1
|
Yang P, Liu C, Wu Z, Zheng J, Yi J, Wu N, Wu Z, Lu M, Cui L, Shen N. Clinical Outcomes, Microbiological Characteristics and Risk Factors for Difficult-to-Treat Resistance to Klebsiella pneumoniae Infection. Infect Drug Resist 2022; 15:5959-5969. [PMID: 36262596 PMCID: PMC9574456 DOI: 10.2147/idr.s377064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 08/22/2022] [Indexed: 11/05/2022] Open
Abstract
Purpose This study aimed to identify the clinical outcomes, microbiological features and risk factors for difficult-to-treat resistance (DTR) Klebsiella pneumoniae (Kp) infection. Materials and Methods A retrospective study was conducted at Peking University Third Hospital from January 2020 to March 2021. DTR was defined as resistance to ≥1 carbapenem, ≥1 extended-spectrum cephalosporin, and ≥1 fluoroquinolone. Hypervirulent Kp (HvKp) was defined as peg-344-, iroB-, iucA-, rmpA-, or rmpA2-positive. Clinical data were collected. Antimicrobial susceptibility testing and string tests were performed to determine resistance and hypermucoviscosity phenotype. Whole genome sequencing was performed to analyze the sequence type (ST), capsular serotypes, resistance and virulence genes. Risk factors for 30-day mortality were analyzed. Results Fifty DTR-Kp (50.0%) strains were identified among 100 patients. Compared to non-DTR-Kp group, a significant number of patients with DTR-Kp infection experienced ICU admission (44.0% versus 10.0%, P<0.001) and mechanical ventilation after Kp detection (26.0% versus 10.0%, P=0.037). Notably, the percentage of hvKp among the DTR-Kp isolates increased consistently over the 15 months evaluated. Most DTR-Kp strains belonged to ST11 (82.0%), followed by ST15 (12.0%), ST86 (2.0%), ST996 (2.0%), and ST3157 (2.0%). DTR-Kp isolates possessed various resistance genes, such as blaKPC-2, blaTEM-1D and fosA3 (90.0%, 80.0% and 72.0%, respectively). Importantly, the yersiniabactin genes were significantly clustered in DTR group (48/50, 96.0%). The 30-day mortality was significantly higher in patients with DTR-Kp infection than non-DTR-Kp group (38.0% versus 8.2%, P=0.001). DTR-Kp infection (odds ratio [OR] = 4.196) was an independent risk factor for the 30-day mortality of Kp-infected patients. Additionally, cerebrovascular disease (OR = 2.780) and Charlson comorbidity index (OR= 1.584) were independent risk factors for DTR-Kp infections. Conclusion DTR-hvKp is rapidly emerging. The DTR-Kp strains harbored various resistance genes and high rates of yersiniabactin siderophore genes. DTR-Kp infection was an independent risk factor for mortality, suggesting that enhanced awareness essential.
Collapse
Affiliation(s)
- Ping Yang
- Institute of Medical Technology, Peking University Health Science Center, Beijing, People’s Republic of China,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Chao Liu
- Department of Infectious Diseases, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Zhenchao Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Jiajia Zheng
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Juan Yi
- Institute of Medical Technology, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Nan Wu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Zhangli Wu
- Institute of Medical Technology, Peking University Health Science Center, Beijing, People’s Republic of China,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Ming Lu
- Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China,Department of Infectious Diseases, Peking University Third Hospital, Beijing, People’s Republic of China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing, People’s Republic of China,Correspondence: Liyan Cui; Ning Shen, Email ;
| | - Ning Shen
- Institute of Medical Technology, Peking University Health Science Center, Beijing, People’s Republic of China,Department of Pulmonary and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China,Department of Infectious Diseases, Peking University Third Hospital, Beijing, People’s Republic of China
| |
Collapse
|
2
|
Antibiotic Stewardship in the Intensive Care Unit. An Official American Thoracic Society Workshop Report in Collaboration with the AACN, CHEST, CDC, and SCCM. Ann Am Thorac Soc 2021; 17:531-540. [PMID: 32356696 PMCID: PMC7193806 DOI: 10.1513/annalsats.202003-188st] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Intensive care units (ICUs) are an appropriate focus of antibiotic stewardship program efforts because a large proportion of any hospital’s use of parenteral antibiotics, especially broad-spectrum, occurs in the ICU. Given the importance of antibiotic stewardship for critically ill patients and the importance of critical care practitioners as the front line for antibiotic stewardship, a workshop was convened to specifically address barriers to antibiotic stewardship in the ICU and discuss tactics to overcome these. The working definition of antibiotic stewardship is “the right drug at the right time and the right dose for the right bug for the right duration.” A major emphasis was that antibiotic stewardship should be a core competency of critical care clinicians. Fear of pathogens that are not covered by empirical antibiotics is a major driver of excessively broad-spectrum therapy in critically ill patients. Better diagnostics and outcome data can address this fear and expand efforts to narrow or shorten therapy. Greater awareness of the substantial adverse effects of antibiotics should be emphasized and is an important counterargument to broad-spectrum therapy in individual low-risk patients. Optimal antibiotic stewardship should not focus solely on reducing antibiotic use or ensuring compliance with guidelines. Instead, it should enhance care both for individual patients (by improving and individualizing their choice of antibiotic) and for the ICU population as a whole. Opportunities for antibiotic stewardship in common ICU infections, including community- and hospital-acquired pneumonia and sepsis, are discussed. Intensivists can partner with antibiotic stewardship programs to address barriers and improve patient care.
Collapse
|