1
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammad A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. High-throughput quantitation of human neutrophil recruitment and functional responses in an air-blood barrier array. APL Bioeng 2025; 9:026110. [PMID: 40290728 PMCID: PMC12033047 DOI: 10.1063/5.0220367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 11/19/2024] [Indexed: 04/30/2025] Open
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress toward therapeutics. Namely, high-throughput therapeutic assays typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well leukocyte recruitment in an air-blood barrier array (L-ABBA-96) that enables in vivo-like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 and found a dose-dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently Food and Drug Administration-approved for severe Coronavirus Disease 2019 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
Affiliation(s)
| | - Liang-Hsin Chen
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Seongbin Jo
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kendra Washington
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Cauviya Selva
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Daniel Feng
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | | | | | - Evelyn Williams
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Xianggui Qu
- Department of Mathematics and Statistics, Oakland University, Rochester, Michigan 48309, USA
| | | | | | | | - Jocelyn Grunwell
- Department of Pediatrics, Division of Critical Care Medicine, Emory University School of Medicine and Children's Healthcare of Atlanta at Arthur M. Blank Hospital, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
2
|
Viola H, Chen LH, Jo S, Washington K, Selva C, Li A, Feng D, Giacalone V, Stephenson ST, Cottrill K, Mohammed A, Williams E, Qu X, Lam W, Ng NL, Fitzpatrick A, Grunwell J, Tirouvanziam R, Takayama S. HIGH THROUGHPUT QUANTITATION OF HUMAN NEUTROPHIL RECRUITMENT AND FUNCTIONAL RESPONSES IN AN AIR-BLOOD BARRIER ARRAY. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593624. [PMID: 38798413 PMCID: PMC11118313 DOI: 10.1101/2024.05.10.593624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Dysregulated neutrophil recruitment drives many pulmonary diseases, but most preclinical screening methods are unsuited to evaluate pulmonary neutrophilia, limiting progress towards therapeutics. Namely, high throughput therapeutic screening systems typically exclude critical neutrophilic pathophysiology, including blood-to-lung recruitment, dysfunctional activation, and resulting impacts on the air-blood barrier. To meet the conflicting demands of physiological complexity and high throughput, we developed an assay of 96-well Leukocyte recruitment in an Air-Blood Barrier Array (L-ABBA-96) that enables in vivo -like neutrophil recruitment compatible with downstream phenotyping by automated flow cytometry. We modeled acute respiratory distress syndrome (ARDS) with neutrophil recruitment to 20 ng/mL epithelial-side interleukin 8 (IL-8) and found a dose dependent reduction in recruitment with physiologic doses of baricitinib, a JAK1/2 inhibitor recently FDA-approved for severe COVID-19 ARDS. Additionally, neutrophil recruitment to patient-derived cystic fibrosis sputum supernatant induced disease-mimetic recruitment and activation of healthy donor neutrophils and upregulated endothelial e-selectin. Compared to 24-well assays, the L-ABBA-96 reduces required patient sample volumes by 25 times per well and quadruples throughput per plate. Compared to microfluidic assays, the L-ABBA-96 recruits two orders of magnitude more neutrophils per well, enabling downstream flow cytometry and other standard biochemical assays. This novel pairing of high-throughput in vitro modeling of organ-level lung function with parallel high-throughput leukocyte phenotyping substantially advances opportunities for pathophysiological studies, personalized medicine, and drug testing applications.
Collapse
|
3
|
Feng B, Feng X, Yu Y, Xu H, Ye Q, Hu R, Fang X, Gao F, Wu J, Pan Q, Yu J, Lang G, Li L, Cao H. Mesenchymal stem cells shift the pro-inflammatory phenotype of neutrophils to ameliorate acute lung injury. Stem Cell Res Ther 2023; 14:197. [PMID: 37553691 PMCID: PMC10408228 DOI: 10.1186/s13287-023-03438-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 07/31/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Mesenchymal stem cell (MSC) treatment plays a major role in the management of acute lung injury (ALI), and neutrophils are the initial line of defense against ALI. However, the effect of MSCs on neutrophils in ALI remains mostly unknown. METHODS We investigated the characteristics of neutrophils in lung tissue of ALI mice induced by lipopolysaccharide after treatment with MSCs using single-cell RNA sequencing. Neutrophils separated from lung tissue in ALI were co-cultured with MSCs, and then samples were collected for reverse transcription-polymerase chain reaction and flow cytometry. RESULTS During inflammation, six clusters of neutrophils were identified, annotated as activated, aged, and circulatory neutrophils. Activated neutrophils had higher chemotaxis, reactive oxygen species (ROS) production, and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase scores than aged neutrophils. Circulatory neutrophils occurred mainly in healthy tissue and were characterized by higher expression of Cxcr2 and Sell. Activated neutrophils tended to exhibit higher expression of Cxcl10 and Cd47, and lower expression of Cd24a, while aged neutrophils expressed a lower level of Cd47 and higher level of Cd24a. MSC treatment shifted activated neutrophils toward an aged neutrophil phenotype by upregulating the expression of CD24, thereby inhibiting inflammation by reducing chemotaxis, ROS production, and NADPH oxidase. CONCLUSION We identified the immunosuppressive effects of MSCs on the subtype distribution of neutrophils and provided new insight into the therapeutic mechanism of MSC treatment in ALI.
