1
|
Yuan M, Liu T, Cai A, Zhan Z, Cheng Y, Wang Q, Xia Y, Shen N, Huang P, Zou X. Emerging connectivity of programmed cell death pathways and pulmonary vascular remodelling during pulmonary hypertension. J Cell Mol Med 2024; 28:e70003. [PMID: 39153207 PMCID: PMC11330287 DOI: 10.1111/jcmm.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 04/08/2024] [Accepted: 07/23/2024] [Indexed: 08/19/2024] Open
Abstract
Pulmonary hypertension (PH) is a chronic progressive vascular disease characterized by abnormal pulmonary vascular resistance and pulmonary artery pressure. The major structural alteration during PH is pulmonary vascular remodelling, which is mainly caused by the imbalance between proliferation and apoptosis of pulmonary vascular cells. Previously, it was thought that apoptosis was the only type of programmed cell death (PCD). Soon afterward, other types of PCD have been identified, including autophagy, pyroptosis, ferroptosis and necroptosis. In this review, we summarize the role of the above five forms of PCD in mediating pulmonary vascular remodelling, and discuss their guiding significance for PH treatment. The current review could provide a better understanding of the correlation between PCD and pulmonary vascular remodelling, contributing to identify new PCD-associated drug targets for PH.
Collapse
Affiliation(s)
- Meng‐nan Yuan
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ting Liu
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - An‐qi Cai
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Zibo Zhan
- School of Pharmaceutical SciencesZhejiang Chinese Medical UniversityHangzhouZhejiangChina
| | - Yi‐li Cheng
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Qi‐yue Wang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Yu‐xuan Xia
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Nong‐er Shen
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Ping Huang
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| | - Xiao‐zhou Zou
- Center for Clinical Pharmacy, Cancer Center, Department of Pharmacy, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- Key Laboratory of Endocrine Gland Diseases of Zhejiang ProvinceZhejiang Provincial People's HospitalHangzhouZhejiangChina
| |
Collapse
|
2
|
Chen Y, Pang E, Peng R, Tang Y, Tan Q, Lan M, Bai D. Cationic Polythiophene as Gene Carrier and Sonosensitizer for Sonodynamic Synergic Gene Therapy of Hepatocellular Carcinoma. ACS Biomater Sci Eng 2024; 10:4601-4611. [PMID: 38847181 DOI: 10.1021/acsbiomaterials.4c00704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal and highly malignant tumors. Sonodynamic therapy (SDT) is a new cancer treatment method. One of its unique advantages lies in the treatment of deep tumors due to its excellent tissue penetration ability caused by ultrasound (US). However, most sonosensitizers suffer from weak sonodynamic activity and poor tumor-targeting ability. In addition, small interfering RNA (siRNA) is a promising anticancer drug, and the efficacy of siRNA-based gene therapy largely depends on the cell impermeability of the gene carrier. Here, we designed and synthesized a cationic polythiophene derivative (PT2) that can be used as a siRNA carrier for gene therapy. Moreover, PT2 could generate singlet oxygen (1O2) and hydroxyl radicals (O2•-) under US irradiation, which suggests that PT2 could be used for SDT. Our study discovered that NUDT1 promoted HCC proliferation and inhibited intracellular ROS production. Therefore, si-NUDT1 was designed and synthesized. NUDT1 silencing can inhibit the proliferation of tumor cells and increase the production of intracellular ROS to further improve the efficacy of SDT. Then, si-NUDT1 assembled with PT2 and DSPE-PEG-FA to prepare a novel tumor-targeting nanodrug (PT2-siRNA@PEG-FA) for synergic SDT and gene therapy of HCC.
Collapse
Affiliation(s)
- Yongzhi Chen
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - E Pang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Rui Peng
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| | - Yuanyu Tang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Qiuxia Tan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Minhuan Lan
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan 410083, P. R. China
| | - Dousheng Bai
- Department of Hepatobiliary Surgery, Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu 225009, P. R. China
| |
Collapse
|
3
|
Yang J, Xu J, Xu S, Fan Z, Zhu C, Wan J, Yang J, Xing X. Oxidative stress in acute pulmonary embolism: emerging roles and therapeutic implications. Thromb J 2024; 22:9. [PMID: 38216919 PMCID: PMC10785361 DOI: 10.1186/s12959-023-00577-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 12/25/2023] [Indexed: 01/14/2024] Open
Abstract
Oxidative stress is an imbalance between the body's reactive oxygen species and antioxidant defense mechanisms. Oxidative stress is involved in the development of several cardiovascular diseases, such as pulmonary hypertension, atherosclerosis, and diabetes mellitus. A growing number of studies have suggested the potential role of oxidative stress in the pathogenesis of pulmonary embolism. Biomarkers of oxidative stress in pulmonary embolism have also been explored, such as matrix metalloproteinases, asymmetric dimethylarginine, and neutrophil/lymphocyte ratio. Here, we comprehensively summarize some oxidative stress mechanisms and biomarkers in the development of acute pulmonary embolism and summarize related treatments based on antioxidant stress to explore effective treatment strategies for acute pulmonary embolism.
Collapse
Affiliation(s)
- Jingchao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jinzhu Xu
- Department of Pulmonary and Critical Care Medicine, Yuxi Municipal Hospital of T.C. M, 653100, Yuxi, China
| | - Shuanglan Xu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Zeqin Fan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China
| | - Chenshao Zhu
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jianyuan Wan
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China
| | - Jiao Yang
- Department of Pulmonary and Critical Care Medicine, First Affiliated Hospital of Kunming Medical University, 650032, Kunming, China.
| | - Xiqian Xing
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Yunnan University, 650021, Kunming, China.
| |
Collapse
|
4
|
New Drugs and Therapies in Pulmonary Arterial Hypertension. Int J Mol Sci 2023; 24:ijms24065850. [PMID: 36982922 PMCID: PMC10058689 DOI: 10.3390/ijms24065850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Pulmonary arterial hypertension is a chronic, progressive disorder of the pulmonary vasculature with associated pulmonary and cardiac remodeling. PAH was a uniformly fatal disease until the late 1970s, but with the advent of targeted therapies, the life expectancy of patients with PAH has now considerably improved. Despite these advances, PAH inevitably remains a progressive disease with significant morbidity and mortality. Thus, there is still an unmet need for the development of new drugs and other interventional therapies for the treatment of PAH. One shortcoming of currently approved vasodilator therapies is that they do not target or reverse the underlying pathogenesis of the disease process itself. A large body of evidence has evolved in the past two decades clarifying the role of genetics, dysregulation of growth factors, inflammatory pathways, mitochondrial dysfunction, DNA damage, sex hormones, neurohormonal pathways, and iron deficiency in the pathogenesis of PAH. This review focuses on newer targets and drugs that modify these pathways as well as novel interventional therapies in PAH.
Collapse
|