1
|
Crimi C, Nolasco S. Can humidified high flow reverse mucus plugging? Expert Rev Respir Med 2025:1-4. [PMID: 40200566 DOI: 10.1080/17476348.2025.2490715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 03/30/2025] [Accepted: 04/04/2025] [Indexed: 04/10/2025]
Affiliation(s)
- Claudia Crimi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico 'G. Rodolico - San Marco' University Hospital, Catania, Italy
| | - Santi Nolasco
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
- Respiratory Medicine Unit, Policlinico 'G. Rodolico - San Marco' University Hospital, Catania, Italy
| |
Collapse
|
2
|
Silswal N, Baumlin N, Haworth S, Montgomery RN, Yoshida M, Dennis JS, Yerrathota S, Kim MD, Salathe M. Therapeutic strategies to reverse cigarette smoke-induced ion channel and mucociliary dysfunction in COPD airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L571-L585. [PMID: 40095970 DOI: 10.1152/ajplung.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cigarette smoke (CS) is a leading cause of chronic obstructive pulmonary disease (COPD). Here, we investigated whether the ion channel amplifier nesolicaftor rescues CS-induced mucociliary and ion channel dysfunction. As CS increases the expression of transforming growth factor-beta1 (TGF-β1), human bronchial epithelial cells (HBECs) from healthy donors were used for TGF-β1 and COPD donors (COPD-HBEC) for CS exposure experiments. CS and TGF-β1 induce mucociliary dysfunction by increasing MUC5AC and decreasing ion channel conductance important for mucus hydration. These include cystic fibrosis transmembrane conductance regulator (CFTR) and apical large-conductance, Ca2+-activated K+ (BK) channels. Nesolicaftor rescued CFTR and BK channel dysfunction, restored ciliary beat frequency (CBF), and decreased mucus viscosity and MUC5AC expression in CS-exposed COPD-HBEC. Nesolicaftor further reversed reductions in airway surface liquid (ASL) volumes, CBF, and CFTR and BK conductance, and blocked the increase in extracellular signal-regulated kinase (ERK) signaling in TGF-β1-exposed normal HBECs. Mechanistically, nesolicaftor increased, as expected, not only binding of PCBP1 to CFTR mRNA but also surprisingly to LRRC26 mRNA, which encodes the gamma subunit required for BK function. Similar to nesolicaftor, the angiotensin receptor blocker (ARB) losartan rescued TGF-β1-mediated decreases in PCBP1 binding to LRRC26 mRNA. In addition, the ARB telmisartan restored PCBP1 binding to CFTR and LRRC26 mRNAs to rescue CFTR and BK function in CS-exposed COPD-HBEC. Thus, nesolicaftor and ARBs act on the same target and were therefore neither additive nor synergistic in their actions. These data demonstrate that nesolicaftor and ARBs may provide benefits in COPD by improving ion channel function important for mucus hydration.NEW & NOTEWORTHY Cigarette smoke (CS) increases transforming growth factor-beta1 (TGF-β1) expression that causes mucociliary dysfunction by decreasing ion channel function. In our study, a CFTR amplifier (nesolicaftor) and angiotensin II receptor blockers (losartan and telmisartan) improve CS-induced ion channel dysfunction, by increasing binding of PCBP1 to CFTR and LRRC26 mRNAs. Therefore, nesolicaftor and ARBs, acting on the same target, may provide therapeutic benefits for treating smoking-related diseases.
Collapse
Affiliation(s)
- Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Steven Haworth
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sireesha Yerrathota
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
3
|
Liegeois MA, Hsieh A, Al-Fouadi M, Charbit AR, Yang CX, Hackett TL, Fahy JV. Cellular and molecular features of asthma mucus plugs provide clues about their formation and persistence. J Clin Invest 2025; 135:e186889. [PMID: 40091838 PMCID: PMC11910225 DOI: 10.1172/jci186889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/24/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUNDMucus plugs form in acute asthma and persist in chronic disease. Although eosinophils are implicated in mechanisms of mucus pathology, many mechanistic details about mucus plug formation and persistence in asthma are unknown.METHODSUsing histology and spatial, single-cell proteomics, we characterized mucus-plugged airways from nontransplantable donor lungs of 14 patients with asthma (9 with fatal asthma and 5 with nonfatal asthma) and individuals acting as controls (10 with chronic obstructive pulmonary disease and 14 free of lung disease). Additionally, we used an airway epithelial cell-eosinophil (AEC-eosinophil) coculture model to explore how AEC mucus affects eosinophil degranulation.RESULTSAsthma mucus plugs were tethered to airways showing infiltration with innate lymphoid type 2 cells and hyperplasia of smooth muscle cells and MUC5AC-expressing goblet cells. Asthma mucus plugs were infiltrated with immune cells that were mostly dual positive for eosinophil peroxidase (EPX) and neutrophil elastase, suggesting that neutrophils internalize EPX from degranulating eosinophils. Indeed, eosinophils exposed to mucus from IL-13-activated AECs underwent CD11b- and glycan-dependent cytolytic degranulation. Dual-positive granulocytes varied in frequency in mucus plugs. Whereas paucigranulocytic plugs were MUC5AC rich, granulocytic plugs had a mix of MUC5AC, MUC5B, and extracellular DNA traps. Paucigranulocytic plugs occurred more frequently in (acute) fatal asthma and granulocytic plugs predominated in (chronic) nonfatal asthma.CONCLUSIONTogether, our data suggest that mucin-rich mucus plugs in fatal asthma form because of acute goblet cell degranulation in remodeled airways and that granulocytic mucus plugs in chronic asthma persist because of a sustaining niche characterized by epithelial cell-mucin-granulocyte cross-talk.FUNDINGNIH grants HL080414, HL107202, and AI077439.
Collapse
Affiliation(s)
- Maude A. Liegeois
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
| | - Aileen Hsieh
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - May Al-Fouadi
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Chen Xi Yang
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tillie-Louise Hackett
- Centre for Heart Lung Innovation, Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - John V. Fahy
- Cardiovascular Research Institute, UCSF, San Francisco, California, USA
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, UCSF, San Francisco, California, USA
| |
Collapse
|
4
|
Jin KN, Lee HJ, Park H, Lee JK, Heo EY, Kim DK, Lee HW. Mucus Plugs as Precursors to Exacerbation and Lung Function Decline in COPD Patients. Arch Bronconeumol 2025; 61:138-146. [PMID: 39122616 DOI: 10.1016/j.arbres.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
BACKGROUND Mucus plugs identified through chest computed tomography (CT) scans have emerged as potential prognostic factors in chronic obstructive pulmonary disease (COPD). This 5-year longitudinal study investigated their impact on exacerbations and FEV1 decline. METHODS COPD patients with baseline chest CT and spirometric assessments were categorized based on mucus plug presence. Propensity-score matching yielded balanced groups. Exacerbation rates, time to exacerbation events, hazard ratio (HR) for exacerbations, and annual rates of FEV1 decline were evaluated. Sensitivity analysis was performed with stratification according to mucus plug scores of 0, 1-2, and ≥3. RESULTS Among 623 eligible patients, the mucus plug group was 44.3%. Through 1:1 propensity-score matching, each group was comprised of 187 individuals with balanced covariates. The mucus plug group showed higher rates of moderate-to-severe (0.51/year vs. 0.58/year, P=0.035), severe exacerbations (0.21/year vs. 0.24/year, P=0.032), and non-eosinophilic exacerbations (0.45/year vs. 0.52/year, P=0.008). Mucus plugs were associated with increased hazard of moderate-to-severe (adjusted HR=1.502 [95% CI 1.116-2.020]), severe (adjusted HR=2.106 [95% CI, 1.429-3.103]), and non-eosinophilic exacerbations (adjusted HR=1.551 [95% CI, 1.132-2.125]). Annual FEV1 decline was accelerated in the mucus plug group (β-coefficient=-62 [95% CI, -120 to -5], P=0.035). Sensitivity analysis showed higher risk of exacerbations and accelerated FEV1 decline in mucus plug score ≥3 compared to score 0. CONCLUSIONS Mucus plugs are associated with increased risks of exacerbations, particularly non-eosinophilic, and accelerated FEV1 declines over 5 years. Our study identified the potential prognostic value of mucus plugs on future exacerbation risks and lung function decline trajectories.
Collapse
Affiliation(s)
- Kwang Nam Jin
- Department of Radiology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyo Jin Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Heemoon Park
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Jung-Kyu Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Eun Young Heo
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Deog Kyeom Kim
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun Woo Lee
- Division of Respiratory and Critical Care, Department of Internal Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
5
|
van der Veer T, Andrinopoulou ER, Braunstahl GJ, Charbonnier JP, Kim V, Latisenko R, Lynch DA, Tiddens H. Association between automatic AI-based quantification of airway-occlusive mucus plugs and all-cause mortality in patients with COPD. Thorax 2025; 80:105-108. [PMID: 39638548 DOI: 10.1136/thorax-2024-221928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
In this cohort study involving 9399 current and former smokers from the Genetic Epidemiology of Chronic Obstructive Pulmonary Disease study, we assessed the relationship between artificial intelligence-quantified mucus plugs on chest CTs and all-cause mortality. Our results revealed a significant positive association, particularly for those with COPD GOLD stages 1-4, with HRs of 1.18 for 1-2 mucus-obstructed bronchial segments and 1.27 for ≥3 obstructed segments. This corroborates previous visual mucus plug counting research and demonstrates the relevance of mucus plugs in COPD pathology and as a marker for risk assessment. Automated mucus plug quantification methods may provide an efficient tool for both clinical evaluations and research.
Collapse
Affiliation(s)
- Tjeerd van der Veer
- Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands
- Respiratory Medicine, Leiden University Medical Center, Leiden, Netherlands
| | - Eleni-Rosalina Andrinopoulou
- Biostatistics, Erasmus Medical Center, Rotterdam, Netherlands
- Epidemiology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Gert-Jan Braunstahl
- Respiratory Medicine, Erasmus MC, Rotterdam, Netherlands
- Pulmonology, Franciscus Gasthuis & Vlietland, Rotterdam, Netherlands
| | | | - Victor Kim
- Division of Pulmonary and Critical Care Medicine, Temple University School of Medicine, Philadelphia, Pennsylvania, USA
| | | | - David A Lynch
- Medicine, National Jewish Health, Denver, Colorado, USA
| | - Harm Tiddens
- Thirona BV, Nijmegen, Netherlands
- Pediatric Pulmonology, Erasmus Medical Center, Rotterdam, Netherlands
| |
Collapse
|
6
|
Baraldi F, Bigoni T, Foschino Barbaro MP, Micheletto C, Scioscia G, Vatrella A, Papi A. Mucus production and chronic obstructive pulmonary disease, a possible treatment target: zooming in on N-acetylcysteine. Monaldi Arch Chest Dis 2025. [PMID: 39810570 DOI: 10.4081/monaldi.2025.3159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 10/28/2024] [Indexed: 01/16/2025] Open
Abstract
Mucus hypersecretion is a trait of chronic obstructive pulmonary disease (COPD) associated with poorer outcomes. As it may be present before airway obstruction, its early treatment may have a preventive role. This narrative review of the literature presents the role of mucus dysfunction in COPD, its pathophysiology, and the rationale for the use of N-acetylcysteine (NAC). NAC can modify mucus rheology, improving clearance and reducing damage induced MUC5AC expression. It exerts a direct and indirect (glutathione replenishment) antioxidant mechanism; it interferes with inflammatory molecular pathways, including inhibition of nuclear factor-kB activation in epithelial airway cells and reduction in the expression of cytokine tumor necrosis factor α, interleukin (IL)-6, and IL-10. Some clinical experiences suggest that the adjunctive use of NAC may reduce symptoms and improve outcomes for patients with COPD. In conclusion, NAC may be a candidate drug for the early treatment of subjects at risk of COPD development.
Collapse
Affiliation(s)
- Federico Baraldi
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara
| | - Tommaso Bigoni
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara; Respiratory Unit, ULSS 8 Berica, Vicenza
| | | | | | - Giulia Scioscia
- Department of Medical and Surgical Sciences, University of Foggia; Respiratory Medicine, Policlinico of Foggia
| | | | - Alberto Papi
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara
| |
Collapse
|
7
|
Sepiacci A, Starc N, Laitano R, Pasqua F, Rogliani P, Ora J. Systematic Review and Meta-Analysis of the Application of T-PEP in the Therapeutic Management of COPD Patients. J Clin Med 2025; 14:320. [PMID: 39860328 PMCID: PMC11765788 DOI: 10.3390/jcm14020320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/29/2024] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
Background: Chronic obstructive pulmonary disease (COPD) is a leading cause of morbidity and mortality worldwide, characterized by chronic mucus hypersecretion (CMH) that exacerbates airway obstruction and accelerates disease progression. Effective airway clearance techniques are essential to improve respiratory function and reduce exacerbations. Temporary Positive Expiratory Pressure (T-PEP) is a novel airway clearance device that has shown promise in managing COPD. Objectives: This meta-analysis aimed to evaluate the efficacy of T-PEP in a standard pulmonary rehabilitation program. Methods: Following PRISMA guidelines, a comprehensive search of randomized controlled trials (RCTs) was conducted in the MEDLINE and PEDro databases. Data from 162 subjects, including those with severe COPD and bronchiectasis, were analyzed. Key outcomes assessed were changes in lung function (FVC, FEV1, TLC), inspiratory and expiratory pressures (MIP, MEP), gas exchange (PaO2, PaCO2), exercise capacity (6MWT), symptom severity (mMRC, CAT, BCSS), and exacerbation rates. Results: T-PEP significantly improved FVC, FEV1, TLC, MIP, MEP, and DLCO compared to baseline, with heterogeneity noted across studies. Improvements in gas exchange and physical capacity were observed, with PaO2 increasing and PaCO2 decreasing. T-PEP also reduced symptoms of cough and dyspnea, improving quality-of-life scores. Additionally, a notable reduction in acute exacerbations of COPD was seen after one month and three months of treatment. Conclusions: T-PEP therapy shows substantial benefits in improving lung function, exercise capacity, and quality of life while reducing exacerbation rates in COPD patients. Although promising, these findings require further confirmation through randomized clinical trials to establish the optimal application of T-PEP in various clinical settings and patient phenotypes.
