1
|
Zhang D, Xu H, Qin C, Cai K, Zhang J, Xia X, Bi J, Zhang L, Xing L, Liang Q, Wang W. Reduced expression of semaphorin 3A in osteoclasts causes lymphatic expansion in a Gorham-Stout disease (GSD) mouse model. J Zhejiang Univ Sci B 2024; 25:38-50. [PMID: 38163665 PMCID: PMC10758210 DOI: 10.1631/jzus.b2300180] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/17/2023] [Indexed: 01/03/2024]
Abstract
Gorham-Stout disease (GSD) is a sporadic chronic disease characterized by progressive bone dissolution, absorption, and disappearance along with lymphatic vessel infiltration in bone-marrow cavities. Although the osteolytic mechanism of GSD has been widely studied, the cause of lymphatic hyperplasia in GSD is rarely investigated. In this study, by comparing the RNA expression profile of osteoclasts (OCs) with that of OC precursors (OCPs) by RNA sequencing, we identified a new factor, semaphorin 3A (Sema3A), which is an osteoprotective factor involved in the lymphatic expansion of GSD. Compared to OCPs, OCs enhanced the growth, migration, and tube formation of lymphatic endothelial cells (LECs), in which the expression of Sema3A is low compared to that in OCPs. In the presence of recombinant Sema3A, the growth, migration, and tube formation of LECs were inhibited, further confirming the inhibitory effect of Sema3A on LECs in vitro. Using an LEC-induced GSD mouse model, the effect of Sema3A was examined by injecting lentivirus-expressing Sema3A into the tibiae in vivo. We found that the overexpression of Sema3A in tibiae suppressed the expansion of LECs and alleviated bone loss, whereas the injection of lentivirus expressing Sema3A short hairpin RNA (shRNA) into the tibiae caused GSD-like phenotypes. Histological staining further demonstrated that OCs decreased and osteocalcin increased after Sema3A lentiviral treatment, compared with the control. Based on the above results, we propose that reduced Sema3A in OCs is one of the mechanisms contributing to the pathogeneses of GSD and that expressing Sema3A represents a new approach for the treatment of GSD.
Collapse
Affiliation(s)
- Dongfang Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Hao Xu
- Longhua Hospital & Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai 201203, China
| | - Chi Qin
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Kangming Cai
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Jing Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Xinqiu Xia
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Jingwen Bi
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Li Zhang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester 14642, USA
| | - Qianqian Liang
- Longhua Hospital & Spine Institute, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China. ,
- Key Laboratory of Theory and Therapy of Muscles and Bones, Ministry of Education (Shanghai University of Traditional Chinese Medicine), Shanghai 201203, China. ,
| | - Wensheng Wang
- Laboratory of Molecular Medicine, College of Life Science and State Key Laboratory of Cell Differentiation and Regulation, Henan Normal University, Xinxiang 453007, China.
| |
Collapse
|
2
|
Nomura M, Ohta H, Minegishi K, Akimoto M, Hamamoto K, Yamaguchi Y. Spouting Chylothorax in Gorham-Stout Disease. Am J Respir Crit Care Med 2022; 205:e53-e54. [PMID: 35104434 DOI: 10.1164/rccm.202107-1783im] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Motoko Nomura
- Jichi Ika University Saitama Medical Center, 26312, Respiratory medicine, Saitama, Japan
| | - Hiromitsu Ohta
- Jichi Ika University Saitama Medical Center, 26312, Respiratory medicine, Saitama, Japan;
| | - Kentaro Minegishi
- Jichi Ika University Saitama Medical Center, 26312, Thoracic Surgery, Saitama, Japan
| | - Maho Akimoto
- Jichi Ika University Saitama Medical Center, 26312, Pathology, Saitama, Japan
| | - Kohei Hamamoto
- National Defense Medical College, 13077, Radiology, Tokorozawa, Japan
| | - Yasuhiro Yamaguchi
- Jichi Ika University Saitama Medical Center, 26312, Respiratory medicine, Saitama, Japan
| |
Collapse
|