1
|
Oliveira SD, Almodóvar S, Butrous G, De Jesus Perez V, Fabro A, Graham BB, Mocumbi A, Nyasulu PS, Tura‐Ceide O, Oliveira RKF, Dhillon NK. Infection and pulmonary vascular diseases consortium: United against a global health challenge. Pulm Circ 2024; 14:e70003. [PMID: 39534510 PMCID: PMC11555293 DOI: 10.1002/pul2.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/16/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
Leveraging the potential of virtual platforms in the post-COVID-19 era, the Infection and Pulmonary Vascular Diseases Consortium (iPVDc), with the support of the Pulmonary Vascular Research Institute (PVRI), launched a globally accessible educational program to highlight top-notch research on inflammation and infectious diseases affecting the lung vasculature. This innovative virtual series has already successfully brought together distinguished investigators across five continents - Asia, Europe, South and North America, and Africa. Moreover, these open global forums have contributed to a comprehensive understanding of the complex interplay among immunology, inflammation, infection, and cardiopulmonary health, especially concerning pulmonary hypertension and related pulmonary disorders. These enlightening discussions have not only heightened awareness about the impact of various pathogenic microorganisms, including fungi, parasites, and viruses, on the onset and development of pulmonary vascular diseases but have also cast a spotlight on co-infections and neglected illnesses like schistosomiasis - a disease that continues to impose a heavy socioeconomic burden in numerous regions worldwide. Thus, the overall goal of this review article is to present the most recent breakthroughs from infectious PVDs as well as bring to light the scientific and educational insights from the 2023 iPVDc/PVRI virtual symposium series, shaping our understanding of these crucial health issues in this more than ever interconnected world.
Collapse
Affiliation(s)
- S. D. Oliveira
- Vascular Immunobiology Lab, Department of Anesthesiology, Department of Physiology and Biophysics, College of MedicineUniversity of Illinois ChicagoChicagoIllinoisUSA
| | - S. Almodóvar
- Department of Immunology & Molecular MicrobiologyTexas Tech University Health Sciences Center, School of MedicineLubbockTexasUSA
| | - G. Butrous
- Medway School of PharmacyUniversity of KentMedwayKentUnited Kingdom
| | - V De Jesus Perez
- Division of Pulmonary and Critical CareStanford UniversityPalo AltoCaliforniaUSA
| | - A. Fabro
- Division of Respiratory DiseasesFederal University of São PauloSao PauloBrazil
- Department of Pathology and Forensic Medicine, Ribeirão Preto Medical SchoolUniversidade de São PauloRibeirão PretoBrazil
| | - B. B. Graham
- Department of Medicine, Zuckerberg San Francisco General HospitalUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - A. Mocumbi
- Department of MedicineUniversidade Eduardo MondlaneMaputoMozambique
- Division of Determinants of Chronic Diseases, Instituto Nacional de SaúdeVila de MarracueneMozambique
| | - P. S. Nyasulu
- Department of Global Health, Faculty of Medicine & Health SciencesStellenbosch UniversityCape TownSouth Africa
- School of Public Health, Faculty of Health SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
| | - O. Tura‐Ceide
- Biomedical Research Institute‐IDIBGIGironaSpain
- Biomedical Research Networking Centre on Respiratory Diseases (CIBERES)MadridSpain
| | - R. K. F. Oliveira
- Division of Respiratory Diseases, Department of MedicineFederal University of São Paulo (Unifesp)São PauloBrazil
| | - N. K. Dhillon
- Division of Pulmonary and Critical Care Medicine, Department of Internal MedicineUniversity of Kansas Medical CenterKansas CityKansasUSA
| | | |
Collapse
|
2
|
Chelladurai P, Kuenne C, Bourgeois A, Günther S, Valasarajan C, Cherian AV, Rottier RJ, Romanet C, Weigert A, Boucherat O, Eichstaedt CA, Ruppert C, Guenther A, Braun T, Looso M, Savai R, Seeger W, Bauer UM, Bonnet S, Pullamsetti SS. Epigenetic reactivation of transcriptional programs orchestrating fetal lung development in human pulmonary hypertension. Sci Transl Med 2022; 14:eabe5407. [PMID: 35675437 DOI: 10.1126/scitranslmed.abe5407] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Phenotypic alterations in resident vascular cells contribute to the vascular remodeling process in diseases such as pulmonary (arterial) hypertension [P(A)H]. How the molecular interplay between transcriptional coactivators, transcription factors (TFs), and chromatin state alterations facilitate the maintenance of persistently activated cellular phenotypes that consequently aggravate vascular remodeling processes in PAH remains poorly explored. RNA sequencing (RNA-seq) in pulmonary artery fibroblasts (FBs) from adult human PAH and control lungs revealed 2460 differentially transcribed genes. Chromatin immunoprecipitation sequencing (ChIP-seq) revealed extensive differential distribution of transcriptionally accessible chromatin signatures, with 4152 active enhancers altered in PAH-FBs. Integrative analysis of RNA-seq and ChIP-seq data revealed that the transcriptional signatures for lung morphogenesis were epigenetically derepressed in PAH-FBs, including coexpression of T-box TF 4 (TBX4), TBX5, and SRY-box TF 9 (SOX9), which are involved in the early stages of lung development. These TFs were expressed in mouse fetuses and then repressed postnatally but were maintained in persistent PH of the newborn and reexpressed in adult PAH. Silencing of TBX4, TBX5, SOX9, or E1A-associated protein P300 (EP300) by RNA interference or small-molecule compounds regressed PAH phenotypes and mesenchymal signatures in arterial FBs and smooth muscle cells. Pharmacological inhibition of the P300/CREB-binding protein complex reduced the remodeling of distal pulmonary vessels, improved hemodynamics, and reversed established PAH in three rodent models in vivo, as well as reduced vascular remodeling in precision-cut tissue slices from human PAH lungs ex vivo. Epigenetic reactivation of TFs associated with lung development therefore underlies PAH pathogenesis, offering therapeutic opportunities.
