1
|
Spielberg DR, Weinman J, DeBoer EM. Advancements in imaging in ChILD. Pediatr Pulmonol 2024; 59:2276-2285. [PMID: 37222402 DOI: 10.1002/ppul.26487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
Interstitial and diffuse lung diseases in children constitute a range of congenital and acquired disorders. These disorders present with signs and symptoms of respiratory disease accompanied by diffuse radiographic changes. In many cases, radiographic findings are nonspecific, while in other disorders, chest computed tomography (CT) is diagnostic in the appropriate context. Regardless, chest imaging remains central in the evaluation of the patient with suspected childhood interstitial lung disease (chILD). Several newly described chILD entities, spanning both genetic and acquired etiologies, have imaging that aid in their diagnoses. Advances in CT scanning technology and CT analysis techniques continue to improve scan quality as well as expand use of chest CT as a research tool. Finally, ongoing research is expanding use of imaging modalities without ionizing radiation. Magnetic resonance imaging is being applied to investigate pulmonary structure and function, and ultrasound of the lung and pleura is a novel technique with an emerging role in chILD disorders. This review describes the current state of imaging in chILD including recently described diagnoses, advances in conventional imaging techniques and applications, and evolving new imaging modalities that expand the clinical and research roles for imaging in these disorders.
Collapse
Affiliation(s)
- David R Spielberg
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jason Weinman
- Department of Radiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Emily M DeBoer
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| |
Collapse
|
2
|
Hysinger EB, Higano NS, Critser PJ, Woods JC. Imaging in neonatal respiratory disease. Paediatr Respir Rev 2022; 43:44-52. [PMID: 35074281 PMCID: PMC10439744 DOI: 10.1016/j.prrv.2021.12.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/17/2021] [Indexed: 12/15/2022]
Abstract
The purpose of this review is to describe the current state of the art in clinical imaging for NICU patients, divided into major areas that correspond to likely phenotypes of neonatal respiratory disease: airway abnormalities, parenchymal disease, and pulmonary vascular disease. All common imaging modalities (ultrasound, X-ray, CT, and MRI) are discussed, with an emphasis on modalities that are most relevant to the individual underlying aspects of disease. Some promising aspects of dynamic and functional imaging are included, where there may be future clinical applicability.
Collapse
Affiliation(s)
- E B Hysinger
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States.
| | - N S Higano
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States
| | - P J Critser
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States
| | - J C Woods
- Cincinnati Children's Hospital Medical Center, 3333 Burnett Ave, Cincinnati, OH 45229, United States
| |
Collapse
|
3
|
Higano NS, Ruoss JL, Woods JC. Modern pulmonary imaging of bronchopulmonary dysplasia. J Perinatol 2021; 41:707-717. [PMID: 33547408 PMCID: PMC8561744 DOI: 10.1038/s41372-021-00929-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 11/05/2020] [Accepted: 01/15/2021] [Indexed: 01/30/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a complex and serious cardiopulmonary morbidity in infants who are born preterm. Despite advances in clinical care, BPD remains a significant source of morbidity and mortality, due in large part to the increased survival of extremely preterm infants. There are few strong early prognostic indicators of BPD or its later outcomes, and evidence for the usage and timing of various interventions is minimal. As a result, clinical management is often imprecise. In this review, we highlight cutting-edge methods and findings from recent pulmonary imaging research that have high translational value. Further, we discuss the potential role that various radiological modalities may play in early risk stratification for development of BPD and in guiding treatment strategies of BPD when employed in varying severities and time-points throughout the neonatal disease course.
Collapse
Affiliation(s)
- Nara S Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - J Lauren Ruoss
- Division of Neonatology, Department of Pediatrics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jason C Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Cincinnati Bronchopulmonary Dysplasia Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
- Department of Radiology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA.
| |
Collapse
|
4
|
Hahn AD, Malkus A, Kammerman J, Higano N, Walkup LL, Woods J, Fain SB. Effects of neonatal lung abnormalities on parenchymal R 2 * estimates. J Magn Reson Imaging 2021; 53:1853-1861. [PMID: 33404085 DOI: 10.1002/jmri.27487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/08/2020] [Accepted: 12/10/2020] [Indexed: 11/09/2022] Open
Abstract
Infants admitted to the neonatal intensive care unit (NICU) often suffer from multifaceted pulmonary morbidities that are not well understood. Ultrashort echo time (UTE) magnetic resonance imaging (MRI) is a promising technique for pulmonary imaging in this population without requiring exposure to ionizing radiation. The aims of this study were to investigate the effect of neonatal pulmonary disease on R2 * and tissue density and to utilize numerical simulations to evaluate the effect of different alveolar structures on predicted R2 *.This was a prospective study, in which 17 neonatal human subjects (five control, seven with bronchopulmonary dysplasia [BPD], five with congenital diaphragmatic hernia [CDH]) were enrolled. Twelve subjects were male and five were female, with postmenstrual age (PMA) at MRI of 39.7 ± 4.7 weeks. A 1.5T/multiecho three-dimensional UTE MRI was used. Pulmonary R2 * and tissue density were compared across disease groups over the whole lung and regionally. A spherical shell alveolar model was used to predict the expected R2 * over a range of tissue densities and tissue susceptibilities. Tests for significantly different mean R2 * and tissue densities across disease groups were evaluated using analysis of variance, with subsequent pairwise group comparisons performed using t tests. Lung tissue density was lower in the ipsilateral lung in CDH compared to both controls and BPD patients (both p < 0.05), while only the contralateral lung in CDH (CDHc) had higher whole-lung R2 * than both controls and BPD (both p < 0.05). R2 * differences were significant between controls and CDHc within all tissue density ranges (all p < 0.05) with the exception of the 80%-90% range (p = 0.17). Simulations predicted an inverse relationship between alveolar tissue density and R2 * that matches empirical human data. Alveolar wall thickness had no effect on R2 * independent of density (p = 1). The inverse relationship between R2 * and tissue density is influenced by the presence of disease globally and regionally in neonates with BPD and CDH in the NICU. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Andrew D Hahn
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Annelise Malkus
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Jeffery Kammerman
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA
| | - Nara Higano
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Laura L Walkup
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jason Woods
- Center for Pulmonary Imaging Research, Division of Pulmonary Medicine and Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sean B Fain
- Department of Medical Physics, University of Wisconsin, Madison, Wisconsin, USA.,Department of Radiology, University of Wisconsin, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|