1
|
Ninham B, Reines B, Battye M, Thomas P. Pulmonary surfactant and COVID-19: A new synthesis. QRB DISCOVERY 2022; 3:e6. [PMID: 37564950 PMCID: PMC10411325 DOI: 10.1017/qrd.2022.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/24/2022] [Accepted: 04/05/2022] [Indexed: 11/06/2022] Open
Abstract
Chapter 1 COVID-19 pathogenesis poses paradoxes difficult to explain with traditional physiology. For instance, since type II pneumocytes are considered the primary cellular target of SARS-CoV-2; as these produce pulmonary surfactant (PS), the possibility that insufficient PS plays a role in COVID-19 pathogenesis has been raised. However, the opposite of predicted high alveolar surface tension is found in many early COVID-19 patients: paradoxically normal lung volumes and high compliance occur, with profound hypoxemia. That 'COVID anomaly' was quickly rationalised by invoking traditional vascular mechanisms-mainly because of surprisingly preserved alveolar surface in early hypoxemic cases. However, that quick rejection of alveolar damage only occurred because the actual mechanism of gas exchange has long been presumed to be non-problematic, due to diffusion through the alveolar surface. On the contrary, we provide physical chemical evidence that gas exchange occurs by an process of expansion and contraction of the three-dimensional structures of PS and its associated proteins. This view explains anomalous observations from the level of cryo-TEM to whole individuals. It encompasses results from premature infants to the deepest diving seals. Once understood, the COVID anomaly dissolves and is straightforwardly explained as covert viral damage to the 3D structure of PS, with direct treatment implications. As a natural experiment, the SARS-CoV-2 virus itself has helped us to simplify and clarify not only the nature of dyspnea and its relationship to pulmonary compliance, but also the fine detail of the PS including such features as water channels which had heretofore been entirely unexpected. Chapter 2 For a long time, physical, colloid and surface chemistry have not intersected with physiology and cell biology as much as we might have hoped. The reasons are starting to become clear. The discipline of physical chemistry suffered from serious unrecognised omissions that rendered it ineffective. These foundational defects included omission of specific ion molecular forces and hydration effects. The discipline lacked a predictive theory of self-assembly of lipids and proteins. Worse, theory omitted any role for dissolved gases, O2, N2, CO2, and their existence as stable nanobubbles above physiological salt concentration. Recent developments have gone some way to explaining the foam-like lung surfactant structures and function. It delivers O2/N2 as nanobubbles, and efflux of CO2, and H2O nanobubbles at the alveolar surface. Knowledge of pulmonary surfactant structure allows an explanation of the mechanism of corona virus entry, and differences in infectivity of different variants. CO2 nanobubbles, resulting from metabolism passing through the molecular frit provided by the glycocalyx of venous tissue, forms the previously unexplained foam which is the endothelial surface layer. CO2 nanobubbles turn out to be lethal to viruses, providing a plausible explanation for the origin of 'Long COVID'. Circulating nanobubbles, stable above physiological 0.17 M salt drive various enzyme-like activities and chemical reactions. Awareness of the microstructure of Pulmonary Surfactant and that nanobubbles of (O2/N2) and CO2 are integral to respiratory and circulatory physiology provides new insights to the COVID-19 and other pathogen activity.
