorado, Denver, CO, USA
| | - J. Simon R. Gibbs
- National Heart and Lung Institute, Imperial College of London, London, UK
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Healthcare NHS Trust and Imperial College London, Hammersmith Hospital, London, UK
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Alessandra Manes
- Cardio-Thoracic and Vascular Dept, Sant'Orsola University Hospital, Bologna, Italy
| | - Ronald Oudiz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Toru Satoh
- Division of Cardiology, Kyorin University Hospital, Tokyo, Japan
| | - Fernando Torres
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Adam Torbicki
- Dept of Pulmonary Circulation and Cardidology, Medical Center for Postgraduate Education, ECZ-Otwock, Otwock, Poland
| |
Collapse
|
14
|
Frost A, Badesch D, Gibbs JSR, Gopalan D, Khanna D, Manes A, Oudiz R, Satoh T, Torres F, Torbicki A. Diagnosis of pulmonary hypertension. Eur Respir J 2018. [PMID: 30545972 DOI: 10.1183/13993003.01904‐2018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
A revised diagnostic algorithm provides guidelines for the diagnosis of patients with suspected pulmonary hypertension, both prior to and following referral to expert centres, and includes recommendations for expedited referral of high-risk or complicated patients and patients with confounding comorbidities. New recommendations for screening high-risk groups are given, and current diagnostic tools and emerging diagnostic technologies are reviewed.
Collapse
Affiliation(s)
- Adaani Frost
- Dept of Medicine, Institute of Academic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - David Badesch
- Divisions of Pulmonary Sciences and Critical Care Medicine, and Cardiology, University of Colorado, Denver, CO, USA
| | - J Simon R Gibbs
- National Heart and Lung Institute, Imperial College of London, London, UK
| | - Deepa Gopalan
- Dept of Radiology, Imperial College Healthcare NHS Trust and Imperial College London, Hammersmith Hospital, London, UK
| | - Dinesh Khanna
- University of Michigan Scleroderma Program, Ann Arbor, MI, USA
| | - Alessandra Manes
- Cardio-Thoracic and Vascular Dept, Sant'Orsola University Hospital, Bologna, Italy
| | - Ronald Oudiz
- LA Biomedical Research Institute at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Toru Satoh
- Division of Cardiology, Kyorin University Hospital, Tokyo, Japan
| | - Fernando Torres
- University of Texas Southwestern Medical School, Dallas, TX, USA
| | - Adam Torbicki
- Dept of Pulmonary Circulation and Cardidology, Medical Center for Postgraduate Education, ECZ-Otwock, Otwock, Poland
| |
Collapse
|
15
|
Voelkel NF, Newman JH. The Light at the End of the Long Pulmonary Hypertension Tunnel Brightens. Am J Respir Crit Care Med 2018; 198:818-820. [DOI: 10.1164/rccm.201802-0325le] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
Elinoff JM, Humbert M, Solomon MA. Reply to Voelkel and Newman: The Light at the End of the Long Pulmonary Hypertension Tunnel Brightens. Am J Respir Crit Care Med 2018; 198:820-821. [PMID: 29944844 DOI: 10.1164/rccm.201804-0792le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | - Marc Humbert
- 2 Université Paris-Sud Le Kremlin-Bicêtre, France.,3 Université Paris-Saclay Le Kremlin-Bicêtre, France.,4 INSERM U999 Le Plessis-Robinson, France.,5 Hôpital Bicêtre Le Kremlin-Bicêtre, France and
| | - Michael A Solomon
- 1 NIH Clinical Center Bethesda, Maryland.,6 NHLBI Bethesda, Maryland
| |
Collapse
|