1
|
Mall MA, Burgel PR, Castellani C, Davies JC, Salathe M, Taylor-Cousar JL. Cystic fibrosis. Nat Rev Dis Primers 2024; 10:53. [PMID: 39117676 DOI: 10.1038/s41572-024-00538-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
Cystic fibrosis is a rare genetic disease caused by mutations in CFTR, the gene encoding cystic fibrosis transmembrane conductance regulator (CFTR). The discovery of CFTR in 1989 has enabled the unravelling of disease mechanisms and, more recently, the development of CFTR-directed therapeutics that target the underlying molecular defect. The CFTR protein functions as an ion channel that is crucial for correct ion and fluid transport across epithelial cells lining the airways and other organs. Consequently, CFTR dysfunction causes a complex multi-organ disease but, to date, most of the morbidity and mortality in people with cystic fibrosis is due to muco-obstructive lung disease. Cystic fibrosis care has long been limited to treating symptoms using nutritional support, airway clearance techniques and antibiotics to suppress airway infection. The widespread implementation of newborn screening for cystic fibrosis and the introduction of a highly effective triple combination CFTR modulator therapy that has unprecedented clinical benefits in up to 90% of genetically eligible people with cystic fibrosis has fundamentally changed the therapeutic landscape and improved prognosis. However, people with cystic fibrosis who are not eligible based on their CFTR genotype or who live in countries where they do not have access to this breakthrough therapy remain with a high unmet medical need.
Collapse
Affiliation(s)
- Marcus A Mall
- Department of Paediatric Respiratory Medicine, Immunology and Critical Care Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, Berlin, Germany.
- German Centre for Lung Research (DZL), Associated Partner Site Berlin, Berlin, Germany.
- German Center for Child and Adolescent Health (DZKJ), Partner Site Berlin, Berlin, Germany.
| | - Pierre-Régis Burgel
- Université Paris Cité and Institut Cochin, Inserm U1016, Paris, France
- Department of Respiratory Medicine and National Reference Center for Cystic Fibrosis, Cochin Hospital, Assistance Publique Hôpitaux de Paris (AP-HP), Paris, France
| | - Carlo Castellani
- IRCCS Istituto Giannina Gaslini, Cystic Fibrosis Center, Genoa, Italy
| | - Jane C Davies
- National Heart & Lung Institute, Imperial College London, London, UK
- St Thomas' NHS Trust, London, UK
- Royal Brompton Hospital, Part of Guy's & St Thomas' Trust, London, UK
| | - Matthias Salathe
- Department of Internal Medicine, University of Kansas Medical Center, Kansas City, MO, USA
| | - Jennifer L Taylor-Cousar
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Anschutz Medical Campus, University of Colorado, Aurora, CO, USA
- Division of Paediatric Pulmonary Medicine, National Jewish Health, Denver, CO, USA
| |
Collapse
|
2
|
Kolski-Andreaco A, Taiclet S, Myerburg MM, Sembrat J, Bridges RJ, Straub AC, Wills ZP, Butterworth MB, Devor DC. Potentiation of BKCa channels by cystic fibrosis transmembrane conductance regulator correctors VX-445 and VX-121. J Clin Invest 2024; 134:e176328. [PMID: 38954478 PMCID: PMC11324306 DOI: 10.1172/jci176328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 06/25/2024] [Indexed: 07/04/2024] Open
Abstract
Cystic fibrosis results from mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) anion channel, ultimately leading to diminished transepithelial anion secretion and mucociliary clearance. CFTR correctors are therapeutics that restore the folding/trafficking of mutated CFTR to the plasma membrane. The large-conductance calcium-activated potassium channel (BKCa, KCa1.1) is also critical for maintaining lung airway surface liquid (ASL) volume. Here, we show that the class 2 (C2) CFTR corrector VX-445 (elexacaftor) induces K+ secretion across WT and F508del CFTR primary human bronchial epithelial cells (HBEs), which was entirely inhibited by the BKCa antagonist paxilline. Similar results were observed with VX-121, a corrector under clinical evaluation. Whole-cell patch-clamp recordings verified that CFTR correctors potentiated BKCa activity from both primary HBEs and HEK cells stably expressing the α subunit (HEK-BK cells). Furthermore, excised patch-clamp recordings from HEK-BK cells verified direct action on the channel and demonstrated a significant increase in open probability. In mouse mesenteric artery, VX-445 induced a paxilline-sensitive vasorelaxation of preconstricted arteries. VX-445 also reduced firing frequency in primary rat hippocampal and cortical neurons. We raise the possibilities that C2 CFTR correctors gain additional clinical benefit by activation of BKCa in the lung yet may lead to adverse events through BKCa activation elsewhere.
