1
|
Lung- and Diaphragm-Protective Ventilation by Titrating Inspiratory Support to Diaphragm Effort: A Randomized Clinical Trial. Crit Care Med 2022; 50:192-203. [PMID: 35100192 PMCID: PMC8797006 DOI: 10.1097/ccm.0000000000005395] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVES Lung- and diaphragm-protective ventilation is a novel concept that aims to limit the detrimental effects of mechanical ventilation on the diaphragm while remaining within limits of lung-protective ventilation. The premise is that low breathing effort under mechanical ventilation causes diaphragm atrophy, whereas excessive breathing effort induces diaphragm and lung injury. In a proof-of-concept study, we aimed to assess whether titration of inspiratory support based on diaphragm effort increases the time that patients have effort in a predefined "diaphragm-protective" range, without compromising lung-protective ventilation. DESIGN Randomized clinical trial. SETTING Mixed medical-surgical ICU in a tertiary academic hospital in the Netherlands. PATIENTS Patients (n = 40) with respiratory failure ventilated in a partially-supported mode. INTERVENTIONS In the intervention group, inspiratory support was titrated hourly to obtain transdiaphragmatic pressure swings in the predefined "diaphragm-protective" range (3-12 cm H2O). The control group received standard-of-care. MEASUREMENTS AND MAIN RESULTS Transdiaphragmatic pressure, transpulmonary pressure, and tidal volume were monitored continuously for 24 hours in both groups. In the intervention group, more breaths were within "diaphragm-protective" range compared with the control group (median 81%; interquartile range [64-86%] vs 35% [16-60%], respectively; p < 0.001). Dynamic transpulmonary pressures (20.5 ± 7.1 vs 18.5 ± 7.0 cm H2O; p = 0.321) and tidal volumes (7.56 ± 1.47 vs 7.54 ± 1.22 mL/kg; p = 0.961) were not different in the intervention and control group, respectively. CONCLUSIONS Titration of inspiratory support based on patient breathing effort greatly increased the time that patients had diaphragm effort in the predefined "diaphragm-protective" range without compromising tidal volumes and transpulmonary pressures. This study provides a strong rationale for further studies powered on patient-centered outcomes.
Collapse
|
2
|
Fayed M, Patel N, Yeldo N, Nowak K, Penning DH, Vasconcelos Torres F, Natour AK, Chhina A. Effect of Intubation Timing on the Outcome of Patients With Severe Respiratory Distress Secondary to COVID-19 Pneumonia. Cureus 2021; 13:e19620. [PMID: 34804753 PMCID: PMC8597669 DOI: 10.7759/cureus.19620] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 01/08/2023] Open
Abstract
Background The optimal timing of intubation for critically ill patients with severe respiratory illness remains controversial among healthcare providers. The coronavirus disease 2019 (COVID-19) pandemic has raised even more questions about when to implement this life-saving therapy. While one group of providers prefers early intubation for patients with respiratory distress because these patients may deteriorate rapidly without it, other providers believe that intubation should be delayed or avoided because of its associated risks including worse outcomes. Research question Our objective was to assess whether the timing of intubation in patients with severe COVID-19 pneumonia was associated with differences in mortality or other outcomes. Study design and methods This was a single-center retrospective observational cohort study. We analyzed outcomes of patients who were intubated secondary to COVID-19 pneumonia between March 13, 2020, and December 12, 2020, at Henry Ford Hospital in Detroit, Michigan. Patients were categorized into two groups: early intubated (intubated within 24 hours of the onset of severe respiratory distress) and late intubated (intubated after 24 hours of the onset of severe respiratory distress). Demographics, comorbidities, respiratory rate oxygenation (ROX) index, sequential organ failure assessment (SOFA) score, and treatment received were compared between groups. The primary outcome was mortality. Secondary outcomes were ventilation time, intensive care unit stay, hospital length of stay, and discharge disposition. Post hoc and Kaplan-Meier survival analyses were performed. Results A total of 110 patients were included: 55 early intubated and 55 late intubated. We did not observe a significant difference in overall mortality between the early intubated (43%) and the late intubated groups (53%) (p = 0.34). There was no statistically significant difference in patients' baseline characteristics including SOFA scores (the early intubation group had a mean score of 7.5 compared to 6.7 in the late intubation group). Based on the ROX index, the early intubation group had significantly more patients with a reduced risk of intubation (45%) than the late group (27%) (p = 0.029). The early intubation group was treated with a high-flow nasal cannula at a significantly lower rate (47%) than the late intubation group (83%) (p < 0.001). Significant differences in patient baseline characteristics, treatment received, and other outcomes were not observed. Post hoc analysis adjusting for SOFA score between 0 and 9 revealed significantly higher mortality in the late intubation group (49%) than in the early intubation group (26%) (p = 0.03). Patients in the 0 to 9 SOFA group who were intubated later had 2.7 times the odds of dying during hospital admission compared to patients who were intubated early (CI, 1.09-6.67). Interpretation The timing of intubation for patients with severe COVID-19 pneumonia was not significantly associated with overall mortality or other patient outcomes. However, within the subgroup of patients with SOFA scores of 9 or lower at the time of intubation, patients intubated after 24 hours of the onset of respiratory distress had a higher risk of death than those who were intubated within 24 hours of respiratory distress. Thus, patients with COVID-19 pneumonia who are not at a high level of organ dysfunction may benefit from early mechanical ventilation.