Collapse
Affiliation(s)
- Arianna Sepiacci
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Nadia Starc
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Rossella Laitano
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
| | - Franco Pasqua
- Pulmonary Rehabilitation Unit, Clinical Rehabilitation Institute of IRCCS San Raffaele, 00163 Rome, Italy
| | - Paola Rogliani
- Unit of Respiratory Medicine, Department of Experimental Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy
- Division of Respiratory Medicine, University Hospital Tor Vergata, 00133 Rome, Italy
| | - Josuel Ora
- Division of Respiratory Medicine, University Hospital Tor Vergata, 00133 Rome, Italy
| |
Collapse
|
8
|
Luo Y, Ren J, Liang L, Qu J, Chang C, Sun Y. Correlation of Aspergillus fumigatus Sensitization with Mucus Plugging in COPD. Int J Chron Obstruct Pulmon Dis 2025; 20:57-63. [PMID: 39802040 PMCID: PMC11724664 DOI: 10.2147/copd.s496521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/29/2024] [Indexed: 01/16/2025] Open
Abstract
Background Both Aspergillus fumigatus sensitization and mucus plugs are associated with poor clinical outcomes in COPD. However, little is known about the association between Aspergillus hypersensitivity and mucus plugging in patients with COPD. Methods We retrospectively enrolled COPD patients who had visited Peking University Third Hospital and received measurement of the Aspergillus Fumigatus specific IgE (Af sIgE) from Oct 1, 2018 to Sep 30, 2023. The clinical, laboratory, and chest CT features were analyzed, with mucus plugging evaluation using the bronchopulmonary segment-based scoring system. Comparison was performed between COPD patients with and without Aspergillus hypersensitivity (AH). Results Among the 378 COPD patients with measurement of Af sIgE, 29 (7.7%) were classified as having AH (Af sIgE>0.35KU/L). By propensity score matching (1:2), 58 patients without AH were included for comparison. Patients with AH had lower FEV1%pred (P=0.008) and FEV1/FVC (%) (P=0.023), and were more likely to have a blood eosinophil count exceeding 300/µL and higher white blood cell and neutrophil counts. The prevalence of luminal plugging on chest CT in subjects with AH was 58.6%, compared to 31.0% in those without AH (P=0.013). Multivariate regression analyses showed that Af sIgE more than 0.70 KU/L and blood neutrophil count were associated with mucus plugging. Conclusion In patients with COPD, Aspergillus sensitization was associated with lower lung function and mucus plugging on chest CT.
Collapse
Affiliation(s)
- Ying Luo
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Jiaqi Ren
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Long Liang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Jingge Qu
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Chun Chang
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| | - Yongchang Sun
- Department of Respiratory and Critical Care Medicine, Peking University Third Hospital, Beijing, People’s Republic of China
- Research Center for Chronic Airway Diseases, Peking University Health Science Center, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Heinzelmann K, Fysikopoulos A, Jaquin TJ, Peper-Gabriel JK, Hansbauer EM, Grüner S, Prassler J, Wurzenberger C, Kennedy JGC, Snead JY, Wrennall JA, Heinig K, Wurzenberger C, Bel Aiba RS, Tarran R, Livraghi-Butrico A, Fitzgerald MF, Anderson GP, Rothe C, Matschiner G, Olwill SA, Hagner M. Pulmonary-delivered Anticalin Jagged-1 antagonists reduce experimental airway mucus hyperproduction and obstruction. Am J Physiol Lung Cell Mol Physiol 2025; 328:L75-L92. [PMID: 39499257 PMCID: PMC11905813 DOI: 10.1152/ajplung.00059.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 10/01/2024] [Accepted: 10/27/2024] [Indexed: 11/07/2024] Open
Abstract
Mucus hypersecretion and mucus obstruction are pathogenic features in many chronic lung diseases directly linked to disease severity, exacerbation, progression, and mortality. The Jagged-1/Notch pathway is a promising therapeutic target that regulates secretory and ciliated cell trans-differentiation in the lung. However, the Notch pathway is also required in various other organs. Hence, pulmonary delivery of therapeutic agents is a promising approach to target this pathway while minimizing systemic exposure. Using Anticalin technology, Jagged-1 Anticalin binding proteins were generated and engineered to potent and selective inhalable Jagged-1 antagonists. Their therapeutic potential to reduce airway mucus hyperproduction and obstruction was investigated ex vivo and in vivo. In primary airway cell cultures grown at an air-liquid interface and stimulated with inflammatory cytokines, Jagged-1 Anticalin binding proteins reduced both mucin gene expression and mucous cell metaplasia. In vivo, prophylactic and therapeutic treatment with a pulmonary-delivered Jagged-1 Anticalin binding protein reduced mucous cell metaplasia, epithelial thickening, and airway mucus hyperproduction in IL-13 and house dust mite allergen-challenged mice, respectively. Furthermore, in a transgenic mouse model with pathophysiologic features of cystic fibrosis and chronic obstructive pulmonary disease (COPD), pulmonary-delivered Jagged-1 Anticalin binding protein reduced hallmarks of airway mucus obstruction. In all in vivo models, a reduction of mucous cells with a concomitant increase of ciliated cells was observed. Collectively, these findings support Jagged-1 antagonists' therapeutic potential for patients with muco-obstructive lung diseases and the feasibility of targeting the Jagged-1/Notch pathway by inhalation.NEW & NOTEWORTHY Airway mucus drives severity and mortality in diverse chronic lung diseases. The Jagged-1/Notch pathway controls the balance of ciliated versus mucous cells, but targeting the pathway systemically carries the risk of side effects. Here we developed novel, Anticalin-derived, pulmonary-delivered Jagged-1 antagonists, to inhibit airway mucus hyperproduction and obstruction in chronic lung diseases. Our preclinical data demonstrate the effectiveness of these antagonists in diminishing secretory cell and mucus levels and alleviating hallmarks of mucus obstruction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Joseph G C Kennedy
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Jazmin Y Snead
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Joe A Wrennall
- Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | | | | | - Robert Tarran
- Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, Kansas, United States
| | - Alessandra Livraghi-Butrico
- Marsico Lung Institute/Cystic Fibrosis Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | | | - Gary P Anderson
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, Victoria, Australia
| | | | | | | | | |
Collapse
|
10
|
Diaz AA. Beyond Bronchodilation and Airway Inflammation: Mucus Plugs as a Therapeutic Target in COPD. Chest 2025; 167:34-36. [PMID: 39794076 DOI: 10.1016/j.chest.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 01/13/2025] Open
Affiliation(s)
- Alejandro A Diaz
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA.
| |
Collapse
|
11
|
Nolasco S, Mukherjee M, Nair P. Trajectories of responses to mepolizumab in severe asthma. Eur Respir J 2025; 65:2402023. [PMID: 39884757 DOI: 10.1183/13993003.02023-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/04/2024] [Indexed: 02/01/2025]
Affiliation(s)
- Santi Nolasco
- Research Institute of St. Joe's, St Joseph's Healthcare, Hamilton, Hamilton, ON, Canada
| | - Manali Mukherjee
- Research Institute of St. Joe's, St Joseph's Healthcare, Hamilton, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Parameswaran Nair
- Research Institute of St. Joe's, St Joseph's Healthcare, Hamilton, Hamilton, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
12
|
Boomer J, Choi J, Alsup A, McGregor MC, Lieu J, Johnson C, Hall C, Shi X, Kim T, Goss C, Lew D, Christensen S, Woodruff P, Hastie A, Mauger D, Wenzel SE, Hoffman E, Schechtman KB, Castro M. Increased Muc5AC and Decreased Ciliated Cells in Severe Asthma Partially Restored by Inhibition of IL-4Rα Receptor. Am J Respir Crit Care Med 2024; 210:1409-1420. [PMID: 38935626 PMCID: PMC11716027 DOI: 10.1164/rccm.202307-1266oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 06/27/2024] [Indexed: 06/29/2024] Open
Abstract
Rationale: The role of IL-13 on the airway epithelium in severe asthma leading to airway remodeling remains poorly understood. Objectives: To study IL-13-induced airway remodeling on goblet cells and cilia in the airway epithelium in severe asthma and the impact of an anti-IL4Rα antibody, dupilumab, in vitro. Methods: Quantitative computed tomography of the lungs and endobronchial biopsies and brushings were obtained in 51 participants (22 with severe asthma, 11 with nonsevere asthma, and 18 healthy participants) in SARPIII (Severe Asthma Research Program III) and measured for mucin and cilia-related proteins. Epithelial cells were differentiated at air-liquid interface (ALI) with IL-13 with or without dupilumab and assessed for mucin, cilia, cilia beat frequency (CBF), and epithelial integrity (transepithelial electrical resistance [TEER]). Measurements and Main Results: Increased Muc5AC (mucin 5AC) (Δ + 263.2 ± 92.7 luminosity/epithelial area) and decreased ciliated cells (Δ - 0.07 ± 0.03 Foxj1+ cells/epithelial area) were observed in biopsies from patients with severe asthma when compared with healthy control subjects (P < 0.01 and P = 0.047, respectively). RNA sequencing of endobronchial cell brushings confirmed a Muc5AC increase with a decrease in a five-gene cilia-related mean in patients with severe asthma compared with healthy subjects (all P < 0.05). IL-13 (5 ng/ml)-differentiated ALI cultures of healthy and asthmatic samples (from participants with severe and nonsevere asthma) increased Muc5AC, decreased cilia (α-aceytl-tubulin) in samples from healthy participants (Δ + 6.5% ± 1.5%, Δ - 14.1% ± 2.7%; all P < 0.001 respectively) and participants with asthma (Δ + 4.4% ± 2.5%, Δ - 13.1% ± 2.7%; P = 0.084, P < 0.001 respectively), and decreased epithelial integrity (TEER) in samples from healthy participants (-140.9 ± 21.3 [ohms], P < 0.001), while decreasing CBF in samples from participants with asthma (Δ - 4.4 ± 1.7 [Hz], P < 0.01). When dupilumab was added to ALI with IL-13, there was no significant decrease in Mu5AC, but there was restoration of cilia in healthy participants and participants with asthma (absolute increase of 67.5% and 32.5% cilia, all P < 0.05, respectively), whereas CBF increased (Δ + 3.6 ± 1.1 [Hz], P < 0.001) and TEER decreased (only in asthma, Δ - 37.8 ± 16.2 [ohms], P < 0.05). Conclusions: IL-13 drives features of airway remodeling in severe asthma, which are partially reversed by inhibiting the IL-4Rα receptor in vitro.
Collapse
Affiliation(s)
- Jonathan Boomer
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Alexander Alsup
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | | | - Julia Lieu
- Division of Pulmonary and Critical Care Medicine and
| | | | - Chase Hall
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Xiaosong Shi
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Taewon Kim
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| | - Charles Goss
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Daphne Lew
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Stephanie Christensen
- Division of Pulmonary, Allergy, and Critical Care, University of California San Francisco, San Francisco, California
| | - Prescott Woodruff
- Division of Pulmonary, Allergy, and Critical Care, University of California San Francisco, San Francisco, California
| | - Annette Hastie
- Section of Pulmonary, Critical Care, Allergy, and Immunologic Diseases, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - David Mauger
- Division of Statistics and Bioinformatics, Department of Public Health Sciences, Pennsylvania State University, Hershey, Pennsylvania
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - Eric Hoffman
- Departments of Radiology, Biomedical Engineering and Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kenneth B. Schechtman
- Division of Biostatistics, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| | - Mario Castro
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
13
|
Shi R, Liang R, Wang F, Wang L, Zidai W, Zhang J, Min L, Du X, Sun S, Xiao C, Li C, Liang X, Chen AF, Yang W. Identification and experimental validation of PYCARD as a crucial PANoptosis-related gene for immune response and inflammation in COPD. Apoptosis 2024; 29:2091-2107. [PMID: 38652339 DOI: 10.1007/s10495-024-01961-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Chronic inflammatory and immune responses play key roles in the development and progression of chronic obstructive pulmonary disease (COPD). PANoptosis, as a unique inflammatory cell death modality, is involved in the pathogenesis of many inflammatory diseases. We aim to identify critical PANoptosis-related biomarkers and explore their potential effects on respiratory tract diseases and immune infiltration landscapes in COPD. Total microarray data consisting of peripheral blood and lung tissue datasets associated with COPD were obtained from the GEO database. PANoptosis-associated genes in COPD were identified by intersecting differentially expressed genes (DEGs) with genes involved in pyroptosis, apoptosis, and necroptosis after normalizing and removing the batch effect. Furthermore, GO, KEGG, PPI network, WGCNA, LASSO-COX, and ROC curves analysis were conducted to screen and verify hub genes, and the correlation between PYCARD and infiltrated immune cells was analyzed. The effect of PYCARD on respiratory tract diseases and the potential small-molecule agents for the treatment of COPD were identified. PYCARD expression was verified in the lung tissue of CS/LPS-induced COPD mice. PYCARD was a critical PANoptosis-related gene in all COPD patients. PYCARD was positively related to NOD-like receptor signaling pathway and promoted immune cell infiltration. Moreover, PYCARD was significantly activated in COPD mice mainly by targeting PANoptosis. PANoptosis-related gene PYCARD is a potential biomarker for COPD diagnosis and treatment.