Collapse
Affiliation(s)
- Prakash Chelladurai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Carsten Kuenne
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Alice Bourgeois
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Stefan Günther
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Chanil Valasarajan
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Anoop V Cherian
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Robbert J Rottier
- Department of Pediatric Surgery, Erasmus Medical Center-Sophia Children's Hospital, Wytemaweg 80, 3015CN Rotterdam, Netherlands.,Department of Cell Biology, Erasmus Medical Center, Rotterdam, Netherlands
| | - Charlotte Romanet
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Andreas Weigert
- Institute of Biochemistry I, Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | - Olivier Boucherat
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Christina A Eichstaedt
- Centre for Pulmonary Hypertension, Thoraxklinik Heidelberg GmbH, Translational Lung Research Center Heidelberg (TLRC), Member of the German Center for Lung Research (DZL), Laboratory for Molecular Diagnostics, Institute of Human Genetics, Heidelberg University, 69126 Heidelberg, Germany
| | - Clemens Ruppert
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany
| | - Andreas Guenther
- Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany
| | - Thomas Braun
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Mario Looso
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany
| | - Rajkumar Savai
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany.,Institute for Lung Health (ILH), Member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Werner Seeger
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany.,Institute for Lung Health (ILH), Member of the DZL, Justus Liebig University, Giessen 35392, Germany
| | - Uta-Maria Bauer
- Institute of Molecular Biology and Tumor Research, 35043 Marburg, Germany
| | - Sébastien Bonnet
- Department of Medicine Laval University, Pulmonary Hypertension and Vascular Biology Research Group of Quebec Heart and Lung Institute, G1V 4G5 Quebec, Canada
| | - Soni Savai Pullamsetti
- Max Planck Institute for Heart and Lung Research, Member of the German Center for Lung Research (DZL), Member of the Cardio-Pulmonary Institute (CPI), 61231 Bad Nauheim, Germany.,Department of Internal Medicine, Member of the DZL, Member of CPI, Justus Liebig University, Giessen 35392, Germany
| |
Collapse
|
3
|
Deng L, Han X, Wang Z, Nie X, Bian J. The Landscape of Noncoding RNA in Pulmonary Hypertension. Biomolecules 2022; 12:biom12060796. [PMID: 35740920 PMCID: PMC9220981 DOI: 10.3390/biom12060796] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 02/08/2023] Open
Abstract
The transcriptome of pulmonary hypertension (PH) is complex and highly genetically heterogeneous, with noncoding RNA transcripts playing crucial roles. The majority of RNAs in the noncoding transcriptome are long noncoding RNAs (lncRNAs) with less circular RNAs (circRNAs), which are two characteristics gaining increasing attention in the forefront of RNA research field. These noncoding transcripts (especially lncRNAs and circRNAs) exert important regulatory functions in PH and emerge as potential disease biomarkers and therapeutic targets. Recent technological advancements have established great momentum for discovery and functional characterization of ncRNAs, which include broad transcriptome sequencing such as bulk RNA-sequence, single-cell and spatial transcriptomics, and RNA-protein/RNA interactions. In this review, we summarize the current research on the classification, biogenesis, and the biological functions and molecular mechanisms of these noncoding RNAs (ncRNAs) involved in the pulmonary vascular remodeling in PH. Furthermore, we highlight the utility and challenges of using these ncRNAs as biomarkers and therapeutics in PH.
Collapse
Affiliation(s)
- Lin Deng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaofeng Han
- Department of Diagnostic and Interventional Radiology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China;
| | - Ziping Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
| | - Xiaowei Nie
- Shenzhen Key Laboratory of Respiratory Diseases, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen 518055, China
- Correspondence: (X.N.); (J.B.)
| | - Jinsong Bian
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (L.D.); (Z.W.)
- Correspondence: (X.N.); (J.B.)
| |
Collapse
|