1
|
Avitabile CM, Zhang X, Ampah S, Wang Y, Ash D, Nilan K, Tingo JE, Frank DB, Jensen EA, Lingappan K, Gibbs KA. Elevated pulmonary capillary wedge pressure, higher blood pressure, and lower cardiac index in infants with bronchopulmonary dysplasia. Int J Cardiol 2024; 411:132246. [PMID: 38851539 DOI: 10.1016/j.ijcard.2024.132246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/30/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
BACKGROUND Left ventricular diastolic dysfunction indicated by elevated pulmonary capillary wedge pressure (ePCWP) may worsen cardiorespiratory status in bronchopulmonary dysplasia (BPD), but the scope of ePCWP by cardiac catheterization is not well described. METHODS This single-center retrospective cohort study included infants with BPD without congenital heart disease, significant intracardiac shunts, or pulmonary vein stenosis who underwent cardiac catheterization from 2010 to 2021. ePCWP was defined as >10 mmHg. Quantitative measures of ventricular systolic and diastolic function were performed on existing echocardiograms. Patients with and without ePCWP were compared using the Chi-squared or Wilcoxon rank-sum tests. Associations between catheterization hemodynamics and echocardiographic parameters were assessed by simple linear regression. RESULTS Seventy-one infants (93% Grade 2 or 3 BPD) met inclusion criteria, and 30 (42%) had ePCWP. Patients with ePCWP were older at catheterization (6.7 vs. 4.5 months, p < 0.001), more commonly underwent tracheostomy (66.7% vs. 29.3%, p = 0.003), and had higher mean systemic blood pressure [64.5 (56.0, 75.0) vs. 47.0 (43.0, 55.0) mm Hg, p < 0.001], higher systemic vascular resistance [11.9 (10.4, 15.6) vs. 8.7 (6.7, 11.2) WU*m2, p < 0.001), and lower cardiac index [3.9 (3.8, 4.9) vs. 4.7 (4.0, 6.3) L/min/m2, p = 0.03] at catheterization. Mean pulmonary artery pressure, pulmonary vascular resistance, and mortality were similar between the groups. Echocardiographic indices of left ventricular diastolic dysfunction did not correlate with PCWP. CONCLUSIONS ePCWP was common in infants with severe BPD who underwent cardiac catheterization in this cohort. The association between ePCWP and higher systemic blood pressure supports further study of afterload reduction in this population.
Collapse
Affiliation(s)
- Catherine M Avitabile
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Echocardiography Laboratory Research Unit, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - Xuemei Zhang
- Data Science and Biostatistics Unit, Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Steve Ampah
- Data Science and Biostatistics Unit, Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Yan Wang
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Echocardiography Laboratory Research Unit, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Devon Ash
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Echocardiography Laboratory Research Unit, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen Nilan
- Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jennifer E Tingo
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - David B Frank
- Division of Cardiology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Erik A Jensen
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Kathleen A Gibbs
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA; Division of Neonatology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
2
|
Sanderson KR, Wekon-Kemeni C, Charlton JR. From premature birth to premature kidney disease: does accelerated aging play a role? Pediatr Nephrol 2024; 39:2001-2013. [PMID: 37947901 PMCID: PMC11082067 DOI: 10.1007/s00467-023-06208-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023]
Abstract
As the limits of fetal viability have increased over the past 30 years, there has been a growing body of evidence supporting the idea that chronic disease should be taken into greater consideration in addition to survival after preterm birth. Accumulating evidence also suggests there is early onset of biologic aging after preterm birth. Similarly, chronic kidney disease (CKD) is also associated with a phenotype of advanced biologic age which exceeds chronologic age. Yet, significant knowledge gaps remain regarding the link between premature biologic age after preterm birth and kidney disease. This review summarizes the four broad pillars of aging, the evidence of premature aging following preterm birth, and in the setting of CKD. The aim is to provide additional plausible biologic mechanisms to explore the link between preterm birth and CKD. There is a need for more research to further elucidate the biologic mechanisms of the premature aging paradigm and kidney disease after preterm birth. Given the emerging research on therapies for premature aging, this paradigm could create pathways for prevention of advanced CKD.