Collapse
Affiliation(s)
- Rui Shi
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Renwen Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Fang Wang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Lueli Wang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Wuyi Zidai
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Jie Zhang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Luo Min
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Xiaohua Du
- Department of Respiratory and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shibo Sun
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital, Kunming Medical University, Kunming, China
| | - Chuang Xiao
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China
| | - Chaozhong Li
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xuewu Liang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
| | - Alex F Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China.
| | - Weimin Yang
- Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, China.
| |
Collapse
|
14
|
Belz DC, Putcha N, Alupo P, Siddharthan T, Baugh A, Hopkinson N, Castaldi P, Papi A, Mannino D, Miravitlles M, Han M, Fabbri LM, Montes de Oca M, Krishnan JA, Singh D, Martinez FJ, Hansel NN, Calverley P. Call to Action: How Can We Promote the Development of New Pharmacologic Treatments in Chronic Obstructive Pulmonary Disease? Am J Respir Crit Care Med 2024; 210:1300-1307. [PMID: 39405496 DOI: 10.1164/rccm.202311-2180pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 09/24/2024] [Indexed: 11/28/2024] Open
Affiliation(s)
- Daniel C Belz
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Nirupama Putcha
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Patricia Alupo
- Lung Institute, Makerere University College of Health Sciences, Kampala, Uganda
| | - Trishul Siddharthan
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Miami, Miami, Florida
| | - Aaron Baugh
- Pulmonary, Critical Care, Allergy, and Sleep Medicine, University of California, San Francisco, San Francisco, California
| | - Nick Hopkinson
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| | - Peter Castaldi
- Division of General Internal Medicine and Primary Care, Brigham and Women's Hospital, Boston, Massachusetts
| | - Alberto Papi
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - David Mannino
- Department of Medicine, University of Kentucky College of Medicine, Lexington, Kentucky
| | - Marc Miravitlles
- Pulmonology Department, Vall d'Hebron University Hospital, Vall d'Hebron Research Institute, Barcelona, Spain
| | - MeiLan Han
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, Michigan
| | - Leonardo M Fabbri
- Section of Respiratory Medicine, Department of Translational Medicine, University of Ferrara, Ferrara, Italy
| | - Maria Montes de Oca
- Pulmonary Division, University Hospital of Caracas, Central University of Venezuela, and Medical Center of Caracas, Caracas, Venezuela
| | - Jerry A Krishnan
- Division of Pulmonary, Critical Care, Sleep, and Allergy, University of Illinois Chicago, Chicago, Illinois
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, United Kingdom
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, New York, New York; and
| | - Nadia N Hansel
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Peter Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Diaz AA, Grumley S, Yen A, Sonavane S, Elalami R, Abdalla M, Kim K, Nardelli P, Brouha S, Manapragada PP, Abozeed M, Aziz MU, Zahid M, Nath HP, Wang W, Ross JC, Pistenmaa CL, San José Estépar R, Cho MH. Eosinophils, mucus plugs and clinical outcomes: findings from two COPD cohorts. Eur Respir J 2024; 64:2401005. [PMID: 39572219 DOI: 10.1183/13993003.01005-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/25/2024] [Indexed: 12/07/2024]
Affiliation(s)
- Alejandro A Diaz
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott Grumley
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Andrew Yen
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | | | - Rim Elalami
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Maya Abdalla
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Kangjin Kim
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Pietro Nardelli
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sharon Brouha
- Department of Radiology, University of California San Diego, San Diego, CA, USA
| | - Padma P Manapragada
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mostafa Abozeed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Muhammad Usman Aziz
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mohd Zahid
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Hrudaya P Nath
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Brigham and Women's Hospital, Boston, MA, USA
| | - James C Ross
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Carrie L Pistenmaa
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Raul San José Estépar
- Harvard Medical School, Boston, MA, USA
- Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Michael H Cho
- Harvard Medical School, Boston, MA, USA
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA, USA
| |
Collapse
|
16
|
Higham A, Beech A, Singh D. The relevance of eosinophils in chronic obstructive pulmonary disease: inflammation, microbiome, and clinical outcomes. J Leukoc Biol 2024; 116:927-946. [PMID: 38941350 DOI: 10.1093/jleuko/qiae153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/31/2024] [Accepted: 06/27/2024] [Indexed: 06/30/2024] Open
Abstract
Chronic obstructive pulmonary disease is caused by the inhalation of noxious particles such as cigarette smoke. The pathophysiological features include airway inflammation, alveolar destruction, and poorly reversible airflow obstruction. A subgroup of patients with chronic obstructive pulmonary disease has higher blood eosinophil counts, associated with an increased response to inhaled corticosteroids and increased biomarkers of pulmonary type 2 inflammation. Emerging evidence shows that patients with chronic obstructive pulmonary disease with increased pulmonary eosinophil counts have an altered airway microbiome. Higher blood eosinophil counts are also associated with increased lung function decline, implicating type 2 inflammation in progressive pathophysiology in chronic obstructive pulmonary disease. We provide a narrative review of the role of eosinophils and type 2 inflammation in the pathophysiology of chronic obstructive pulmonary disease, encompassing the lung microbiome, pharmacological targeting of type 2 pathways in chronic obstructive pulmonary disease, and the clinical use of blood eosinophil count as a chronic obstructive pulmonary disease biomarker.
Collapse
Affiliation(s)
- Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, M23 9LT, United Kingdom
- Medicines Evaluation Unit, The Langley Building, Southmoor Road, Manchester, M23 9QZ, United Kingdom
| |
Collapse
|
17
|
Tanabe N, Nakagawa H, Sakao S, Ohno Y, Shimizu K, Nakamura H, Hanaoka M, Nakano Y, Hirai T. Lung imaging in COPD and asthma. Respir Investig 2024; 62:995-1005. [PMID: 39213987 DOI: 10.1016/j.resinv.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/04/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) and asthma are common lung diseases with heterogeneous clinical presentations. Lung imaging allows evaluations of underlying pathophysiological changes and provides additional personalized approaches for disease management. This narrative review provides an overview of recent advances in chest imaging analysis using various modalities, such as computed tomography (CT), dynamic chest radiography, and magnetic resonance imaging (MRI). Visual CT assessment localizes emphysema subtypes and mucus plugging in the airways. Dedicated software quantifies the severity and spatial distribution of emphysema and the airway tree structure, including the central airway wall thickness, branch count and fractal dimension of the tree, and airway-to-lung size ratio. Nonrigid registration of inspiratory and expiratory CT scans quantifies small airway dysfunction, local volume changes and shape deformations in specific regions. Lung ventilation and diaphragm movement are also evaluated on dynamic chest radiography. Functional MRI detects regional oxygen transfer across the alveolus using inhaled oxygen and ventilation defects and gas diffusion into the alveolar-capillary barrier tissue and red blood cells using inhaled hyperpolarized 129Xe gas. These methods have the potential to determine local functional properties in the lungs that cannot be detected by lung function tests in patients with COPD and asthma. Further studies are needed to apply these technologies in clinical practice, particularly for early disease detection and tailor-made interventions, such as the efficient selection of patients likely to respond to biologics. Moreover, research should focus on the extension of healthy life expectancy in patients at higher risk and with established diseases.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan.
| | - Hiroaki Nakagawa
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Seiichiro Sakao
- Department of Pulmonary Medicine, School of Medicine, International University of Health and Welfare, 4-3 Kozunomori, Narita, Chiba, 286-8686 Japan
| | - Yoshiharu Ohno
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Kaoruko Shimizu
- Division of Emergent Respiratory and Cardiovascular medicine, Hokkaido University Hospital, Hokkaido University Hospital, Kita14, Nishi5, Kita-Ku, Sapporo, Hokkaido, 060-8648, Japan
| | - Hidetoshi Nakamura
- Department of Respiratory Medicine, Saitama Medical University, 38 Morohongo, Moroyama-machi, Iruma-gun, Saitama, 350-0495, Japan
| | - Masayuki Hanaoka
- First Department of Internal Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Yasutaka Nakano
- Division of Respiratory Medicine, Department of Internal Medicine, Shiga University of Medical Science, Setatsukinowa-cho, Otsu, Shiga 520-2192, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, 54 Shogo-in Kawahara-cho, Sakyo-ku, Kyoto, Kyoto, 606-8507, Japan
| |
Collapse
|
18
|
Flynn C, Brightling C. Picture this: The future of imaging biomarkers in COPD. Respirology 2024; 29:932-934. [PMID: 39089710 DOI: 10.1111/resp.14808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 07/25/2024] [Indexed: 08/04/2024]
Abstract
See related article
Collapse
Affiliation(s)
- Cara Flynn
- Institute for Lung Health, NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| | - Chris Brightling
- Institute for Lung Health, NIHR Biomedical Research Centre, University of Leicester, Leicester, UK
| |
Collapse
|
19
|
Tanabe N, Shimizu K, Shima H, Wakazono N, Shiraishi Y, Terada K, Terada S, Oguma T, Sakamoto R, Suzuki M, Makita H, Sato A, Sato S, Nishimura M, Konno S, Hirai T. Computed tomography mucus plugs and airway tree structure in patients with chronic obstructive pulmonary disease: Associations with airflow limitation, health-related independence and mortality. Respirology 2024; 29:951-961. [PMID: 38924669 DOI: 10.1111/resp.14776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 06/06/2024] [Indexed: 06/28/2024]
Abstract
BACKGROUND AND OBJECTIVE Mucus plugs and underlying airway tree structure can affect airflow limitation and prognosis in patients with chronic obstructive pulmonary disease (COPD), but their relative roles are unclear. This study used two COPD cohorts to examine whether mucus plugs on computed tomography (CT) were associated with airflow limitation and clinical outcomes independent of other airway structural changes and emphysema. METHODS Based on visual CT assessment, patients with mucus plugs in 0, 1-2 and ≥3 lung segments were assigned to no-, low- and high-mucus groups. Loss of health-related independence and mortality were prospectively recorded for 3 and 10 years in the Kyoto-Himeji and Hokkaido cohorts, respectively. The percentages of the wall area of the central airways (WA%), total airway count (TAC) and emphysema were quantified on CT. RESULTS Of 199 and 96 patients in the Kyoto-Himeji and Hokkaido cohorts, 34% and 30%, respectively, had high mucus scores. In both cohorts, TAC was lower in the high-mucus group than in the no-mucus group, whereas their emphysema severity did not differ. High mucus score and low TAC were independently associated with airflow limitation after adjustment for WA% and emphysema. In multivariable models adjusted for WA% and emphysema, TAC, rather than mucus score, was associated with a greater rate of loss of independence, whereas high mucus score, rather than TAC, was associated with increased mortality. CONCLUSION Mucus plugs and lower airway branch count on CT had distinct roles in airflow limitation, health-related independence and mortality in patients with COPD.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Rehabilitation, Kyoto University Hospital, Kyoto, Japan
| | - Kaoruko Shimizu
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hiroshi Shima
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Nobuyasu Wakazono
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Yusuke Shiraishi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kunihiko Terada
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Satoru Terada
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Terada Clinic, Respiratory Medicine and General Practice, Himeji, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Medicine, Kyoto City Hospital, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaru Suzuki
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironi Makita
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masaharu Nishimura
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
- Hokkaido Medical Research Institute for Respiratory Diseases, Sapporo, Japan
| | - Satoshi Konno
- Department of Respiratory Medicine, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
20
|
Mettler SK, Nath HP, Grumley S, Orejas JL, Dolliver WR, Nardelli P, Yen AC, Kligerman SJ, Jacobs K, Manapragada PP, Abozeed M, Aziz MU, Zahid M, Ahmed AN, Terry NL, Elalami R, Estépar RSJ, Sonavane S, Billatos E, Wang W, Estépar RSJ, Richards JB, Cho MH, Diaz AA. Silent Airway Mucus Plugs in COPD and Clinical Implications. Chest 2024; 166:1010-1019. [PMID: 38013161 PMCID: PMC11562650 DOI: 10.1016/j.chest.2023.11.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 11/15/2023] [Accepted: 11/21/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Airway mucus plugs are frequently identified on CT scans of patients with COPD with a smoking history without mucus-related symptoms (ie, cough, phlegm [silent mucus plugs]). RESEARCH QUESTION In patients with COPD, what are the risk and protective factors associated with silent airway mucus plugs? Are silent mucus plugs associated with functional, structural, and clinical measures of disease? STUDY DESIGN AND METHODS We identified mucus plugs on chest CT scans of participants with COPD from the COPDGene study. The mucus plug score was defined as the number of pulmonary segments with mucus plugs, ranging from 0 to 18, and categorized into three groups (0, 1-2, and ≥ 3). We determined risk and protective factors for silent mucus plugs and the associations of silent mucus plugs with measures of disease severity using multivariable linear and logistic regression models. RESULTS Of 4,363 participants with COPD, 1,739 had no cough or phlegm. Among the 1,739 participants, 627 (36%) had airway mucus plugs identified on CT scan. Risk factors of silent mucus plugs (compared with symptomatic mucus plugs) were older age (OR, 1.02), female sex (OR, 1.40), and Black race (OR, 1.93) (all P values < .01). Among those without cough or phlegm, silent mucus plugs (vs absence of mucus plugs) were associated with worse 6-min walk distance, worse resting arterial oxygen saturation, worse FEV1 % predicted, greater emphysema, thicker airway walls, and higher odds of severe exacerbation in the past year in adjusted models. INTERPRETATION Mucus plugs are common in patients with COPD without mucus-related symptoms. Silent mucus plugs are associated with worse functional, structural, and clinical measures of disease. CT scan-identified mucus plugs can complement the evaluation of patients with COPD.
Collapse
Affiliation(s)
- Sofia K Mettler
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA; Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA.
| | - Hrudaya P Nath
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Scott Grumley
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - José L Orejas
- Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Wojciech R Dolliver
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Pietro Nardelli
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Andrew C Yen
- Department of Radiology, University of California San Diego, San Diego, CA
| | | | - Kathleen Jacobs
- Department of Radiology, University of California San Diego, San Diego, CA
| | - Padma P Manapragada
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mostafa Abozeed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Muhammad Usman Aziz
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Mohd Zahid
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Asmaa N Ahmed
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Nina L Terry
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL
| | - Rim Elalami
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Ruben San José Estépar
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | | | - Ehab Billatos
- Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Wei Wang
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, MA
| | - Raúl San José Estépar
- Harvard Medical School, Boston, MA; Department of Radiology, Brigham and Women's Hospital, Boston, MA
| | - Jeremy B Richards
- Department of Medicine, Mount Auburn Hospital, Cambridge, MA; Harvard Medical School, Boston, MA
| | - Michael H Cho
- Channing Division of Network Medicine, Brigham and Women's Hospital, Boston, MA; Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| | - Alejandro A Diaz
- Harvard Medical School, Boston, MA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA
| |
Collapse
|
21
|
Beech A, Higham A, Booth S, Tejwani V, Trinkmann F, Singh D. Type 2 inflammation in COPD: is it just asthma? Breathe (Sheff) 2024; 20:230229. [PMID: 39534492 PMCID: PMC11555586 DOI: 10.1183/20734735.0229-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/07/2024] [Indexed: 11/16/2024] Open
Abstract
COPD is a heterogeneous condition, with tobacco smoking being the main environmental risk factor. The presence of type 2 (T2) inflammation is a well-recognised feature of asthma; however, it is now apparent that a subset of COPD patients also displays evidence of T2 inflammation with respect to elevated eosinophil counts and altered gene and protein expression of several T2 inflammatory mediators. T2 inflammatory mediators represent an attractive therapeutic target in both COPD and asthma; however, the efficacy of pharmaceutical interventions varies between diseases. Furthermore, the nature of some shared clinical features also differs. We provide a narrative review of differences in the nature of T2 inflammation between COPD and asthma, which may partly explain phenotypic differences between diseases. We focus on evidence from studies of pulmonary histopathology, sputum and epithelial gene and protein expression, and response to pharmacological interventions targeted at T2 inflammation.