Collapse
Affiliation(s)
- Bing Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Xudong Feng
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Yingduo Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Haoying Xu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Qingqing Ye
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou, 310003, China
| | - Ruitian Hu
- Department of Chemistry, Duke University, 124 Science Drive, Durham, NC, 27708, USA
| | - Xinru Fang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Feiqiong Gao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jian Wu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Qiaoling Pan
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Jiong Yu
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Guanjing Lang
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Lanjuan Li
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, Shandong, China
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China
| | - Hongcui Cao
- State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Rd., Hangzhou, 310003, China.
- National Clinical Research Center for Infectious Diseases, 79 Qingchun Rd., Hangzhou, 310003, China.
- Key Laboratory of Diagnosis and Treatment of Aging and Physic-Chemical Injury Diseases of Zhejiang Province, 79 Qingchun Rd, Hangzhou, 310003, China.
| |
Collapse
|
4
|
Rice CM, Lewis P, Ponce-Garcia FM, Gibbs W, Groves S, Cela D, Hamilton F, Arnold D, Hyams C, Oliver E, Barr R, Goenka A, Davidson A, Wooldridge L, Finn A, Rivino L, Amulic B. Hyperactive immature state and differential CXCR2 expression of neutrophils in severe COVID-19. Life Sci Alliance 2023; 6:6/2/e202201658. [PMID: 36622345 PMCID: PMC9748722 DOI: 10.26508/lsa.202201658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Neutrophils are vital in defence against pathogens, but excessive neutrophil activity can lead to tissue damage and promote acute respiratory distress syndrome. COVID-19 is associated with systemic expansion of immature neutrophils, but the functional consequences of this shift to immaturity are not understood. We used flow cytometry to investigate activity and phenotypic diversity of circulating neutrophils in acute and convalescent COVID-19 patients. First, we demonstrate hyperactivation of immature CD10- subpopulations in severe disease, with elevated markers of secondary granule release. Partially activated immature neutrophils were detectable 12 wk post-hospitalisation, indicating long term myeloid dysregulation in convalescent COVID-19 patients. Second, we demonstrate that neutrophils from moderately ill patients down-regulate the chemokine receptor CXCR2, whereas neutrophils from severely ill individuals fail to do so, suggesting an altered ability for organ trafficking and a potential mechanism for induction of disease tolerance. CD10- and CXCR2hi neutrophil subpopulations were enriched in severe disease and may represent prognostic biomarkers for the identification of individuals at high risk of progressing to severe COVID-19.
Collapse
Affiliation(s)
- Christopher M Rice
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Philip Lewis
- University of Bristol Proteomics Facility, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fernando M Ponce-Garcia
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Willem Gibbs
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Sarah Groves
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Drinalda Cela
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Fergus Hamilton
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
| | - David Arnold
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Catherine Hyams
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
- Academic Respiratory Unit, Bristol Medical School, University of Bristol, Southmead Hospital, Bristol, UK
| | - Elizabeth Oliver
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Rachael Barr
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Anu Goenka
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Andrew Davidson
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Linda Wooldridge
- Bristol Veterinary School, Faculty of Health Sciences, University of Bristol, Bristol, UK
| | - Adam Finn
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Laura Rivino
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| | - Borko Amulic
- School of Cellular and Molecular Medicine, Faculty of Life Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
5
|
Kurdowska AK, Florence JM. Promoting Neutrophil Apoptosis to Treat Acute Lung Injury. Am J Respir Crit Care Med 2020; 200:399-400. [PMID: 31046406 PMCID: PMC6680293 DOI: 10.1164/rccm.201903-0707le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
| | - Jon M Florence
- 1University of Texas Health Science Center at TylerTyler, Texas
| |
Collapse
|
6
|
Viola H, Chang J, Grunwell JR, Hecker L, Tirouvanziam R, Grotberg JB, Takayama S. Microphysiological systems modeling acute respiratory distress syndrome that capture mechanical force-induced injury-inflammation-repair. APL Bioeng 2019; 3:041503. [PMID: 31768486 PMCID: PMC6874511 DOI: 10.1063/1.5111549] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/08/2019] [Indexed: 12/14/2022] Open
Abstract
Complex in vitro models of the tissue microenvironment, termed microphysiological systems, have enormous potential to transform the process of discovering drugs and disease mechanisms. Such a paradigm shift is urgently needed in acute respiratory distress syndrome (ARDS), an acute lung condition with no successful therapies and a 40% mortality rate. Here, we consider how microphysiological systems could improve understanding of biological mechanisms driving ARDS and ultimately improve the success of therapies in clinical trials. We first discuss how microphysiological systems could explain the biological mechanisms underlying the segregation of ARDS patients into two clinically distinct phenotypes. Then, we contend that ARDS-mimetic microphysiological systems should recapitulate three critical aspects of the distal airway microenvironment, namely, mechanical force, inflammation, and fibrosis, and we review models that incorporate each of these aspects. Finally, we recognize the substantial challenges associated with combining inflammation, fibrosis, and/or mechanical force in microphysiological systems. Nevertheless, complex in vitro models are a novel paradigm for studying ARDS, and they could ultimately improve patient care.
Collapse
Affiliation(s)
| | - Jonathan Chang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia 30332, USA
| | - Jocelyn R. Grunwell
- Department of Pediatrics, Division of Critical Care Medicine, Children's Healthcare of Atlanta at Egleston, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Louise Hecker
- Division of Pulmonary, Allergy and Critical Care and Sleep Medicine, University of Arizona, Tucson, Arizona 85724, USA and Southern Arizona Veterans Affairs Health Care System, Tucson, Arizona 85723, USA
| | - Rabindra Tirouvanziam
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia 30322, USA and Center for CF and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Georgia 30322, USA
| | - James B. Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | |
Collapse
|