Collapse
Affiliation(s)
- Barry Ninham
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- School of Science, University of New South Wales, Northcott Drive, Campbell, Canberra, ACT2612, Australia
| | - Brandon Reines
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
- Department of Biomedical Informatics, University of Pittsburgh School of Medicine, 5607 Baum Blvd, Pittsburgh, PA15206, USA
| | | | - Paul Thomas
- Materials Physics (formerly Department of Applied Mathematics), Research School of Physics, Australian National University, Canberra, ACT2600, Australia
| |
Collapse
|
2
|
Shin Low S, Nong Lim C, Yew M, Siong Chai W, Low LE, Manickam S, Ti Tey B, Show PL. Recent ultrasound advancements for the manipulation of nanobiomaterials and nanoformulations for drug delivery. ULTRASONICS SONOCHEMISTRY 2021; 80:105805. [PMID: 34706321 PMCID: PMC8555278 DOI: 10.1016/j.ultsonch.2021.105805] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/08/2021] [Accepted: 10/20/2021] [Indexed: 05/04/2023]
Abstract
Recent advances in ultrasound (US) have shown its great potential in biomedical applications as diagnostic and therapeutic tools. The coupling of US-assisted drug delivery systems with nanobiomaterials possessing tailor-made functions has been shown to remove the limitations of conventional drug delivery systems. The low-frequency US has significantly enhanced the targeted drug delivery effect and efficacy, reducing limitations posed by conventional treatments such as a limited therapeutic window. The acoustic cavitation effect induced by the US-mediated microbubbles (MBs) has been reported to replace drugs in certain acute diseases such as ischemic stroke. This review briefly discusses the US principles, with particular attention to the recent advancements in drug delivery applications. Furthermore, US-assisted drug delivery coupled with nanobiomaterials to treat different diseases (cancer, neurodegenerative disease, diabetes, thrombosis, and COVID-19) are discussed in detail. Finally, this review covers the future perspectives and challenges on the applications of US-mediated nanobiomaterials.
Collapse
Affiliation(s)
- Sze Shin Low
- Continental-NTU Corporate Lab, Nanyang Technological University, 50 Nanyang Drive, Singapore 637553, Singapore; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Chang Nong Lim
- School of Engineering and Physical Sciences, Heriot-Watt University Malaysia, No. 1, Jalan Venna P5/2, Precinct 5, Putrajaya 62200, Malaysia
| | - Maxine Yew
- Department of Mechanical, Materials and Manufacturing Engineering, University of Nottingham Ningbo China, 199 Taikang East Road, Ningbo 315100, Zhejiang, China
| | - Wai Siong Chai
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, Guangdong, China
| | - Liang Ee Low
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, Zhejiang, China.
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan, BE1410, Brunei Darussalam.
| | - Beng Ti Tey
- Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia; Chemical Engineering Discipline, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor Darul Ehsan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
3
|
Del Valle K, DuBrock HM. Hepatopulmonary Syndrome and Portopulmonary Hypertension: Pulmonary Vascular Complications of Liver Disease. Compr Physiol 2021; 11:3281-3302. [PMID: 34636408 DOI: 10.1002/cphy.c210009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pulmonary vascular disease is a frequent complication of chronic liver disease and portal hypertension, affecting up to 30% of patients. There are two distinct pulmonary vascular complications of liver disease: hepatopulmonary syndrome (HPS) and portopulmonary hypertension (POPH). HPS affects 25% of patients with chronic liver disease and is characterized by intrapulmonary vasodilatation and abnormal arterial oxygenation. HPS negatively impacts quality of life and is associated with a 2-fold increased risk of death compared to controls with liver disease without HPS. Angiogenesis, endothelin-1 mediated endothelial dysfunction, monocyte influx, and alveolar type 2 cell dysfunction seem to play important roles in disease pathogenesis but there are currently no effective medical therapies. Fortunately, HPS resolves following liver transplant (LT) with improvements in hypoxemia. POPH is a subtype of pulmonary arterial hypertension (PAH) characterized by an elevated mean pulmonary arterial pressure and pulmonary vascular resistance in the setting of normal left-sided filling pressures. POPH affects 5% to 6% of patients with chronic liver disease. Although the pathogenesis has not been fully elucidated, endothelial dysfunction, inflammation, and estrogen signaling have been identified as key pathways involved in disease pathogenesis. POPH is typically treated with PAH targeted therapy and may also improve with liver transplantation in selected patients. This article highlights what is currently known regarding the diagnosis, management, pathobiology, and outcomes of HPS and POPH. Ongoing research is needed to improve understanding of the pathophysiology and outcomes of these distinct and often misunderstood pulmonary vascular complications of liver disease. © 2021 American Physiological Society. Compr Physiol 11:1-22, 2021.