Collapse
Affiliation(s)
- Augusta Beech
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Medicines Evaluation Unit, Manchester, UK
- Joint first authors
| | - Andrew Higham
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Joint first authors
| | - Sophie Booth
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Medicines Evaluation Unit, Manchester, UK
| | - Vickram Tejwani
- Department of Pulmonary Medicine, Integrated Hospital Care Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Frederik Trinkmann
- Department of Pneumology and Critical Care Medicine, Thoraxklinik at Heidelberg University Hospital, Translational Lung Research Center Heidelberg, German Center for Lung Research (DZL), Heidelberg, Germany
- Department of Biomedical Informatics, Center for Preventive Medicine and Digital Health, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
| | - Dave Singh
- Division of Immunology, Immunity to Infection and Respiratory Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester and Manchester University NHS Foundation Trust, Manchester, UK
- Medicines Evaluation Unit, Manchester, UK
| |
Collapse
|
22
|
Curtis JL, Bateman LA, Murray S, Couper DJ, Labaki WW, Freeman CM, Arnold KB, Christenson SA, Alexis NE, Kesimer M, Boucher RC, Kaner RJ, Barjaktarevic I, Cooper CB, Hoffman EA, Barr RG, Bleecker ER, Bowler RP, Comellas A, Dransfield MT, Freedman MB, Hansel NN, Krishnan JA, Marchetti N, Meyers DA, Ohar J, O'Neal WK, Ortega VE, Paine III R, Peters SP, Smith BM, Wedzicha JA, Wells JM, Woodruff PG, Han MK, Martinez FJ. Design of the SPIROMICS Study of Early COPD Progression: SOURCE Study. CHRONIC OBSTRUCTIVE PULMONARY DISEASES (MIAMI, FLA.) 2024; 11:444-459. [PMID: 39159077 PMCID: PMC11548966 DOI: 10.15326/jcopdf.2023.0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/30/2024] [Indexed: 08/21/2024]
Abstract
Background The biological mechanisms leading some tobacco-exposed individuals to develop early-stage chronic obstructive pulmonary disease (COPD) are poorly understood. This knowledge gap hampers development of disease-modifying agents for this prevalent condition. Objectives Accordingly, with National Heart, Lung and Blood Institute support, we initiated the SubPopulations and InteRmediate Outcome Measures In COPD Study (SPIROMICS) Study of Early COPD Progression (SOURCE), a multicenter observational cohort study of younger individuals with a history of cigarette smoking and thus at-risk for, or with, early-stage COPD. Our overall objectives are to identify those who will develop COPD earlier in life, characterize them thoroughly, and by contrasting them to those not developing COPD, define mechanisms of disease progression. Methods/Discussion SOURCE utilizes the established SPIROMICS clinical network. Its goal is to enroll n=649 participants, ages 30-55 years, all races/ethnicities, with ≥10 pack-years cigarette smoking, in either Global initiative for chronic Obstructive Lung Disease (GOLD) groups 0-2 or with preserved ratio-impaired spirometry; and an additional n=40 never-smoker controls. Participants undergo baseline and 3-year follow-up visits, each including high-resolution computed tomography, respiratory oscillometry and spirometry (pre- and postbronchodilator administration), exhaled breath condensate (baseline only), and extensive biospecimen collection, including sputum induction. Symptoms, interim health care utilization, and exacerbations are captured every 6 months via follow-up phone calls. An embedded bronchoscopy substudy involving n=100 participants (including all never-smokers) will allow collection of lower airway samples for genetic, epigenetic, genomic, immunological, microbiome, mucin analyses, and basal cell culture. Conclusion SOURCE should provide novel insights into the natural history of lung disease in younger individuals with a smoking history, and its biological basis.
Collapse
Affiliation(s)
- Jeffrey L. Curtis
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States
- *Co-first authors
| | - Lori A. Bateman
- Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- *Co-first authors
| | - Susan Murray
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States
| | - David J. Couper
- Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Wassim W. Labaki
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
| | - Christine M. Freeman
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
| | - Stephanie A. Christenson
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - Neil E. Alexis
- Division of Allergy, Immunology, and Infectious Disease, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Mehmet Kesimer
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Richard C. Boucher
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Robert J. Kaner
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York City, New York, United States
| | - Igor Barjaktarevic
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Christopher B. Cooper
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Los Angeles, Los Angeles, California, United States
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
| | - R. Graham Barr
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York City, New York, United States
| | - Eugene R. Bleecker
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| | - Russell P. Bowler
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States
| | - Alejandro Comellas
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Mark T. Dransfield
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Michael B. Freedman
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Nadia N. Hansel
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
| | - Jerry A. Krishnan
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, United States
| | - Nathaniel Marchetti
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
| | - Deborah A. Meyers
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States
| | - Jill Ohar
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States
| | - Wanda K. O'Neal
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
| | - Victor E. Ortega
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona, United States
| | - Robert Paine III
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
| | - Stephen P. Peters
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States
| | - Benjamin M. Smith
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York City, New York, United States
| | | | - J. Michael Wells
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California San Francisco, San Francisco, California, United States
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- **Co-senior authors
| | - Fernando J. Martinez
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York City, New York, United States
- **Co-senior authors
| | - for the SOURCE Investigators
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States
- Medical Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, United States
- Collaborative Studies Coordinating Center, Department of Biostatistics, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, United States
- Research Service, VA Ann Arbor Healthcare System, Ann Arbor, Michigan, United States
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States
- Division of Pulmonary, Critical Care, Sleep and Allergy, Department of Medicine, University of California San Francisco, San Francisco, California, United States
- Division of Allergy, Immunology, and Infectious Disease, Department of Pediatrics, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Marsico Lung Institute, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States
- Weill Cornell Medicine, New York-Presbyterian Hospital, New York City, New York, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California Los Angeles, Los Angeles, California, United States
- Department of Radiology, University of Iowa, Iowa City, Iowa, United States
- Department of Medicine and Department of Epidemiology, Columbia University Medical Center, New York City, New York, United States
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Scottsdale, Arizona, United States
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, Colorado, United States
- Department of Medicine, University of Iowa, Iowa City, Iowa, United States
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois at Chicago, Chicago, Illinois, United States
- Department of Medicine, Johns Hopkins University, Baltimore, Maryland, United States
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania, United States
- Section of Pulmonary, Critical Care, Allergy and Immunologic Diseases, Wake Forest University, Winston-Salem, North Carolina, United States
- Division of Respiratory, Critical Care, and Occupational Pulmonary Medicine, University of Utah Health Sciences Center, Salt Lake City, Utah, United States
- National Heart and Lung Institute, Imperial College, London, United Kingdom
- *Co-first authors
- **Co-senior authors
| |
Collapse
|
23
|
Choi JY, Rhee CK. It is high time to discard a cut-off of 0.70 in the diagnosis of COPD. Expert Rev Respir Med 2024; 18:709-719. [PMID: 39189795 DOI: 10.1080/17476348.2024.2397480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Chronic obstructive pulmonary disease (COPD) has traditionally been diagnosed based on the criterion of an FEV1/FVC <0.70. However, this definition has limitations as it may only detect patients with later-stage disease, when pathologic changes have become irreversible. Consequently, it potentially omits individuals with early-stage disease, in whom the pathologic changes could be delayed or reversed. AREAS COVERED This narrative review summarizes recent evidence regarding early-stage COPD, which may not fulfill the spirometric criteria but nonetheless exhibits features of COPD or is at risk of future COPD progression. EXPERT OPINION A comprehensive approach, including symptoms assessment, various physiologic tests, and radiologic features, is required to diagnose COPD. This approach is necessary to identify currently underdiagnosed patients and to halt disease progression in at- risk patients.
Collapse
Affiliation(s)
- Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chin Kook Rhee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
24
|
Jiang J, Zheng Z, Chen S, Liu J, Jia J, Huang Y, Liu Q, Cheung CY, Sin DD, Yang T, Wang C. Hypoxia inducible factor (HIF) 3α prevents COPD by inhibiting alveolar epithelial cell ferroptosis via the HIF-3α-GPx4 axis. Theranostics 2024; 14:5512-5527. [PMID: 39310101 PMCID: PMC11413794 DOI: 10.7150/thno.99237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 09/25/2024] Open
Abstract
Rationale: COPD patients are largely asymptomatic until the late stages when prognosis is generally poor. In this study, we shifted the focus to pre-COPD and smoking stages, and found enrichment of hypoxia inducible factor (HIF)-3α is in pre-COPD samples. Smoking induced regional tissue hypoxia and emphysema have been found in COPD patients. However, the mechanisms underlying hypoxia especially HIF-3α and COPD have not been investigated. Methods: We performed bulk-RNA sequencing on 36 peripheral lung tissue specimens from non-smokers, smokers, pre-COPD and COPD patients, and using "Mfuzz" algorithm to analysis the dataset dynamically. GSE171541 and EpCAM co-localization analyses were used to explore HIF-3α localization. Further, SftpcCreert2/+R26LSL-Hif3a knock-in mice and small molecular inhibitors in vitro were used to explore the involvement of HIF-3α in the pathophysiology of COPD. Results: Reactive oxygen species (ROS) and hypoxia were enriched in pre-COPD samples, and HIF-3α was downregulated in alveolar epithelial cells in COPD. In vitro experiments using lentivirus transfection, bulk-RNA seq, and RSL3 showed that the activation of the HIF-3α-GPx4 axis inhibited alveolar epithelial cell ferroptosis when treated with cigarettes smoking extracts (CSE). Further results from SftpcCreert2/+R26LSL-Hif3a knock-in mice demonstrated overexpression of HIF-3α inhibited alveolar epithelial cells ferroptosis and prevented the decline of lung function. Conclusion: Hypoxia and oxidation-related damage begins years before the onset of COPD symptoms, suggesting the imbalance and impairment of intracellular homeostatic system. The activation of the HIF-3α-GPx4 axis is a promising treatment target. By leveraging this comprehensive analysis method, more potential targets could be found and enhancing our understanding of the pathogenesis.
Collapse
Affiliation(s)
- Junchao Jiang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Zhoude Zheng
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Shengsong Chen
- First Affiliated Hospital of Nanchang University, Department of Pulmonary and Critical Care Medicine, Nanchang, Jiangxi, CN
| | - Jixiang Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Ju Jia
- Department of Infectious Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, CN
| | - Yuhang Huang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Qing Liu
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, CN
| | - Chung Y Cheung
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
| | - Don D Sin
- The University of British Columbia, Centre for Heart Lung Innovation, St. Paul's Hospital, Vancouver, BC, CA
- The University of British Columbia, Division of Respiratory Medicine, Department of Medicine, Vancouver, BC, CA
| | - Ting Yang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| | - Chen Wang
- China-Japan Friendship Hospital (Institute of Clinical Medical Sciences), Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, CN
- National Center for Respiratory Medicine; State Key Laboratory of Respiratory Health and Multimorbidity, Beijing, CN
| |
Collapse
|
25
|
Huang YJ. Of Mucus and Microbes: The Sticky Issue of Mucin-Microbiome Interactions in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 210:252-253. [PMID: 38530107 PMCID: PMC11348977 DOI: 10.1164/rccm.202403-0506ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/25/2024] [Indexed: 03/27/2024] Open
Affiliation(s)
- Yvonne J Huang
- Department of Internal Medicine and Department of Microbiology & Immunology University of Michigan, Ann Arbor Ann Arbor, Michigan
| |
Collapse
|
26
|
Labaki WW, Agusti A, Bhatt SP, Bodduluri S, Criner GJ, Fabbri LM, Halpin DMG, Lynch DA, Mannino DM, Miravitlles M, Papi A, Sin DD, Washko GR, Kazerooni EA, Han MK. Leveraging Computed Tomography Imaging to Detect Chronic Obstructive Pulmonary Disease and Concomitant Chronic Diseases. Am J Respir Crit Care Med 2024; 210:281-287. [PMID: 38843079 PMCID: PMC11348973 DOI: 10.1164/rccm.202402-0407pp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 06/04/2024] [Indexed: 08/02/2024] Open
Affiliation(s)
| | - Alvar Agusti
- Cathedra Salut Respiratoria, University of Barcelona, Barcelona, Spain
- Pulmonary Service, Respiratory Institute, Clinic Barcelona, Barcelona, Spain
- Fundació Clinic, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
| | - Surya P. Bhatt
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Sandeep Bodduluri
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Gerard J. Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | | | - David M. G. Halpin
- Respiratory Medicine, University of Exeter Medical School, Exeter, United Kingdom
| | - David A. Lynch
- Department of Radiology, National Jewish Health, Denver, Colorado
| | - David M. Mannino
- Department of Medicine, University of Kentucky, Lexington, Kentucky
| | - Marc Miravitlles
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias, Barcelona, Spain
- Neumología, Hospital Universitari Vall d’Hebron/Vall d’Hebron Institut de Recerca, Barcelona, Spain
| | - Alberto Papi
- Section of Respiratory Medicine, University of Ferrara, Ferrara, Italy
| | - Don D. Sin
- Centre for Heart Lung Innovation, St. Paul’s Hospital and University of British Columbia, Vancouver, British Columbia, Canada
- Division of Respiratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - George R. Washko
- Division of Pulmonary and Critical Care Medicine and
- Applied Chest Imaging Laboratory, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts
| | - Ella A. Kazerooni
- Division of Pulmonary and Critical Care Medicine and
- Department of Radiology, University of Michigan, Ann Arbor, Michigan
| | - MeiLan K. Han
- Division of Pulmonary and Critical Care Medicine and
| |
Collapse
|
27
|
Tanabe N, Matsumoto H, Morimoto C, Hayashi Y, Sakamoto R, Oguma T, Nagasaki T, Sunadome H, Sato A, Sato S, Ohashi K, Tsukahara T, Hirai T. Mucus plugging on computed tomography and the sputum microbiome in patients with asthma, chronic obstructive pulmonary disease, and asthma-COPD overlap. Allergol Int 2024:S1323-8930(24)00055-8. [PMID: 39013753 DOI: 10.1016/j.alit.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 05/15/2024] [Indexed: 07/18/2024] Open
Abstract
BACKGROUND Despite clinical implications, the pathogenesis of mucus plugging in asthma, chronic obstructive pulmonary disease (COPD), and asthma-COPD overlap (ACO) remains unclear. We hypothesized that distinct airway microbiomes might affect mucus plugging differently among ACO, asthma, and COPD and among different extents of airway eosinophilic inflammation. METHODS The sputum microbiome, sputum cell differential count, and mucus plug score on computed tomography were cross-sectionally evaluated in patients with chronic airflow limitation. RESULTS Patients with ACO, asthma, or COPD were enrolled (n = 56, 10, and 25). Higher mucus plug scores were associated with a greater relative abundance of the phylum Proteobacteria (rho = 0.29) only in patients with ACO and a greater relative abundance of the phylum Actinobacteria (rho = 0.46) only in patients with COPD. In multivariable models including only patients with ACO, the presence of mucus plugs was associated with a greater relative abundance of the phylum Proteobacteria and the genus Haemophilus, independent of smoking status, airflow limitation, and emphysema severity. Moreover, the mucus score was associated with a greater relative abundance of the genus Streptococcus (rho = 0.46) in patients with a high sputum eosinophil count (n = 22) and with that of the genus Haemophilus (rho = 0.46) in those with a moderate sputum eosinophil count (n = 26). CONCLUSIONS The associations between mucus plugging and the microbiome in ACO differed from those in COPD and asthma. Greater relative abundances of the phylum Proteobacteria and genus Haemophilus may be involved in mucus plugging in patients with ACO and moderate airway eosinophilic inflammation.