Collapse
Affiliation(s)
| | | | - Michael M. Myerburg
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - John Sembrat
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert J. Bridges
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, Illinois, USA
| | | | - Zachary P. Wills
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | |
Collapse
|
3
|
Aksit MA, Ling H, Pace RG, Raraigh KS, Onchiri F, Faino AV, Pagel K, Pugh E, Stilp AM, Sun Q, Blue EE, Wright FA, Zhou YH, Bamshad MJ, Gibson RL, Knowles MR, Cutting GR, Blackman SM. Pleiotropic modifiers of age-related diabetes and neonatal intestinal obstruction in cystic fibrosis. Am J Hum Genet 2022; 109:1894-1908. [PMID: 36206743 PMCID: PMC9606479 DOI: 10.1016/j.ajhg.2022.09.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 09/12/2022] [Indexed: 01/25/2023] Open
Abstract
Individuals with cystic fibrosis (CF) develop complications of the gastrointestinal tract influenced by genetic variants outside of CFTR. Cystic fibrosis-related diabetes (CFRD) is a distinct form of diabetes with a variable age of onset that occurs frequently in individuals with CF, while meconium ileus (MI) is a severe neonatal intestinal obstruction affecting ∼20% of newborns with CF. CFRD and MI are slightly correlated traits with previous evidence of overlap in their genetic architectures. To better understand the genetic commonality between CFRD and MI, we used whole-genome-sequencing data from the CF Genome Project to perform genome-wide association. These analyses revealed variants at 11 loci (6 not previously identified) that associated with MI and at 12 loci (5 not previously identified) that associated with CFRD. Of these, variants at SLC26A9, CEBPB, and PRSS1 associated with both traits; variants at SLC26A9 and CEBPB increased risk for both traits, while variants at PRSS1, the higher-risk alleles for CFRD, conferred lower risk for MI. Furthermore, common and rare variants within the SLC26A9 locus associated with MI only or CFRD only. As expected, different loci modify risk of CFRD and MI; however, a subset exhibit pleiotropic effects indicating etiologic and mechanistic overlap between these two otherwise distinct complications of CF.
Collapse
Affiliation(s)
- Melis A Aksit
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hua Ling
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Rhonda G Pace
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Karen S Raraigh
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Frankline Onchiri
- Children's Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Anna V Faino
- Children's Core for Biostatistics, Epidemiology and Analytics in Research, Seattle Children's Research Institute, Seattle, WA 98101, USA
| | - Kymberleigh Pagel
- The Institute for Computational Medicine, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elizabeth Pugh
- Department of Genetic Medicine, Center for Inherited Disease Research, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Adrienne M Stilp
- Department of Biostatistics, University of Washington, Seattle, WA 98195, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Elizabeth E Blue
- Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| | - Fred A Wright
- Department of Statistics, North Carolina State University, Raleigh, NC 27797, USA; Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27797, USA; Department of Biological Sciences, North Carolina State University, Raleigh, NC 27797, USA
| | - Yi-Hui Zhou
- Bioinformatics Research Center, North Carolina State University, Raleigh, NC 27797, USA
| | - Michael J Bamshad
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA; Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA; Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Ronald L Gibson
- Center for Clinical and Translational Research, Seattle Children's Hospital, Seattle, WA 98105, USA; Department of Pediatrics, Division of Pulmonary & Sleep Medicine, University of Washington School of Medicine/Seattle Children's Hospital, Seattle, WA, USA
| | - Michael R Knowles
- Marsico Lung Institute/UNC CF Research Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Garry R Cutting
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Scott M Blackman
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Division of Pediatric Endocrinology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| |
Collapse
|