Collapse
Affiliation(s)
- Keia R Sanderson
- Department of Medicine-Nephrology, University of North Carolina, Chapel Hill, NC, USA.
| | - Christel Wekon-Kemeni
- Department of Pediatrics, University of North Carolina, Chapel Hill, NC, USA
- Division of Pediatric Nephrology, Emory University School of Medicine, and Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Jennifer R Charlton
- Department of Pediatrics, Division of Nephrology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
3
|
Deprez A, Poletto Bonetto JH, Ravizzoni Dartora D, Dodin P, Nuyt AM, Luu TM, Dumont NA. Impact of preterm birth on muscle mass and function: a systematic review and meta-analysis. Eur J Pediatr 2024; 183:1989-2002. [PMID: 38416257 DOI: 10.1007/s00431-023-05410-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/21/2023] [Accepted: 12/23/2023] [Indexed: 02/29/2024]
Abstract
Individuals born preterm present lower exercise capacity. Along with the cardiopulmonary responses and activity level, muscle strength is a key determinant of exercise capacity. This systematic review aimed to summarize the current knowledge on the impact of preterm birth on skeletal muscle mass and function across the lifespan. The databases PubMed, MEDLINE, EBM, Embase, CINAHL Plus, Global Index Medicus, and Google Scholar were searched using keywords and MeSH terms related to skeletal muscle, preterm birth, and low birth weight. Two independent reviewers undertook study selection, data extraction, and quality appraisal using Covidence review management. Data were pooled to estimate the prematurity effect on muscle mass and function using the R software. From 4378 studies retrieved, 132 were full-text reviewed and 25 met the inclusion/exclusion criteria. Five studies presented a low risk of bias, and 5 had a higher risk of bias due to a lack of adjustment for confounding factors and presenting incomplete outcomes. Meta-analyses of pooled data from homogenous studies indicated a significant reduction in muscle thickness and jump test (muscle power) in individuals born preterm versus full-term with standardized mean difference and confidence interval of - 0.58 (0.27, 0.89) and - 0.45 (0.21, 0.69), respectively. Conclusion: Overall, this systematic review summarizing the existing literature on the impact of preterm birth on skeletal muscle indicates emerging evidence that individuals born preterm, display alteration in the development of their skeletal muscle mass and function. This work also highlights a clear knowledge gap in understanding the effect of preterm birth on skeletal muscle development. What is Known: • Preterm birth, which occurs at a critical time of skeletal muscle development and maturation, impairs the development of different organs and tissues leading to a higher risk of comorbidities such as cardiovascular diseases. • Preterm birth is associated with reduced exercise capacity. What is New: • Individuals born preterm display alterations in muscle mass and function compared to individuals born at term from infancy to adulthood. • There is a need to develop preventive or curative interventions to improve skeletal muscle health in preterm-born individuals.
Collapse
Affiliation(s)
- Alyson Deprez
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Jéssica H Poletto Bonetto
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Daniela Ravizzoni Dartora
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Philippe Dodin
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
| | - Anne Monique Nuyt
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Thuy Mai Luu
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada
- Department of Pediatrics, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada
| | - Nicolas A Dumont
- Centre Hospitalier Universitaire (CHU) Sainte-Justine Research Center, 3175 Chemin de La Côte-Sainte-Catherine, Montreal, QC, H3T 1C5, Canada.