Collapse
Affiliation(s)
- Naoya Tanabe
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan.
| | - Hisako Matsumoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Medicine & Allergology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - Chie Morimoto
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yusuke Hayashi
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryo Sakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tsuyoshi Oguma
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadao Nagasaki
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hironobu Sunadome
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsuyasu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Susumu Sato
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Respiratory Care and Sleep Control Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kai Ohashi
- Kyoto Institute of Nutrition & Pathology, Inc., Kyoto, Japan
| | | | - Toyohiro Hirai
- Department of Respiratory Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
28
|
Cho HH, Choe J, Kim J, Oh YJ, Park H, Lee K, Lee HY. 3D airway geometry analysis of factors in airway navigation failure for lung nodules. Cancer Imaging 2024; 24:84. [PMID: 38965621 PMCID: PMC11223435 DOI: 10.1186/s40644-024-00730-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
BACKGROUND This study aimed to quantitatively reveal contributing factors to airway navigation failure during radial probe endobronchial ultrasound (R-EBUS) by using geometric analysis in a three-dimensional (3D) space and to investigate the clinical feasibility of prediction models for airway navigation failure. METHODS We retrospectively reviewed patients who underwent R-EBUS between January 2017 and December 2018. Geometric quantification was analyzed using in-house software built with open-source python libraries including the Vascular Modeling Toolkit ( http://www.vmtk.org ), simple insight toolkit ( https://sitk.org ), and sci-kit image ( https://scikit-image.org ). We used a machine learning-based approach to explore the utility of these significant factors. RESULTS Of the 491 patients who were eligible for analysis (mean age, 65 years +/- 11 [standard deviation]; 274 men), the target lesion was reached in 434 and was not reached in 57. Twenty-seven patients in the failure group were matched with 27 patients in the success group based on propensity scores. Bifurcation angle at the target branch, the least diameter of the last section, and the curvature of the last section are the most significant and stable factors for airway navigation failure. The support vector machine can predict airway navigation failure with an average area under the curve of 0.803. CONCLUSIONS Geometric analysis in 3D space revealed that a large bifurcation angle and a narrow and tortuous structure of the closest bronchus from the lesion are associated with airway navigation failure during R-EBUS. The models developed using quantitative computer tomography scan imaging show the potential to predict airway navigation failure.
Collapse
Affiliation(s)
- Hwan-Ho Cho
- Department of Electronics Engineering, Incheon National University, Incheon, Republic of Korea
| | - Junsu Choe
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea
| | - Jonghoon Kim
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Yoo Jin Oh
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea
| | - Hyunjin Park
- Department of Electronic and Computer Engineering, Sungkyunkwan University, Suwon, Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea
| | - Kyungjong Lee
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-ro, Gangnam-gu, Seoul, 06351, Republic of Korea.
| | - Ho Yun Lee
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, 06351, South Korea.
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Korea.
| |
Collapse
|
29
|
Lee HN, An J, Lee M, Hwang HJ, Choe J, Yoon J, Lee JH, Kim MH, Cho YJ, Lee SM, Kim TB, Seo JB. Assessment of Treatment Response in Patients With Severe Asthma Using Visual and Quantitative Analysis of Chest CT. Korean J Radiol 2024; 25:673-683. [PMID: 38942461 PMCID: PMC11214920 DOI: 10.3348/kjr.2024.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/30/2024] Open
Abstract
OBJECTIVE To evaluate the role of visual and quantitative chest CT parameters in assessing treatment response in patients with severe asthma. MATERIALS AND METHODS Korean participants enrolled in a prospective multicenter study, named the Precision Medicine Intervention in Severe Asthma study, from May 2020 to August 2021, underwent baseline and follow-up chest CT scans (inspiration/expiration) 10-12 months apart, before and after biologic treatment. Two radiologists scored bronchiectasis severity and mucus plugging extent. Quantitative parameters were obtained from each CT scan as follows: normal lung area (normal), air trapping without emphysema (AT without emph), air trapping with emphysema (AT with emph), and airway (total branch count, Pi10). Clinical parameters, including pulmonary function tests (forced expiratory volume in 1 s [FEV1] and FEV1/forced vital capacity [FVC]), sputum and blood eosinophil count, were assessed at initial and follow-up stages. Changes in CT parameters were correlated with changes in clinical parameters using Pearson or Spearman correlation. RESULTS Thirty-four participants (female:male, 20:14; median age, 50.5 years) diagnosed with severe asthma from three centers were included. Changes in the bronchiectasis and mucus plugging extent scores were negatively correlated with changes in FEV1 and FEV1/FVC (ρ = from -0.544 to -0.368, all P < 0.05). Changes in quantitative CT parameters were correlated with changes in FEV1 (normal, r = 0.373 [P = 0.030], AT without emph, r = -0.351 [P = 0.042]), FEV1/FVC (normal, r = 0.390 [P = 0.022], AT without emph, r = -0.370 [P = 0.031]). Changes in total branch count were positively correlated with changes in FEV1 (r = 0.349 [P = 0.043]). There was no correlation between changes in Pi10 and the clinical parameters (P > 0.05). CONCLUSION Visual and quantitative CT parameters of normal, AT without emph, and total branch count may be effective for evaluating treatment response in patients with severe asthma.
Collapse
Affiliation(s)
- Han Na Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jin An
- Department of Pulmonary, Allergy and Critical Care Medicine, Kyung Hee University Hospital at Gangdong, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Miji Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hye Jeon Hwang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jooae Choe
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Jihye Yoon
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Hyang Lee
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Min-Hye Kim
- Department of Internal Medicine, Ewha Womans University Seoul Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Young-Joo Cho
- Department of Allergy and Clinical Immunology, Ewha Womans University Mokdong Hospital, Ewha Womans University College of Medicine, Seoul, Republic of Korea
| | - Sang Min Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| | - Tae-Bum Kim
- Department of Allergy and Clinical Immunology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.
| | - Joon Beom Seo
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| |
Collapse
|
30
|
Venegas Garrido C, Mukherjee M, Svenningsen S, Nair P. Eosinophil-mucus interplay in severe asthma: Implications for treatment with biologicals. Allergol Int 2024; 73:351-361. [PMID: 38485545 DOI: 10.1016/j.alit.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/23/2024] Open
Abstract
Airway mucus is a hydrogel with unique biophysical properties due to its primary water composition and a small proportion of large anionic glycoproteins or mucins. The predominant mucins in human mucus, MUC5AC and MUC5B, are secreted by specialized cells within the airway epithelium both in normal conditions and in response to various stimuli. Their relative proportions are correlated with specific inflammatory responses and disease mechanisms. The dysregulation of mucin expression is implicated in numerous respiratory diseases, including asthma, COPD, and cystic fibrosis, where the pathogenic role of mucus has been extensively described yet often overlooked. In airway diseases, excessive mucus production or impaired mucus clearance leads to mucus plugging, with secondary airway occlusion that contribute to airflow obstruction, asthma severity and poor control. Eosinophils and Charcot Leyden crystals in sputum contribute to the mucus burden and tenacity. Mucin may also contribute to eosinophil survival. Other mechanisms, including eosinophil-independent IL-13 release, mast-cell activation and non-type-2 (T2) cytokines, are also likely to participate in mucus pathobiology. An accurate assessment of mucus and its clinical and functional consequences require a thorough approach that includes evaluation of cellular predominance in sputum, airway cytokines and other inflammatory markers, mucus characteristics and composition and structural and functional impact measured by advanced lung imaging. This review, illustrated with clinical scenarios, provides an overview of current methods to assess mucus and its relevance to the choice of biologics to treat patients with severe asthma.
Collapse
Affiliation(s)
- Carmen Venegas Garrido
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada
| | - Manali Mukherjee
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada
| | - Sarah Svenningsen
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada
| | - Parameswaran Nair
- Division of Respirology, Department of Medicine, St Joseph's Healthcare & McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
31
|
Mettler SK, Sonavane S, Grumley S, Nath HP, Yen AC, Pistenmaa C, Nardelli P, San Jose Estepar R, Cho MH, Diaz AA. Airway-occluding Mucus Plugs and Cause-specific Mortality in Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:1508-1510. [PMID: 38771048 PMCID: PMC11208961 DOI: 10.1164/rccm.202401-0121le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 05/03/2024] [Indexed: 05/22/2024] Open
Affiliation(s)
- Sofia K. Mettler
- Department of Medicine, Mount Auburn Hospital, Cambridge, Massachusetts
- Channing Division of Network Medicine
- Harvard Medical School, Boston, Massachusetts
| | | | - Scott Grumley
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Hrudaya P. Nath
- Department of Radiology, University of Alabama at Birmingham, Birmingham, Alabama; and
| | - Andrew C. Yen
- Department of Radiology, University of California San Diego, San Diego, California
| | - Carrie Pistenmaa
- Division of Pulmonary and Critical Care Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Pietro Nardelli
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Raul San Jose Estepar
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Michael H. Cho
- Channing Division of Network Medicine
- Division of Pulmonary and Critical Care Medicine, and
- Harvard Medical School, Boston, Massachusetts
| | - Alejandro A. Diaz
- Division of Pulmonary and Critical Care Medicine, and
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
Abdalla M, Elalami R, Cho MH, O’Connor GT, Rice M, Horowitz M, Akhoundi N, Yen A, Kalhan R, Diaz AA. Airway Mucus Plugs in Community-Living Adults: A Study Protocol. JOURNAL OF CLINICAL & EXPERIMENTAL PATHOLOGY 2024; 14:492. [PMID: 39360267 PMCID: PMC11446186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Introduction Mucus pathology plays a critical role in airway diseases like Chronic Bronchitis (CB) and Chronic Obstructive Pulmonary Disease (COPD). Up to 32% of community-living persons report clinical manifestations of mucus pathology (e.g., cough and sputum production). However, airway mucus pathology has not been systematically studied in community-living individuals. In this study, we will use an objective, reproducible assessment of mucus pathology on chest Computed Tomography (CT) scans from community-living individuals participating in the Coronary Artery Risk Development in Young Adults (CARDIA) and Framingham Heart Study (FHS) cohorts. Methods and analysis We will determine the clinical relevance of CT-based mucus plugs and modifiable and genetic risk and protective factors associated with this process. We will evaluate the associations of mucus plugs with lung function, respiratory symptoms, and chronic bronchitis and examine whether 5-yr. persistent CT-based mucus plugs are associated with the decline in FEV1 and future COPD. Also, we will assess whether modifiable factors, including air pollution and marijuana smoking are associated with increased odds of CT-based mucus plugs and whether cardiorespiratory fitness is related in an opposing manner. Finally, we will determine genetic resilience/susceptibility to mucus pathology. We will use CT data from the FHS and CARDIA cohorts and genome-wide sequencing data from the TOPMed initiative to identify common and rare variants associated with CT-based mucus plugging. Ethics and dissemination The Mass General Brigham Institutional Review Board approved the study. Findings will be disseminated through peer-reviewed journals and at professional conferences. Conclusion Determine whether the presence of CT-based mucus plugs is associated with lung health impairment, including reduced FEV1, more respiratory symptoms, and asthma. Identify modifiable risk and protective factors, such as pollution, exercise, smoking, and fitness that are associated with mucus plugs.
Collapse
Affiliation(s)
- Maya Abdalla
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Rim Elalami
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Michael H Cho
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Harvard Medical School, Boston, MA, USA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - George T O’Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- The National Heart, Lung, and Blood Institute’s Framingham Heart Study, Framingham, Massachusetts, USA
| | - Mary Rice
- Division of Pulmonary, Sleep and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Michael Horowitz
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Neda Akhoundi
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Andrew Yen
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Ravi Kalhan
- Northwestern University Feinberg School of Medicine, 1700 W. Van Buren St, Ste. 470, 60612, Chicago, IL, USA
| | - Alejandro A. Diaz
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Pulmonary and Critical Care, Department of Medicine, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
33
|
Abdalla M, Elalami R, Cho MH, O'Connor GT, Rice M, Horowitz M, Akhoundi N, Yen A, Kalhan R, Diaz AA. Airway Mucus Plugs in Community-Living Adults: A Study Protocol. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.15.24307439. [PMID: 38798504 PMCID: PMC11118634 DOI: 10.1101/2024.05.15.24307439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Introduction Mucus pathology plays a critical role in airway diseases like chronic bronchitis (CB) and chronic obstructive pulmonary disease (COPD). Up to 32% of community-living persons report clinical manifestations of mucus pathology (e.g., cough and sputum production). However, airway mucus pathology has not been systematically studied in community-living individuals. In this study, we will use an objective, reproducible assessment of mucus pathology on chest computed tomography (CT) scans from community-living individuals participating in the Coronary Artery Risk Development in Young Adults (CARDIA) and Framingham Heart Study (FHS) cohorts. Methods and analysis We will determine the clinical relevance of CT-based mucus plugs and modifiable and genetic risk and protective factors associated with this process. We will evaluate the associations of mucus plugs with lung function, respiratory symptoms, and chronic bronchitis and examine whether 5-yr. persistent CT-based mucus plugs are associated with the decline in FEV1 and future COPD. Also, we will assess whether modifiable factors, including air pollution and marijuana smoking are associated with increased odds of CT-based mucus plugs and whether cardiorespiratory fitness is related in an opposing manner. Finally, we will determine genetic resilience/susceptibility to mucus pathology. We will use CT data from the FHS and CARDIA cohorts and genome-wide sequencing data from the TOPMed initiative to identify common and rare variants associated with CT-based mucus plugging. Ethics and Dissemination The Mass General Brigham Institutional Review Board approved the study. Findings will be disseminated through peer-reviewed journals and at professional conferences.