Collapse
|
4
|
Swenson ER, Hopkins SR, Stickland MK. Positive Bubble Study in Severe COVID-19: Bubbles May Be Unrelated to Gas Exchange Impairment. Am J Respir Crit Care Med 2021; 203:389-390. [PMID: 33207121 PMCID: PMC7874323 DOI: 10.1164/rccm.202010-3800le] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Affiliation(s)
- Erik R Swenson
- Veterans Affairs Puget Sound Healthcare System Seattle, Washington
| | - Susan R Hopkins
- University of California, San Diego La Jolla, California and
| | | |
Collapse
|
5
|
Busana M, Giosa L, Cressoni M, Gasperetti A, Di Girolamo L, Martinelli A, Sonzogni A, Lorini L, Palumbo MM, Romitti F, Gattarello S, Steinberg I, Herrmann P, Meissner K, Quintel M, Gattinoni L. The impact of ventilation-perfusion inequality in COVID-19: a computational model. J Appl Physiol (1985) 2021; 130:865-876. [PMID: 33439790 PMCID: PMC8083177 DOI: 10.1152/japplphysiol.00871.2020] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
COVID-19 infection may lead to acute respiratory distress syndrome (CARDS) where severe gas exchange derangements may be associated, at least in the early stages, only with minor pulmonary infiltrates. This may suggest that the shunt associated to the gasless lung parenchyma is not sufficient to explain CARDS hypoxemia. We designed an algorithm (VentriQlar), based on the same conceptual grounds described by J.B. West in 1969. We set 498 ventilation-perfusion (VA/Q) compartments and, after calculating their blood composition (PO2, PCO2, and pH), we randomly chose 106 combinations of five parameters controlling a bimodal distribution of blood flow. The solutions were accepted if the predicted PaO2 and PaCO2 were within 10% of the patient's values. We assumed that the shunt fraction equaled the fraction of non-aerated lung tissue at the CT quantitative analysis. Five critically-ill patients later deceased were studied. The PaO2/FiO2 was 91.1 ± 18.6 mmHg and PaCO2 69.0 ± 16.1 mmHg. Cardiac output was 9.58 ± 0.99 L/min. The fraction of non-aerated tissue was 0.33 ± 0.06. The model showed that a large fraction of the blood flow was likely distributed in regions with very low VA/Q (Qmean = 0.06 ± 0.02) and a smaller fraction in regions with moderately high VA/Q. Overall LogSD, Q was 1.66 ± 0.14, suggestive of high VA/Q inequality. Our data suggest that shunt alone cannot completely account for the observed hypoxemia and a significant VA/Q inequality must be present in COVID-19. The high cardiac output and the extensive microthrombosis later found in the autopsy further support the hypothesis of a pathological perfusion of non/poorly ventilated lung tissue.NEW & NOTEWORTHY Hypothesizing that the non-aerated lung fraction as evaluated by the quantitative analysis of the lung computed tomography (CT) equals shunt (VA/Q = 0), we used a computational approach to estimate the magnitude of the ventilation-perfusion inequality in severe COVID-19. The results show that a severe hyperperfusion of poorly ventilated lung region is likely the cause of the observed hypoxemia. The extensive microthrombosis or abnormal vasodilation of the pulmonary circulation may represent the pathophysiological mechanism of such VA/Q distribution.
Collapse
Affiliation(s)
- Mattia Busana
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Lorenzo Giosa
- Department of Surgical Science, University of Turin, Italy
| | - Massimo Cressoni
- Unit of Radiology, IRCCS Policlinico San Donato, San Donato, Italy
| | - Alessio Gasperetti
- Department of Cardiology, IRCCS Cardiologico Monzino, San Donato Milanese, Italy
| | - Luca Di Girolamo
- Department of Intensive Care Medicine, IRCCS Policlinico San Donato, San Donato Milanese, Italy
| | | | - Aurelio Sonzogni
- ASST Papa Giovanni XXIII, Department of Pathology, Bergamo, Italy
| | - Luca Lorini
- ASST Papa Giovanni XXIII, Department of Intensive Care Medicine, Bergamo, Italy
| | - Maria Michela Palumbo
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Federica Romitti
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Simone Gattarello
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Irene Steinberg
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Peter Herrmann
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Konrad Meissner
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Michael Quintel
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| | - Luciano Gattinoni
- Department of Anesthesiology, Intensive Care and Emergency Medicine, University Medical Center of Göttingen, Göttingen, Germany
| |
Collapse
|