- School of Rehabilitation, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
4
|
Kandasamy J, Li R, Vamesu BM, Olave N, Halloran B, Jilling T, Ballinger SW, Ambalavanan N. Mitochondrial DNA Variations Modulate Alveolar Epithelial Mitochondrial Function and Oxidative Stress in Newborn Mice Exposed to Hyperoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541177. [PMID: 37292719 PMCID: PMC10245974 DOI: 10.1101/2023.05.17.541177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress is an important contributor to bronchopulmonary dysplasia (BPD), a form of chronic lung disease that is the most common morbidity in very preterm infants. Mitochondrial functional differences due to inherited and acquired mutations influence the pathogenesis of disorders in which oxidative stress plays a critical role. We previously showed using mitochondrial-nuclear exchange (MNX) mice that mitochondrial DNA (mtDNA) variations modulate hyperoxia-induced lung injury severity in a model of BPD. In this study, we studied the effects of mtDNA variations on mitochondrial function including mitophagy in alveolar epithelial cells (AT2) from MNX mice. We also investigated oxidant and inflammatory stress as well as transcriptomic profiles in lung tissue in mice and expression of proteins such as PINK1, Parkin and SIRT3 in infants with BPD. Our results indicate that AT2 from mice with C57 mtDNA had decreased mitochondrial bioenergetic function and inner membrane potential, increased mitochondrial membrane permeability and were exposed to higher levels of oxidant stress during hyperoxia compared to AT2 from mice with C3H mtDNA. Lungs from hyperoxia-exposed mice with C57 mtDNA also had higher levels of pro-inflammatory cytokines compared to lungs from mice with C3H mtDNA. We also noted changes in KEGG pathways related to inflammation, PPAR and glutamatergic signaling, and mitophagy in mice with certain mito-nuclear combinations but not others. Mitophagy was decreased by hyperoxia in all mice strains, but to a greater degree in AT2 and neonatal mice lung fibroblasts from hyperoxia-exposed mice with C57 mtDNA compared to C3H mtDNA. Finally, mtDNA haplogroups vary with ethnicity, and Black infants with BPD had lower levels of PINK1, Parkin and SIRT3 expression in HUVEC at birth and tracheal aspirates at 28 days of life when compared to White infants with BPD. These results indicate that predisposition to neonatal lung injury may be modulated by variations in mtDNA and mito-nuclear interactions need to be investigated to discover novel pathogenic mechanisms for BPD.
Collapse
|
5
|
Kumar VHS. Cardiovascular Morbidities in Adults Born Preterm: Getting to the Heart of the Matter! CHILDREN (BASEL, SWITZERLAND) 2022; 9:children9121843. [PMID: 36553286 PMCID: PMC9777245 DOI: 10.3390/children9121843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Advances in perinatal and neonatal care have led to improved survival of preterm infants into adulthood. However, the shift in focus to long-term health in adults born preterm requires a clear understanding of the impact of prematurity on developing organ systems and the development of adult-oriented disease. A less well-recognized area of risk for surviving preterm infants is their cardiometabolic health. Epidemiologic evidence has linked preterm birth to the development of systemic hypertension, type 2 diabetes, metabolic syndrome, heart failure, and ischemic heart disease. Of more significant concern is that the risk of cardiometabolic disorders is higher in adults born preterm compared to full-term infants. The interconnected nature of the cardio-pulmonary system means worsening morbidity and mortality in adults born preterm. Addressing the problems of adults born preterm holistically would help promote cardiovascular health, wellness, and quality of life over their lifetime. Recognizing that adults born preterm are a unique subset of the population is a challenge in the current healthcare environment. Addressing issues relevant to adults born preterm in the clinically and research domain, using technology to characterize cardiopulmonary physiology and exercise tolerance, developing screening tools for early diagnosis and treatment, and robust follow-up of these infants with access to longitudinal data would improve both the quality and longevity of life in adults born preterm.