Collapse
Affiliation(s)
- Maya Abdalla
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Rim Elalami
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
| | - Michael H Cho
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Harvard Medical School, Boston, MA
| | - George T O'Connor
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, United States of America
- The National Heart, Lung, and Blood Institute's Framingham Heart Study, Framingham, Massachusetts, United States of America
| | - Mary Rice
- Division of Pulmonary, Sleep and Critical Care Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - Michael Horowitz
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Neda Akhoundi
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Andrew Yen
- Department of Radiology, University of California, San Diego, 9452 Medical Center Dr, 4th Floor, La Jolla, CA 92037
| | - Ravi Kalhan
- Northwestern University Feinberg School of Medicine, 1700 W. Van Buren St, Ste. 470, 60612, Chicago, IL, USA
| | - Alejandro A Diaz
- Division of Pulmonary and Critical Care, Department of Medicine, Brigham and Women's Hospital, Boston, MA
- Harvard Medical School, Boston, MA
| |
Collapse
|
34
|
Ritchie AI, Donaldson GC, Hoffman EA, Allinson JP, Bloom CI, Bolton CE, Choudhury G, Gerard SE, Guo J, Alves-Moreira L, McGarvey L, Sapey E, Stockley RA, Yip KP, Singh D, Wilkinson T, Fageras M, Ostridge K, Jöns O, Bucchioni E, Compton CH, Jones P, Mezzi K, Vestbo J, Calverley PMA, Wedzicha JA. Structural Predictors of Lung Function Decline in Young Smokers with Normal Spirometry. Am J Respir Crit Care Med 2024; 209:1208-1218. [PMID: 38175920 PMCID: PMC11146542 DOI: 10.1164/rccm.202307-1203oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/04/2024] [Indexed: 01/06/2024] Open
Abstract
Rationale: Chronic obstructive pulmonary disease (COPD) due to tobacco smoking commonly presents when extensive lung damage has occurred. Objectives: We hypothesized that structural change would be detected early in the natural history of COPD and would relate to loss of lung function with time. Methods: We recruited 431 current smokers (median age, 39 yr; 16 pack-years smoked) and recorded symptoms using the COPD Assessment Test (CAT), spirometry, and quantitative thoracic computed tomography (QCT) scans at study entry. These scan results were compared with those from 67 never-smoking control subjects. Three hundred sixty-eight participants were followed every six months with measurement of postbronchodilator spirometry for a median of 32 months. The rate of FEV1 decline, adjusted for current smoking status, age, and sex, was related to the initial QCT appearances and symptoms, measured using the CAT. Measurements and Main Results: There were no material differences in demography or subjective CT appearances between the young smokers and control subjects, but 55.7% of the former had CAT scores greater than 10, and 24.2% reported chronic bronchitis. QCT assessments of disease probability-defined functional small airway disease, ground-glass opacification, bronchovascular prominence, and ratio of small blood vessel volume to total pulmonary vessel volume were increased compared with control subjects and were all associated with a faster FEV1 decline, as was a higher CAT score. Conclusions: Radiological abnormalities on CT are already established in young smokers with normal lung function and are associated with FEV1 loss independently of the impact of symptoms. Structural abnormalities are present early in the natural history of COPD and are markers of disease progression. Clinical trial registered with www.clinicaltrials.gov (NCT03480347).
Collapse
Affiliation(s)
- Andrew I. Ritchie
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- AstraZeneca, Cambridge, United Kingdom
| | - Gavin C. Donaldson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Eric A. Hoffman
- Department of Radiology and
- Roy J. Carver Department of Biomedical Engineering, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | - James P. Allinson
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Royal Brompton Hospital, London, United Kingdom
| | - Chloe I. Bloom
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Charlotte E. Bolton
- NIHR Nottingham Biomedical Research Centre
- Centre for Respiratory Research, NIHR Nottingham, Translational Medical Sciences, School of Medicine, University of Nottingham, Nottingham, UK
| | - Gourab Choudhury
- ELEGI and COLT Laboratories, Queen’s Medical Research Institute, Edinburgh, United Kingdom
| | - Sarah E. Gerard
- Roy J. Carver Department of Biomedical Engineering, Medicine and Biomedical Engineering, University of Iowa, Iowa City, Iowa
| | | | - Luana Alves-Moreira
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Lorcan McGarvey
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
- Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Elizabeth Sapey
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Robert A. Stockley
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - K. P. Yip
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Dave Singh
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Tom Wilkinson
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- National Institute for Health and Care Research Southampton Biomedical Research Centre, University Hospital Southampton, Southampton, United Kingdom
| | | | - Kristoffer Ostridge
- Faculty of Medicine, University of Southampton, Southampton, United Kingdom
- AstraZeneca, Gothenburg, Sweden
| | - Olaf Jöns
- Boehringer Ingelheim International GmbH, Ingelheim am Rhein, Germany
| | | | | | - Paul Jones
- GlaxoSmithKline, Brentford, United Kingdom
| | | | - Jørgen Vestbo
- Division of Infection, Immunity and Respiratory Medicine, University of Manchester, Manchester, United Kingdom
| | - Peter M. A. Calverley
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Jadwiga A. Wedzicha
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
35
|
Pistenmaa CL, Washko GR. BEACON: A Missing Piece of the Puzzle for Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:1177-1178. [PMID: 38330311 PMCID: PMC11146538 DOI: 10.1164/rccm.202401-0144ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/10/2024] Open
Affiliation(s)
- Carrie L Pistenmaa
- Department of Medicine Brigham and Women's Hospital Boston, Massachusetts
| | - George R Washko
- Department of Medicine Brigham and Women's Hospital Boston, Massachusetts
| |
Collapse
|
36
|
Sponchiado M, Fagan A, Mata L, Bonilla AL, Trevizan-Baú P, Prabhakaran S, Reznikov LR. Sex-dependent regulation of mucin gene transcription and airway secretion and mechanics following intra-airway IL-13 in mice with conditional loss of club cell Creb1. Front Physiol 2024; 15:1392443. [PMID: 38711951 PMCID: PMC11070562 DOI: 10.3389/fphys.2024.1392443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
Introduction: Interleukin 13 (IL-13) is an important effector molecule in allergic asthma. IL-13-mediated mucin hypersecretion requires conversion of secretoglobin-positive club cells into goblet cells through suppression of forkhead box A2 (FOXA2) and induction of SAM pointed domain containing ETS transcription factor (SPDEF). IL-13-mediated mucin hypersecretion may also include modulation of purinergic and muscarinic receptors that control basal and stimulated mucin secretion. We recently found that the transcription factor cAMP response element-binding protein (Creb1) inhibits FOXA2 and modulates mucus secretion in mice. Methods: We tested the hypothesis that loss of club cell Creb1 mitigates the pro-mucin effects of IL-13. We challenged male and female mice with conditional loss of club cell Creb1 and wild type littermates with intra-airway IL-13 or vehicle. We also studied human "club cell-like" NCI-H322 cells. Results: Loss of club cell Creb1 augmented IL-13-mediated increases in mRNA for the gel-forming mucins Muc5ac and Muc5b and prevented IL-13-mediated decreases in muscarinic 3 receptor (M3R) mRNA in male airways. In female airways, loss of club cell Creb1 reduced M3R mRNA and significantly blunted IL-13-mediated increases in purinergic receptor P2Y2 (P2ry2) mRNA but did not impact Muc5ac and Muc5b mRNA. Despite changes in mucins and secretion machinery, goblet cell density following cholinergic stimulation was not impacted by loss of club cell Creb1 in either sex. IL-13 treatment decreased basal airway resistance across sexes in mice with loss of club cell Creb1, whereas loss of club cell Creb1 augmented IL-13-mediated increases in airway elastance in response to methacholine. NCI-H322 cells displayed IL-13 signaling components, including IL-13Rα1 and IL-4Rα. Pharmacologic inhibition of CREB reduced IL-13Rα1 mRNA, whereas recombinant CREB decreased IL-4Rα mRNA. Application of IL-13 to NCI-H322 cells increased concentrations of cAMP in a delayed manner, thus linking IL-13 signaling to CREB signaling. Conclusion: These data highlight sex-specific regulation of club cell Creb1 on IL-13-mediated mucin hypersecretion and airway mechanics.
Collapse
Affiliation(s)
- Mariana Sponchiado
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Amy Fagan
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Luz Mata
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Angelina L. Bonilla
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Pedro Trevizan-Baú
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| | - Sreekala Prabhakaran
- Department of Pediatrics Pediatric Pulmonary Division, University of Florida, Gainesville, FL, United States
| | - Leah R. Reznikov
- Department of Physiological Sciences, University of Florida, Gainesville, FL, United States
| |
Collapse
|
37
|
Mah J, Ritchie AI, Finney LJ. Selected updates on chronic obstructive pulmonary disease. Curr Opin Pulm Med 2024; 30:136-140. [PMID: 38099447 DOI: 10.1097/mcp.0000000000001042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
PURPOSE OF REVIEW Chronic obstructive pulmonary disease (COPD) is preventable disease and yet it remains the third greatest cause of death worldwide. This review focuses on recent updates in COPD research which have had an impact on our understanding of the epidemiology and pathophysiology of COPD. RECENT FINDINGS Epidemiological studies of COPD have moved towards trying to understand the global impact of COPD particularly in low- and middle-income countries where disease prevalence continues to increase. In addition, we are beginning to uncover the impact of air pollution on COPD development with recent work showing a relationship between air pollution and COPD exacerbations. Advances in understanding early origins and early development of COPD have the potential to intervene earlier in the disease course to prevent disease progression. Although biomarkers such as peripheral blood eosinophilia have led to trials of biologic agents in COPD suggesting we may be entering an exciting new biologic era in COPD. SUMMARY Recent advances suggest there may be a relationship between air pollution and COPD exacerbations. This requires further research to influence environmental policy. New clinical trials of biologics targeting TH2 inflammation in COPD suggest that targeted treatments with biologics may be a possibility COPD.
Collapse
Affiliation(s)
- Jordina Mah
- National Heart and Lung Institute, Imperial College London, London
| | - Andrew I Ritchie
- National Heart and Lung Institute, Imperial College London, London
- Early Clinical Development, Respiratory and Immunology, Clinical, BioPharmaceuticals R&D, AstraZeneca, Cambridge
| | - Lydia J Finney
- National Heart and Lung Institute, Imperial College London, London
- Imperial College Healthcare NHS Trust, UK
| |
Collapse
|
38
|
Burkes RM, Zafar MA, Panos RJ. The role of chest computed tomography in the evaluation and management of chronic obstructive pulmonary disease. Curr Opin Pulm Med 2024; 30:129-135. [PMID: 38227648 DOI: 10.1097/mcp.0000000000001046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review is to compile recent data on the clinical associations of computed tomography (CT) scan findings in the literature and potential avenues for implementation into clinical practice. RECENT FINDINGS Airways dysanapsis, emphysema, chronic bronchitis, and pulmonary vascular metrics have all recently been associated with poor chronic obstructive pulmonary disease (COPD) outcomes when controlled for clinically relevant covariables, including risk of mortality in the case of emphysema and chronic bronchitis. Other authors suggest that CT scan may provide insight into both lung parenchymal damage and other clinically important comorbidities in COPD. SUMMARY CT scan findings in COPD relate to clinical outcomes. There is a continued need to develop processes to best implement the results of these studies into clinical practice.
Collapse
Affiliation(s)
- Robert M Burkes
- Cincinnati Veterans Affairs Medical Center
- University of Cincinnati Division of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, Ohio, USA
| | - Muhammad A Zafar
- University of Cincinnati Division of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, Ohio, USA
| | - Ralph J Panos
- Cincinnati Veterans Affairs Medical Center
- University of Cincinnati Division of Pulmonary, Critical Care, and Sleep Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
39
|
Palones E, García-Rivero JL, Cisneros C, Almonacid-Sánchez C, Pérez-de Llano L, Plaza V, Crespo-Lessmann A. Methodology Employed to Develop the Airway Mucus Secretion Test (T-SEC): A Questionnaire to Evaluate Airway Mucus Hypersecretion in Patients With Asthma. Arch Bronconeumol 2024; 60:186-190. [PMID: 38290898 DOI: 10.1016/j.arbres.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/01/2024]
Affiliation(s)
- Esther Palones
- Department of Respiratory Medicine, Institute of Biomedical Research Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau & IIB Sant Pau, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Juan Luis García-Rivero
- Department of Respiratory Medicine, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - Carolina Cisneros
- Department of Respiratory Medicine, Hospital Universitario de La Princesa, Madrid, Spain
| | - Carlos Almonacid-Sánchez
- Department of Respiratory Medicine, Hospital Universitario de Puerta del Hierro Majadahonda, Madrid, Spain
| | - Luis Pérez-de Llano
- Department of Respiratory Medicine, Hospital Universitario de Lucus Augusti, Lugo, Spain
| | - Vicente Plaza
- Department of Respiratory Medicine, Institute of Biomedical Research Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau & IIB Sant Pau, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Astrid Crespo-Lessmann
- Department of Respiratory Medicine, Institute of Biomedical Research Sant Pau (IIB Sant Pau), Hospital de la Santa Creu i Sant Pau & IIB Sant Pau, Barcelona, Spain; Department of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Fletcher JG, Inoue A, Bratt A, Horst KK, Koo CW, Rajiah PS, Baffour FI, Ko JP, Remy-Jardin M, McCollough CH, Yu L. Photon-counting CT in Thoracic Imaging: Early Clinical Evidence and Incorporation Into Clinical Practice. Radiology 2024; 310:e231986. [PMID: 38501953 DOI: 10.1148/radiol.231986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Photon-counting CT (PCCT) is an emerging advanced CT technology that differs from conventional CT in its ability to directly convert incident x-ray photon energies into electrical signals. The detector design also permits substantial improvements in spatial resolution and radiation dose efficiency and allows for concurrent high-pitch and high-temporal-resolution multienergy imaging. This review summarizes (a) key differences in PCCT image acquisition and image reconstruction compared with conventional CT; (b) early evidence for the clinical benefit of PCCT for high-spatial-resolution diagnostic tasks in thoracic imaging, such as assessment of airway and parenchymal diseases, as well as benefits of high-pitch and multienergy scanning; (c) anticipated radiation dose reduction, depending on the diagnostic task, and increased utility for routine low-dose thoracic CT imaging; (d) adaptations for thoracic imaging in children; (e) potential for further quantitation of thoracic diseases; and (f) limitations and trade-offs. Moreover, important points for conducting and interpreting clinical studies examining the benefit of PCCT relative to conventional CT and integration of PCCT systems into multivendor, multispecialty radiology practices are discussed.
