1
|
Yuan MQ, Song L, Wang ZR, Zhang ZY, Shi M, He J, Mo Q, Zheng N, Yao WQ, Zhang Y, Dong T, Li Y, Zhang C, Song J, Huang L, Xu Z, Yuan X, Fu JL, Zhen C, Cai J, Dong J, Zhang J, Xie WF, Li Y, Zhang B, Shi L, Wang FS. Long-term outcomes of mesenchymal stem cell therapy in severe COVID-19 patients: 3-year follow-up of a randomized, double-blind, placebo-controlled trial. Stem Cell Res Ther 2025; 16:94. [PMID: 40001244 PMCID: PMC11863646 DOI: 10.1186/s13287-025-04148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/14/2025] [Indexed: 02/27/2025] Open
Abstract
BACKGROUND The long-term effects and outcomes of human mesenchymal stem cell (MSC) therapy in patients with severe coronavirus disease 2019 (COVID-19) remain poorly understood. This study aimed to evaluate the extended safety and efficacy of MSC treatment in severe patients with COVID-19 who participated in our earlier randomized, double-blind, placebo-controlled clinical trial, with follow-up conducted over 3 years. METHODS One hundred patients with severe COVID-19 were randomized to receive either an MSC infusion (n = 65, 4 × 107 cells/dose, on days 0, 3, and 6) or a placebo, with both groups receiving the standard of care. At 36 months post-MSC therapy, patients were followed up to long-term safety and efficacy, particularly the effects of MSC therapy on persistent COVID-19 symptoms. Evaluated outcomes included lung imaging results, 6-min walking distance (6-MWD), pulmonary function test results, quality of life scores based on the Short Form-36 (SF-36) health survey, Long COVID symptoms, new-onset comorbidities, tumor marker levels, and rates of COVID-19 reinfection. RESULTS Three years post-treatment, 46.94% (23/49) of patients in the MSC group and 34.48% (10/29) in the placebo group showed normal findings on computed tomography (CT) images (odds ratio [OR] = 1.68, 95% confidence interval [CI]: 0.65-4.34). The general health (GH) score from the SF-36 was higher in the MSC group (67.0) compared to the placebo group (50.0), with a difference of 12.86 (95% CI: 1.44-24.28). Both groups showed similar results for total lung severity scores (TSS), 6-MWD, pulmonary function tests, and Long COVID symptoms. No significant differences between groups were observed in new-onset complications (including tumorigenesis) or tumor marker levels. After adjusting for China's dynamic zero-COVID-19 strategy, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) reinfection rates were 53.06% (26/49) in the MSC group and 67.86% (19/28) in the placebo group (OR = 0.54, 95% CI: 0.20-1.41). CONCLUSIONS These findings support the long-term safety of MSC therapy in patients with severe COVID-19 over 3 years. MSC treatment may offer potential benefits for lung recovery and improved quality of life in patients experiencing Long COVID symptoms. TRIAL REGISTRATION ClinicalTrials.gov, NCT04288102. Registered 28 February 2020, https://clinicaltrials.gov/study/NCT04288102 .
Collapse
Affiliation(s)
- Meng-Qi Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Le Song
- Department of Infectious Diseases, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China
| | - Ze-Rui Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
- Senior Department of Gastroenterology, The First Medical Center of Chinese PLA General Hospital, Beijing, 100853, China
| | - Zi-Ying Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Ming Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
- Medical School of Chinese PLA, Beijing, 100853, China
| | - Junli He
- Department of Infectious Diseases, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China
| | - Qiong Mo
- Department of Infectious Diseases, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China
| | - Ning Zheng
- Department of Infectious Diseases, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China
| | - Wei-Qi Yao
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd, Hubei, 430030, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, 300000, China
- Department of Biology and Medicine, Hubei University of Technology, Wuhan, 430030, Hubei, China
| | - Yu Zhang
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd, Hubei, 430030, China
- VCANBIO Cell & Gene Engineering Corp., Ltd, Tianjin, 300000, China
| | - Tengyun Dong
- Wuhan Optics Valley Zhongyuan Pharmaceutical Co., Ltd, Hubei, 430030, China
| | - Yuanyuan Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Chao Zhang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Jinwen Song
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Lei Huang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Zhe Xu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Xin Yuan
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Jun-Liang Fu
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Cheng Zhen
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Jianming Cai
- Department of Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jinghui Dong
- Department of Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Jianzeng Zhang
- Department of Radiology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100039, China
| | - Wei-Fen Xie
- Department of Gastroenterology, Changzheng Hospital, Naval Medical University, 415 Fengyang Road, Shanghai, 200003, China
| | - Yonggang Li
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China
| | - Bo Zhang
- Department of Infectious Diseases, Chinese PLA General Hospital of Central Theater Command, Wuhan, 430070, Hubei, China.
| | - Lei Shi
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| | - Fu-Sheng Wang
- Senior Department of Infectious Diseases, The Fifth Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Infectious Diseases, No. 100 Western 4Th Ring Road, Beijing, 100039, China.