Collapse
Affiliation(s)
- Vasantha H S Kumar
- Division of Neonatology, Department of Pediatrics, John R Oishei Children's Hospital, University at Buffalo, 1001 5th Floor Main Street, Buffalo, NY 14203, USA
| |
Collapse
|
6
|
Duke JW, Lewandowski AJ, Abman SH, Lovering AT. Physiological aspects of cardiopulmonary dysanapsis on exercise in adults born preterm. J Physiol 2022; 600:463-482. [PMID: 34961925 PMCID: PMC9036864 DOI: 10.1113/jp281848] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 12/03/2021] [Indexed: 02/03/2023] Open
Abstract
Progressive improvements in perinatal care and respiratory management of preterm infants have resulted in increased survival of newborns of extremely low gestational age over the past few decades. However, the incidence of bronchopulmonary dysplasia, the chronic lung disease after preterm birth, has not changed. Studies of the long-term follow-up of adults born preterm have shown persistent abnormalities of respiratory, cardiovascular and cardiopulmonary function, possibly leading to a lower exercise capacity. The underlying causes of these abnormalities are incompletely known, but we hypothesize that dysanapsis, i.e. discordant growth and development, in the respiratory and cardiovascular systems is a central structural feature that leads to a lower exercise capacity in young adults born preterm than those born at term. We discuss how the hypothesized system dysanapsis underscores the observed respiratory, cardiovascular and cardiopulmonary limitations. Specifically, adults born preterm have: (1) normal lung volumes but smaller airways, which causes expiratory airflow limitation and abnormal respiratory mechanics but without impacts on pulmonary gas exchange efficiency; (2) normal total cardiac size but smaller cardiac chambers; and (3) in some cases, evidence of pulmonary hypertension, particularly during exercise, suggesting a reduced pulmonary vascular capacity despite reduced cardiac output. We speculate that these underlying developmental abnormalities may accelerate the normal age-associated decline in exercise capacity, via an accelerated decline in respiratory, cardiovascular and cardiopulmonary function. Finally, we suggest areas of future research, especially the need for longitudinal and interventional studies from infancy into adulthood to better understand how preterm birth alters exercise capacity across the lifespan.
Collapse
Affiliation(s)
- Joseph W. Duke
- Northern Arizona University, Department of Biological Sciences, Flagstaff, AZ, USA
| | - Adam J. Lewandowski
- University of Oxford, Oxford Cardiovascular Clinical Research Facility, Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Oxford, UK
| | - Steven H. Abman
- University of Colorado Anschutz School of Medicine, Department of Pediatrics, Aurora, CO, USA
- Pediatric Heart Lung Center, Children’s Hospital Colorado, Aurora, CO, USA
| | | |
Collapse
|
7
|
Baker CD. Chronic respiratory failure in bronchopulmonary dysplasia. Pediatr Pulmonol 2021; 56:3490-3498. [PMID: 33666365 DOI: 10.1002/ppul.25360] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 11/09/2022]
Abstract
Although survival has improved dramatically for extremely preterm infants, those with the most severe forms of bronchopulmonary dysplasia (BPD) fail to improve in the neonatal period and go on to develop chronic respiratory failure. When careful weaning of respiratory support is not tolerated, the difficult decision of whether or not to pursue chronic ventilation via tracheostomy must be made. This requires shared decision-making with an interdisciplinary medical team and the child's family. Although they suffer from increased morbidity and mortality, the majority of these children will survive to tolerate ventilator liberation and tracheostomy decannulation. Care coordination for the technology-dependent preterm infant is complex, but there is a growing consensus that chronic ventilation can best support neurodevelopmental progress and improve long-term outcomes.
Collapse
Affiliation(s)
- Christopher D Baker
- Department of Pediatrics, Section of Pulmonary and Sleep Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
8
|
Forno E, Abman SH, Singh J, Robbins ME, Selvadurai H, Schumacker PT, Robinson PD. Update in Pediatrics 2020. Am J Respir Crit Care Med 2021; 204:274-284. [PMID: 34126039 DOI: 10.1164/rccm.202103-0605up] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Erick Forno
- Division of Pediatric Pulmonary Medicine, Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Steven H Abman
- Department of Pediatrics, Children's Hospital Colorado, Denver, Colorado.,University of Colorado Anschutz School of Medicine, Denver, Colorado
| | - Jagdev Singh
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Mary E Robbins
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Hiran Selvadurai
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Paul T Schumacker
- Division of Neonatology, Ann and Robert H. Lurie Children's Hospital, Chicago, Illinois; and.,Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Paul D Robinson
- Department of Respiratory Medicine, Children's Hospital at Westmead, Sydney, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|