Collapse
Affiliation(s)
- Joel G Fletcher
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Akitoshi Inoue
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Alex Bratt
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Kelly K Horst
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Chi Wan Koo
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Prabhakar Shantha Rajiah
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Francis I Baffour
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Jane P Ko
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Martine Remy-Jardin
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Cynthia H McCollough
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| | - Lifeng Yu
- From the Department of Radiology, Mayo Clinic, 200 1st St SW, Rochester, MN, 55905 (J.G.F., A.I., A.B., K.K.H., C.W.K., P.S.R., F.I.B., C.H.M., L.Y.); Department of Radiology, Shiga University of Medical Science, Shiga, Japan (A.I.); Department of Radiology, NYU Grossman School of Medicine, NYU Langone Health, New York, NY (J.P.K.); and IMALLIANCE-Haut-de-France, Valenciennes, France (M.R.J.)
| |
Collapse
|
41
|
Yang C, Shen W, Wang L, Zang X, Huang Y, Deng H, Zhou Y, Xie M, Xue X, Shen D. Cryptococcus gattii strains with a high phagocytosis phenotype by macrophages display high pathogenicity at the early stage of infection in vivo. Acta Biochim Biophys Sin (Shanghai) 2024; 56:291-303. [PMID: 37885429 PMCID: PMC10984874 DOI: 10.3724/abbs.2023250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023] Open
Abstract
Cryptococcus gattii (Cg) is a facultative intracellular pathogen that can replicate and disseminate in mammalian macrophages, causing life-threatening cryptococcosis in both immunocompetent and immunocompromised individuals. Cryptococcus-macrophage interactions are crucial for cryptococcosis prognosis. However, the relationship between Cg pathogenicity and phagocytosis by macrophages has not yet been investigated in depth. In this study, a series of in vitro and in vivo experiments were conducted to investigate the interaction between macrophages and Cg. Flow cytometry was used to detect the phagocytic phenotypes of the Cg strains within macrophages. Scanning electron microscopy, transmission electron microscopy, and immunofluorescence were used to observe phagocytosis and proliferation, respectively. Survival and lung fungal burden tests were also performed. Our results show that Cg cells display different phagocytosis phenotypes, which are independent of the molecular type. Within macrophages, the high phagocytosis phenotype (HP) strains obtain higher intracellular proliferation than the low phagocytosis phenotype (LP) strains. At the early stage of infection in vivo, HP-inducing permissive granulomas within the lungs seldom limit the dissemination of cryptococci. In addition, HP strains could inhibit the formation of M1-type macrophages, proliferate intracellularly and disseminate extracellularly, and cause hypoxia induced by mucus and acidic polysaccharide accumulation in pulmonary alveoli much earlier than LP strains in vivo. Our work reveals that Cg displays diverse interactions with macrophages, which may enhance our understanding of the pathogenicity of this life-threatening pathogen.
Collapse
Affiliation(s)
- Chen Yang
- Department of Laboratory Medicinethe First Medical CentreChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Wanjun Shen
- State Key Laboratory of Kidney DiseaseDepartment of NephrologyChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Lifeng Wang
- Department of Laboratory Medicinethe First Medical CentreChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Xuelei Zang
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
| | - Yemei Huang
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
| | - Hengyu Deng
- School of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Yangyu Zhou
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
| | - Mei Xie
- of Respiratory and Critical CareChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| | - Xinying Xue
- Department of Respiratory and Critical CareBeijing Shijitan HospitalCapital Medical UniversityPeking University Ninth School of Clinical MedicineBeijing100089China
- School of Clinical MedicineWeifang Medical UniversityWeifang261053China
| | - Dingxia Shen
- Department of Laboratory Medicinethe First Medical CentreChinese People’s Liberation Army (PLA) General HospitalBeijing100853China
| |
Collapse
|
42
|
Huang BK, Elicker BM, Henry TS, Kallianos KG, Hahn LD, Tang M, Heng F, McCulloch CE, Bhakta NR, Majumdar S, Choi J, Denlinger LC, Fain SB, Hastie AT, Hoffman EA, Israel E, Jarjour NN, Levy BD, Mauger DT, Sumino K, Wenzel SE, Castro M, Woodruff PG, Fahy JV, (SARP) FTNHLBISARP. Persistent mucus plugs in proximal airways are consequential for airflow limitation in asthma. JCI Insight 2024; 9:e174124. [PMID: 38127464 PMCID: PMC10967478 DOI: 10.1172/jci.insight.174124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUNDInformation about the size, airway location, and longitudinal behavior of mucus plugs in asthma is needed to understand their role in mechanisms of airflow obstruction and to rationally design muco-active treatments.METHODSCT lung scans from 57 patients with asthma were analyzed to quantify mucus plug size and airway location, and paired CT scans obtained 3 years apart were analyzed to determine plug behavior over time. Radiologist annotations of mucus plugs were incorporated in an image-processing pipeline to generate size and location information that was related to measures of airflow.RESULTSThe length distribution of 778 annotated mucus plugs was multimodal, and a 12 mm length defined short ("stubby", ≤12 mm) and long ("stringy", >12 mm) plug phenotypes. High mucus plug burden was disproportionately attributable to stringy mucus plugs. Mucus plugs localized predominantly to airway generations 6-9, and 47% of plugs in baseline scans persisted in the same airway for 3 years and fluctuated in length and volume. Mucus plugs in larger proximal generations had greater effects on spirometry measures than plugs in smaller distal generations, and a model of airflow that estimates the increased airway resistance attributable to plugs predicted a greater effect for proximal generations and more numerous mucus plugs.CONCLUSIONPersistent mucus plugs in proximal airway generations occur in asthma and demonstrate a stochastic process of formation and resolution over time. Proximal airway mucus plugs are consequential for airflow and are in locations amenable to treatment by inhaled muco-active drugs or bronchoscopy.TRIAL REGISTRATIONClinicaltrials.gov; NCT01718197, NCT01606826, NCT01750411, NCT01761058, NCT01761630, NCT01716494, and NCT01760915.FUNDINGAstraZeneca, Boehringer-Ingelheim, Genentech, GlaxoSmithKline, Sanofi-Genzyme-Regeneron, and TEVA provided financial support for study activities at the Coordinating and Clinical Centers beyond the third year of patient follow-up. These companies had no role in study design or data analysis, and the only restriction on the funds was that they be used to support the SARP initiative.
Collapse
Affiliation(s)
- Brendan K. Huang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and
| | - Brett M. Elicker
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Travis S. Henry
- Department of Radiology, Duke University, Durham, North Carolina, USA
| | - Kimberly G. Kallianos
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Lewis D. Hahn
- Department of Radiology, UCSD, San Diego, California, USA
| | - Monica Tang
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and
| | | | - Charles E. McCulloch
- Department of Epidemiology and Biostatistics, UCSF, San Francisco, California, USA
| | - Nirav R. Bhakta
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and
| | - Sharmila Majumdar
- Department of Radiology and Biomedical Imaging, UCSF, San Francisco, California, USA
| | - Jiwoong Choi
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Loren C. Denlinger
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Sean B. Fain
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Annette T. Hastie
- Department of Internal Medicine, Section for Pulmonary, Critical Care, Allergy and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Eric A. Hoffman
- Department of Radiology, University of Iowa, Iowa City, Iowa, USA
| | - Elliot Israel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nizar N. Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Bruce D. Levy
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Dave T. Mauger
- Division of Biostatistics and Bioinformatics, Penn State College of Medicine, The Pennsylvania State University, Hershey, Pennsylvania, USA
| | - Kaharu Sumino
- Division of Pulmonary and Critical Care Medicine, Washington University, St. Louis, USA
| | - Sally E. Wenzel
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mario Castro
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Kansas School of Medicine, Kansas City, Kansas, USA
| | - Prescott G. Woodruff
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and
- Cardiovascular Research Institute and
| | - John V. Fahy
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, and
- Cardiovascular Research Institute and
| | | |
Collapse
|
43
|
Viola HL, Vasani V, Washington K, Lee JH, Selva C, Li A, Llorente CJ, Murayama Y, Grotberg JB, Romanò F, Takayama S. Liquid plug propagation in computer-controlled microfluidic airway-on-a-chip with semi-circular microchannels. LAB ON A CHIP 2024; 24:197-209. [PMID: 38093669 PMCID: PMC10842925 DOI: 10.1039/d3lc00957b] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
This paper introduces a two-inlet, one-outlet lung-on-a-chip device with semi-circular cross-section microchannels and computer-controlled fluidic switching that enables a broader systematic investigation of liquid plug dynamics in a manner relevant to the distal airways. A leak-proof bonding protocol for micro-milled devices facilitates channel bonding and culture of confluent primary small airway epithelial cells. Production of liquid plugs with computer-controlled inlet channel valving and just one outlet allows more stable long-term plug generation and propagation compared to previous designs. The system also captures both plug speed and length as well as pressure drop concurrently. In one demonstration, the system reproducibly generates surfactant-containing liquid plugs, a challenging process due to lower surface tension that makes the plug formation less stable. The addition of surfactant decreases the pressure required to initiate plug propagation, a potentially significant effect in diseases where surfactant in the airways is absent or dysfunctional. Next, the device recapitulates the effect of increasing fluid viscosity, a challenging analysis due to higher resistance of viscous fluids that makes plug formation and propagation more difficult particularly in airway-relevant length scales. Experimental results show that increased fluid viscosity decreases plug propagation speed for a given air flow rate. These findings are supplemented by computational modeling of viscous plug propagation that demonstrates increased plug propagation time, increased maximum wall shear stress, and greater pressure differentials in more viscous conditions of plug propagation. These results match physiology as mucus viscosity is increased in various obstructive lung diseases where it is known that respiratory mechanics can be compromised due to mucus plugging of the distal airways. Finally, experiments evaluate the effect of channel geometry on primary human small airway epithelial cell injury in this lung-on-a-chip. There is more injury in the middle of the channel relative to the edges highlighting the role of channel shape, a physiologically relevant parameter as airway cross-sectional geometry can also be non-circular. In sum, this paper describes a system that pushes the device limits with regards to the types of liquid plugs that can be stably generated for studies of distal airway fluid mechanical injury.
Collapse
Affiliation(s)
- Hannah L Viola
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| | - Vishwa Vasani
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- The George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Kendra Washington
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Ji-Hoon Lee
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Cauviya Selva
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Andrea Li
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| | - Carlos J Llorente
- Department of Physics & Astronomy, Michigan State University, Lansing, MI, 48824, USA
| | - Yoshinobu Murayama
- Department of Electrical and Electronics Engineering, College of Engineering, Nihon University, Fukushima, Japan
| | - James B Grotberg
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Francesco Romanò
- Univ. Lille, CNRS, ONERA, Arts et Métiers Institute of Technology, Centrale Lille, FRE 2017-LMFL-Laboratoire de Mécanique des Fluides de Lille - Kampé de Fériet, F-59000, Lille, France
| | - Shuichi Takayama
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, 30332, USA
| |
Collapse
|
44
|
Richmond BW, Marshall CB, Blackburn JB, Tufenkjian TS, Lehmann BD, Han W, Newcomb D, Gutor SS, Hunt RP, Michell DL, Vickers KC, Polosukhin VV, Blackwell TS, Pietenpol JA. Loss of p73 Expression Contributes to Chronic Obstructive Pulmonary Disease. Am J Respir Crit Care Med 2024; 209:153-163. [PMID: 37931077 PMCID: PMC10806417 DOI: 10.1164/rccm.202303-0503oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023] Open
Abstract
Rationale: Multiciliated cell (MCC) loss and/or dysfunction is common in the small airways of patients with chronic obstructive pulmonary disease (COPD), but it is unclear if this contributes to COPD lung pathology. Objectives: To determine if loss of p73 causes a COPD-like phenotype in mice and explore whether smoking or COPD impact p73 expression. Methods: p73floxE7-E9 mice were crossed with Shh-Cre mice to generate mice lacking MCCs in the airway epithelium. The resulting p73Δairway mice were analyzed using electron microscopy, flow cytometry, morphometry, forced oscillation technique, and single-cell RNA sequencing. Furthermore, the effects of cigarette smoke on p73 transcript and protein expression were examined using in vitro and in vivo models and in studies including airway epithelium from smokers and patients with COPD. Measurements and Main Results: Loss of functional p73 in the respiratory epithelium resulted in a near-complete absence of MCCs in p73Δairway mice. In adulthood, these mice spontaneously developed neutrophilic inflammation and emphysema-like lung remodeling and had progressive loss of secretory cells. Exposure of normal airway epithelium cells to cigarette smoke rapidly and durably suppressed p73 expression in vitro and in vivo. Furthermore, tumor protein 73 mRNA expression was reduced in the airways of current smokers (n = 82) compared with former smokers (n = 69), and p73-expressing MCCs were reduced in the small airways of patients with COPD (n = 11) compared with control subjects without COPD (n = 12). Conclusions: Loss of functional p73 in murine airway epithelium results in the absence of MCCs and promotes COPD-like lung pathology. In smokers and patients with COPD, loss of p73 may contribute to MCC loss or dysfunction.