Collapse
Affiliation(s)
- Mohamed Fayed
- Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Health System, Detroit, USA
| | - Nimesh Patel
- Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Health System, Detroit, USA
| | - Nicholas Yeldo
- Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Health System, Detroit, USA
| | | | - Donald H Penning
- Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Health System, Detroit, USA
| | | | | | - Anoop Chhina
- Anesthesiology, Pain Management and Perioperative Medicine, Henry Ford Health System, Detroit, USA
| |
Collapse
|
3
|
Abstract
Acute respiratory distress syndrome (ARDS) is one of the most common severe diseases seen in the clinical setting. With the continuous exploration of ARDS in recent decades, the understanding of ARDS has improved. ARDS is not a simple lung disease but a clinical syndrome with various etiologies and pathophysiological changes. However, in the intensive care unit, ARDS often occurs a few days after primary lung injury or after a few days of treatment for other severe extrapulmonary diseases. Under such conditions, ARDS often progresses rapidly to severe ARDS and is difficult to treat. The occurrence and development of ARDS in these circumstances are thus not related to primary lung injury; the real cause of ARDS may be the “second hit” caused by inappropriate treatment. In view of the limited effective treatments for ARDS, the strategic focus has shifted to identifying potential or high-risk ARDS patients during the early stages of the disease and implementing treatment strategies aimed at reducing ARDS and related organ failure. Future research should focus on the prevention of ARDS.
Collapse
|
4
|
Weaver L, Das A, Saffaran S, Yehya N, Scott TE, Chikhani M, Laffey JG, Hardman JG, Camporota L, Bates DG. High risk of patient self-inflicted lung injury in COVID-19 with frequently encountered spontaneous breathing patterns: a computational modelling study. Ann Intensive Care 2021; 11:109. [PMID: 34255207 PMCID: PMC8276227 DOI: 10.1186/s13613-021-00904-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND There is on-going controversy regarding the potential for increased respiratory effort to generate patient self-inflicted lung injury (P-SILI) in spontaneously breathing patients with COVID-19 acute hypoxaemic respiratory failure. However, direct clinical evidence linking increased inspiratory effort to lung injury is scarce. We adapted a computational simulator of cardiopulmonary pathophysiology to quantify the mechanical forces that could lead to P-SILI at different levels of respiratory effort. In accordance with recent data, the simulator parameters were manually adjusted to generate a population of 10 patients that recapitulate clinical features exhibited by certain COVID-19 patients, i.e., severe hypoxaemia combined with relatively well-preserved lung mechanics, being treated with supplemental oxygen. RESULTS Simulations were conducted at tidal volumes (VT) and respiratory rates (RR) of 7 ml/kg and 14 breaths/min (representing normal respiratory effort) and at VT/RR of 7/20, 7/30, 10/14, 10/20 and 10/30 ml/kg / breaths/min. While oxygenation improved with higher respiratory efforts, significant increases in multiple indicators of the potential for lung injury were observed at all higher VT/RR combinations tested. Pleural pressure swing increased from 12.0 ± 0.3 cmH2O at baseline to 33.8 ± 0.4 cmH2O at VT/RR of 7 ml/kg/30 breaths/min and to 46.2 ± 0.5 cmH2O at 10 ml/kg/30 breaths/min. Transpulmonary pressure swing increased from 4.7 ± 0.1 cmH2O at baseline to 17.9 ± 0.3 cmH2O at VT/RR of 7 ml/kg/30 breaths/min and to 24.2 ± 0.3 cmH2O at 10 ml/kg/30 breaths/min. Total lung strain increased from 0.29 ± 0.006 at baseline to 0.65 ± 0.016 at 10 ml/kg/30 breaths/min. Mechanical power increased from 1.6 ± 0.1 J/min at baseline to 12.9 ± 0.2 J/min at VT/RR of 7 ml/kg/30 breaths/min, and to 24.9 ± 0.3 J/min at 10 ml/kg/30 breaths/min. Driving pressure increased from 7.7 ± 0.2 cmH2O at baseline to 19.6 ± 0.2 cmH2O at VT/RR of 7 ml/kg/30 breaths/min, and to 26.9 ± 0.3 cmH2O at 10 ml/kg/30 breaths/min. CONCLUSIONS Our results suggest that the forces generated by increased inspiratory effort commonly seen in COVID-19 acute hypoxaemic respiratory failure are comparable with those that have been associated with ventilator-induced lung injury during mechanical ventilation. Respiratory efforts in these patients should be carefully monitored and controlled to minimise the risk of lung injury.