Collapse
Affiliation(s)
- Bradley W. Richmond
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology
| | - Clayton B. Marshall
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
- Department of Biochemistry, and
| | - Jessica B. Blackburn
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Tiffany S. Tufenkjian
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Brian D. Lehmann
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Wei Han
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Dawn Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Sergey S. Gutor
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Raphael P. Hunt
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | | | - Kasey C. Vickers
- Department of Medicine, Vanderbilt University, Nashville, Tennessee
| | - Vasiliy V. Polosukhin
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
| | - Timothy S. Blackwell
- Department of Veterans Affairs Medical Center, Nashville, Tennessee
- Division of Allergy, Pulmonary, and Critical Care Medicine, Department of Medicine, and
- Department of Cell and Developmental Biology
| | - Jennifer A. Pietenpol
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee; and
- Department of Biochemistry, and
| |
Collapse
|
45
|
Miravitlles M, Criner GJ, Mall MA, Rowe SM, Vogelmeier CF, Hederer B, Schoenberger M, Altman P. Potential systemic effects of acquired CFTR dysfunction in COPD. Respir Med 2024; 221:107499. [PMID: 38104786 DOI: 10.1016/j.rmed.2023.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/25/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Chronic obstructive pulmonary disease (COPD) is characterized by airflow limitation, respiratory symptoms, inflammation of the airways, and systemic manifestations of the disease. Genetic susceptibility and environmental factors are important in the development of the disease, particularly exposure to cigarette smoke which is the most notable risk factor. Mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene are the cause of cystic fibrosis (CF), which shares several pathophysiological pulmonary features with COPD, including airway obstruction, chronic airway inflammation and bacterial colonization; in addition, both diseases also present systemic defects leading to comorbidities such as pancreatic, gastrointestinal, and bone-related diseases. In patients with COPD, systemic CFTR dysfunction can be acquired by cigarette smoking, inflammation, and infection. This dysfunction is, on average, about half of that found in CF. Herein we review the literature focusing on acquired CFTR dysfunction and the potential role in the pathogenesis of comorbidities associated with COPD and chronic bronchitis.
Collapse
Affiliation(s)
- Marc Miravitlles
- Pneumology Department Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Hospital Campus, Barcelona, Spain.
| | - Gerard J Criner
- Department of Thoracic Medicine and Surgery, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at the Charité - Universitätsmedizin Berlin, Berlin, Germany; German Centre for Lung Research, Berlin, Germany
| | - Steven M Rowe
- Univeristy of Alabama at Birmingham, Birmingham, USA
| | - Claus F Vogelmeier
- Department of Medicine, Pulmonary and Critical Care Medicine, University Hospital Marburg UKGM, German Centre for Lung Research (DZL), Marburg, Germany
| | | | | | - Pablo Altman
- Novartis Pharmaceuticals Corporation, East Hanover, New Jersey, USA
| |
Collapse
|
46
|
Yang R, Wu X, Gounni AS, Xie J. Mucus hypersecretion in chronic obstructive pulmonary disease: From molecular mechanisms to treatment. J Transl Int Med 2023; 11:312-315. [PMID: 38130649 PMCID: PMC10732574 DOI: 10.2478/jtim-2023-0094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Affiliation(s)
- Ruonan Yang
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| | - Xiaojie Wu
- Department of Respiratory and Critical Care Medicine, Wuhan NO. 1 Hospital, Wuhan Hospital of traditional Chinese and Western Medicine, Wuhan430022, Hubei Province, China
| | - Abdelilah Soussi Gounni
- Department of Immunology, Faculty of Medicine, University of Manitoba, ManitobaR3E 0W3, Canada
| | - Jungang Xie
- Department of Respiratory and Critical Care Medicine, National Clinical Research Center of Respiratory Disease, Key Laboratory of Pulmonary Diseases of Health Ministry, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, Hubei Province, China
| |
Collapse
|
47
|
Zheng S, Kummarapurugu AB, Bulut GB, Syed A, Kang L, Voynow JA. Neutrophil elastase activates the release of extracellular traps from COPD blood monocyte-derived macrophages. Clin Transl Sci 2023; 16:2765-2778. [PMID: 37926919 PMCID: PMC10719474 DOI: 10.1111/cts.13671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/27/2023] [Accepted: 10/06/2023] [Indexed: 11/07/2023] Open
Abstract
Neutrophil elastase (NE), a major inflammatory mediator in chronic obstructive pulmonary disease (COPD) airways, impairs macrophage function, contributing to persistence of airway inflammation. We hypothesized that NE activates a novel mechanism of macrophage-induced inflammation: release of macrophage extracellular traps (METs). The METs are composed of extracellular DNA decorated with granule proteinases and oxidants and may trigger persistent airway inflammation in COPD. To test the hypothesis, human blood monocytes were isolated from whole blood of subjects with COPD recruited following informed written consent. Patient demographics and clinical data were collected. Cells were cultured in media with GM-CSF to differentiate into blood monocyte derived macrophages (BMDMs). The BMDMs were treated with FITC-NE and unlabeled NE to determine intracellular localization by confocal microscopy and intracellular proteinase activity by DQ-Elastin assay. After NE exposure, released extracellular traps were quantified by abundance of extracellular DNA in conditioned media using the Pico Green assay. BMDM cell lysates were analyzed by Western analysis for proteolytic degradation of histone H3 or H4 or upregulation of peptidyl arginine deiminase (PAD) 2 and 4, two potential mechanisms to mediate extracellular trap DNA release. We observed that NE was taken up by COPD BMDM, localized to the cytosol and nucleus, and retained proteinase activity in the cell. NE induced MET release at doses as low as 50 nM. NE treatment caused histone H3 clipping but no effect on histone H4 nor PAD 2 or 4 abundance or activity. In summary, NE activated COPD MET release by clipping histone H3, a prerequisite for chromatin decondensation.
Collapse
Affiliation(s)
- Shuo Zheng
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| | - Apparao B. Kummarapurugu
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| | - Gamze B. Bulut
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| | - Aamer Syed
- Division of Pulmonary and Critical Care MedicineDepartment of MedicineVCURichmondVirginiaUSA
| | - Le Kang
- Department of BiostatisticsVCURichmondVirginiaUSA
| | - Judith A. Voynow
- Division of Pediatric Pulmonary MedicineChildren's Hospital of Richmond at VCURichmondVirginiaUSA
| |
Collapse
|
48
|
Kogo M, Sato S, Muro S, Matsumoto H, Nomura N, Oguma T, Sunadome H, Nagasaki T, Murase K, Kawaguchi T, Tabara Y, Matsuda F, Chin K, Hirai T. Longitudinal Changes and Association of Respiratory Symptoms with Preserved Ratio Impaired Spirometry (PRISm): The Nagahama Study. Ann Am Thorac Soc 2023; 20:1578-1586. [PMID: 37560979 DOI: 10.1513/annalsats.202301-050oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 08/09/2023] [Indexed: 08/11/2023] Open
Abstract
Rationale: Subjects with preserved ratio impaired spirometry (PRISm) experience increased respiratory symptoms, although they present heterogeneous characteristics. However, the longitudinal changes in these symptoms and respiratory function are not well known. Objectives: To investigate PRISm from the viewpoint of respiratory symptoms in a longitudinal, large-scale general population study. Methods: The Nagahama study included 9,789 inhabitants, and a follow-up evaluation was conducted after 5 years. Spirometry and self-administered questionnaires regarding respiratory symptoms, including prolonged cough, sputum and dyspnea, and comorbidities were conducted. Results: In total, 9,760 subjects were analyzed, and 438 subjects had PRISm. Among the subjects with PRISm, 53% presented with respiratory symptoms; dyspnea was independently associated with PRISm. Follow-up assessment revealed that 73% of the subjects with PRISm with respiratory symptoms were consistently symptomatic, whereas 39% of the asymptomatic subjects with PRISm developed respiratory symptoms within 5 years. In addition, among subjects with respiratory symptoms without airflow limitation at baseline, PRISm was a risk factor for the development of airflow limitation independent of smoking history and comorbidities. Conclusions: This study demonstrated that 53% of the subjects with PRISm had respiratory symptoms; dyspnea was a distinct characteristic of PRISm. Approximately three-fourths of the symptomatic subjects with PRISm consistently complained of respiratory symptoms within 5 years. Together with our result that PRISm itself is an independent risk factor for the development of chronic obstructive pulmonary disease among subjects with respiratory symptoms, the clinical course of subjects with PRISm with symptoms requires careful monitoring.
Collapse
Affiliation(s)
| | - Susumu Sato
- Department of Respiratory Medicine
- Department of Respiratory Care and Sleep Control Medicine, and
| | - Shigeo Muro
- Department of Respiratory Medicine, Nara Medical University, Nara, Japan
| | - Hisako Matsumoto
- Department of Respiratory Medicine
- Department of Respiratory Medicine and Allergology, Kindai University, Osaka, Japan
| | | | | | | | - Tadao Nagasaki
- Department of Respiratory Care and Sleep Control Medicine, and
| | - Kimihiko Murase
- Department of Respiratory Care and Sleep Control Medicine, and
| | - Takahisa Kawaguchi
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasuharu Tabara
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Graduate School of Public Health, Shizuoka Graduate University of Public Health, Shizuoka, Japan; and
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kazuo Chin
- Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Division of Sleep Medicine, Department of Sleep Medicine and Respiratory Care, Nihon University School of Medicine, Chiyoda, Japan
| | | |
Collapse
|
49
|
Lin Y, Sang L, Wang J, Chen Y, Lai J, Zhu X, Yang Y, Zhang Z, Liu Y, Wen S, Zhang N, Zhao D. Analysis of Airway Thickening and Serum Cytokines in COPD Patients with Frequent Exacerbations: A Heart of the Matter. Int J Chron Obstruct Pulmon Dis 2023; 18:2353-2364. [PMID: 37928768 PMCID: PMC10624196 DOI: 10.2147/copd.s430650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/25/2023] [Indexed: 11/07/2023] Open
Abstract
Background Differences in lung function for Chronic Obstructive Pulmonary Disease (COPD) cause bias in the findings when identifying frequent exacerbator phenotype-related causes. The aim of this study was to determine whether computed tomographic (CT) biomarkers and circulating inflammatory biomarkers were associated with the COPD frequent exacerbator phenotype after eliminating the differences in lung function between a frequent exacerbator (FE) group and a non-frequent exacerbator (NFE) group. Methods A total of 212 patients with stable COPD were divided into a FE group (n=106) and a NFE group (n=106) according to their exacerbation history. These patients were assessed by spirometry, quantitative CT measurements and blood sample measurements during their stable phase. Univariate and multivariate logistic regression were used to assess the association between airway thickening or serum cytokines and the COPD frequent exacerbator phenotype. Receiver operating characteristic (ROC) curves were calculated for Pi10, WA%, IL-1β and IL-4 to identify frequent exacerbators. Results Compared with NFE group, FE group had a greater inner perimeter wall thickness of a 10 mm diameter bronchiole (Pi10), a greater airway wall area percentage (WA%) and higher concentrations of IL-1β and IL-4 (p<0.001). After adjusting for sex, age, BMI, FEV1%pred and smoking pack-years, Pi10, WA%, IL-β and IL-4 were independently associated with a frequent exacerbator phenotype (p<0.001). Additionally, there was an increase in the odds ratio of the frequent exacerbator phenotype with increasing Pi10, WA%, IL-4, and IL-1β (p for trend <0.001). The ROC curve demonstrated that IL-1β had a significantly larger calculated area under the curve (p < 0.05) than Pi10, WA% and IL-4. Conclusion Pi10, WA%, IL-4, and IL-1β were independently associated with the frequent exacerbator phenotype among patients with stable COPD, suggesting that chronic airway and systemic inflammation contribute to the frequent exacerbator phenotype. Trial Registration This trial was registered in Chinese Clinical Trial Registry (https://www.chictr.org.cn). Its registration number is ChiCTR2000038700, and date of registration is September 29, 2020.
Collapse
Affiliation(s)
- Yiqi Lin
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Li Sang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Jiahe Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Yating Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Jianxiong Lai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Xiaofeng Zhu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Yuhan Yang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Zhuofan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Yinghua Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Shenyu Wen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Nuofu Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| | - Dongxing Zhao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510160, People’s Republic of China
| |
Collapse
|
50
|
Graeber SY, Mall MA. The future of cystic fibrosis treatment: from disease mechanisms to novel therapeutic approaches. Lancet 2023; 402:1185-1198. [PMID: 37699417 DOI: 10.1016/s0140-6736(23)01608-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 09/14/2023]
Abstract
With the 2019 breakthrough in the development of highly effective modulator therapy providing unprecedented clinical benefits for over 90% of patients with cystic fibrosis who are genetically eligible for treatment, this rare disease has become a front runner of transformative molecular therapy. This success is based on fundamental research, which led to the identification of the disease-causing CFTR gene and our subsequent understanding of the disease mechanisms underlying the pathogenesis of cystic fibrosis, working together with a continuously evolving clinical research and drug development pipeline. In this Series paper, we focus on advances since 2018, and remaining knowledge gaps in our understanding of the molecular mechanisms of CFTR dysfunction in the airway epithelium and their links to mucus dysfunction, impaired host defences, airway infection, and chronic inflammation of the lungs of people with cystic fibrosis. We review progress in (and the remaining obstacles to) pharmacological approaches to rescue CFTR function, and novel strategies for improved symptomatic therapies for cystic fibrosis, including how these might be applicable to common lung diseases, such as bronchiectasis and chronic obstructive pulmonary disease. Finally, we discuss the promise of genetic therapies and gene editing approaches to restore CFTR function in the lungs of all patients with cystic fibrosis independent of their CFTR genotype, and the unprecedented opportunities to transform cystic fibrosis from a fatal disease to a treatable and potentially curable one.
Collapse
Affiliation(s)
- Simon Y Graeber
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Marcus A Mall
- Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Cystic Fibrosis Center, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; German Center for Lung Research, associated partner site, Berlin, Germany; Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|