Collapse
Affiliation(s)
- Liam Weaver
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Anup Das
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK
| | - Sina Saffaran
- Faculty of Engineering Science, University College London, London, WC1E 6BT, UK
| | - Nadir Yehya
- Department of Anaesthesiology and Critical Care Medicine, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, USA
| | - Timothy E Scott
- Academic Department of Military Anaesthesia and Critical Care, Royal Centre for Defence Medicine, ICT Centre, Birmingham, B15 2SQ, UK
| | - Marc Chikhani
- Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - John G Laffey
- Anaesthesia and Intensive Care Medicine, School of Medicine, NUI Galway, Galway, Ireland
| | - Jonathan G Hardman
- Anaesthesia & Critical Care, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, NG7 2UH, UK
- Nottingham University Hospitals NHS Trust, Nottingham, NG7 2UH, UK
| | - Luigi Camporota
- Department of Critical Care, Guy's and St Thomas' NHS Foundation Trust, London, UK.
| | - Declan G Bates
- School of Engineering, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
5
|
Messineo L, Perger E, Corda L, Joosten SA, Fanfulla F, Pedroni L, Terrill PI, Lombardi C, Wellman A, Hamilton GS, Malhotra A, Vailati G, Parati G, Sands SA. Breath-holding as a novel approach to risk stratification in COVID-19. Crit Care 2021; 25:208. [PMID: 34127052 PMCID: PMC8200551 DOI: 10.1186/s13054-021-03630-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/06/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Despite considerable progress, it remains unclear why some patients admitted for COVID-19 develop adverse outcomes while others recover spontaneously. Clues may lie with the predisposition to hypoxemia or unexpected absence of dyspnea ('silent hypoxemia') in some patients who later develop respiratory failure. Using a recently-validated breath-holding technique, we sought to test the hypothesis that gas exchange and ventilatory control deficits observed at admission are associated with subsequent adverse COVID-19 outcomes (composite primary outcome: non-invasive ventilatory support, intensive care admission, or death). METHODS Patients with COVID-19 (N = 50) performed breath-holds to obtain measurements reflecting the predisposition to oxygen desaturation (mean desaturation after 20-s) and reduced chemosensitivity to hypoxic-hypercapnia (including maximal breath-hold duration). Associations with the primary composite outcome were modeled adjusting for baseline oxygen saturation, obesity, sex, age, and prior cardiovascular disease. Healthy controls (N = 23) provided a normative comparison. RESULTS The adverse composite outcome (observed in N = 11/50) was associated with breath-holding measures at admission (likelihood ratio test, p = 0.020); specifically, greater mean desaturation (12-fold greater odds of adverse composite outcome with 4% compared with 2% desaturation, p = 0.002) and greater maximal breath-holding duration (2.7-fold greater odds per 10-s increase, p = 0.036). COVID-19 patients who did not develop the adverse composite outcome had similar mean desaturation to healthy controls. CONCLUSIONS Breath-holding offers a novel method to identify patients with high risk of respiratory failure in COVID-19. Greater breath-hold induced desaturation (gas exchange deficit) and greater breath-holding tolerance (ventilatory control deficit) may be independent harbingers of progression to severe disease.
Collapse
Affiliation(s)
- Ludovico Messineo
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA.
- Adelaide Institute for Sleep Health (AISH), Flinders Health and Medical Research Institute (FHMRI), Flinders University, 5 Laffer Drive, Bedford Park, Adelaide, SA, 5043, Australia.
| | - Elisa Perger
- Istituto Auxologico Italiano IRCSS, Sleep Medicine Center, Department of Cardiology, San Luca Hospital, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Luciano Corda
- Respiratory Medicine and Sleep Laboratory, Department of Experimental and Clinical Sciences, University of Brescia and Spedali Civili, Brescia, Italy
- Department of Internal Medicine, Spedali Civili, Brescia, Italy
| | - Simon A Joosten
- Monash Lung and Sleep, Monash Medical Centre, Clayton, VIC, Australia
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Partners - Epworth, Victoria, Australia
| | | | - Leonardo Pedroni
- Respiratory Medicine and Sleep Laboratory, Department of Experimental and Clinical Sciences, University of Brescia and Spedali Civili, Brescia, Italy
| | - Philip I Terrill
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia
| | - Carolina Lombardi
- Istituto Auxologico Italiano IRCSS, Sleep Medicine Center, Department of Cardiology, San Luca Hospital, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Andrew Wellman
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
| | - Garun S Hamilton
- Monash Lung and Sleep, Monash Medical Centre, Clayton, VIC, Australia
- School of Clinical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Partners - Epworth, Victoria, Australia
| | - Atul Malhotra
- University of California San Diego, La Jolla, CA, USA
| | - Guido Vailati
- Respiratory Medicine and Sleep Laboratory, Department of Experimental and Clinical Sciences, University of Brescia and Spedali Civili, Brescia, Italy
| | - Gianfranco Parati
- Istituto Auxologico Italiano IRCSS, Sleep Medicine Center, Department of Cardiology, San Luca Hospital, Milano, Italy
- Department of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - Scott A Sands
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham & Women's Hospital & Harvard Medical School, Boston, MA, USA
- Department of Allergy Immunology and Respiratory Medicine and Central Clinical School, The Alfred and Monash University, Melbourne, Australia
| |
Collapse
|