- Medical School of Chinese PLA, Beijing, 100853, China.
| |
Collapse
|
2
|
Battaglini D, Iavarone IG, Rocco PRM. An update on the pharmacological management of acute respiratory distress syndrome. Expert Opin Pharmacother 2024; 25:1229-1247. [PMID: 38940703 DOI: 10.1080/14656566.2024.2374461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/26/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Acute respiratory distress syndrome (ARDS) is characterized by acute inflammatory injury to the lungs, alterations in vascular permeability, loss of aerated tissue, bilateral infiltrates, and refractory hypoxemia. ARDS is considered a heterogeneous syndrome, which complicates the search for effective therapies. The goal of this review is to provide an update on the pharmacological management of ARDS. AREAS COVERED The difficulties in finding effective pharmacological therapies are mainly due to the challenges in designing clinical trials for this unique, varied population of critically ill patients. Recently, some trials have been retrospectively analyzed by dividing patients into hyper-inflammatory and hypo-inflammatory sub-phenotypes. This approach has led to significant outcome improvements with some pharmacological treatments that previously failed to demonstrate efficacy, which suggests that a more precise selection of ARDS patients for clinical trials could be the key to identifying effective pharmacotherapies. This review is provided after searching the main studies on this topics on the PubMed and clinicaltrials.gov databases. EXPERT OPINION The future of ARDS therapy lies in precision medicine, innovative approaches to drug delivery, immunomodulation, cell-based therapies, and robust clinical trial designs. These should lead to more effective and personalized treatments for patients with ARDS.
Collapse
Affiliation(s)
- Denise Battaglini
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Ida Giorgia Iavarone
- Anesthesia and Intensive Care, IRCCS Ospedale Policlinico, Genova, Italy
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, Genova, Italy
| | - Patricia R M Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
3
|
Qin J, Wang G, Han D. Mesenchymal Stem Cells on Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Stem Cell Rev Rep 2024; 20:931-937. [PMID: 38427315 DOI: 10.1007/s12015-024-10705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND The Coronavirus disease-2019 (COVID-19) pandemic continues, and the death toll continues to surge. This meta-analysis aimed to determine the efficacy of mesenchymal stem cells (MSCs) on mortality in patients with COVID-19. METHODS A systematic search was made of PubMed, Embase, Cochrane Library, and clinicaltrials.gov, without language restrictions. Randomized controlled trials (RCTs) on treatment of COVID-19 with MSCs, compared with placebo or blank, were reviewed. Studies were pooled to risk ratios (RRs), with 95% confidence intervals (CIs). RESULTS Seventeen RCTs (enrolling 1019 participants) met the inclusion criteria. MSCs showed significant effect on 28-day mortality (RR 0.76, 95% CI 0.62 to 0.93; P = 0.008). There was no statistically significant difference in 60-day mortality (RR 0.87, 95% CI 0.70 to 1.09; P = 0.22), and 90-day mortality (RR 0.91, 95% CI 0.72 to 1.15; P = 0.44) between the two groups. CONCLUSIONS MSCs significantly reduced 28-day mortality in patients with COVID-19. The long-term effect of MSCs on mortality require further study.
Collapse
Affiliation(s)
- Jinlv Qin
- Radioimmunoassay Center, Shaanxi Provincial People's Hospital, Xi'an, 710068, Shaanxi, China
| | - Guizuo Wang
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068, Shaanxi, China
| | - Dong Han
- Department of Respiratory and Critical Care Medicine, Shaanxi Provincial People's Hospital, No. 256, West Youyi Road, Xi'an, 710068, Shaanxi, China.
| |
Collapse
|
4
|
Hou XY, Danzeng LM, Wu YL, Ma QH, Yu Z, Li MY, Li LS. Mesenchymal stem cells and their derived exosomes for the treatment of COVID-19. World J Stem Cells 2024; 16:353-374. [PMID: 38690515 PMCID: PMC11056634 DOI: 10.4252/wjsc.v16.i4.353] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/17/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024] Open
Abstract
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.
Collapse
Affiliation(s)
- Xiang-Yi Hou
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - La-Mu Danzeng
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Yi-Lin Wu
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Qian-Hui Ma
- Department of Pharmacy, Jilin University, Changchun 130021, Jilin Province, China
| | - Zheng Yu
- The First Hospital of Jilin University, Jilin University, Changchun 130021, Jilin Province, China
| | - Mei-Ying Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China
| | - Li-Sha Li
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun 130021, Jilin Province, China.
| |
Collapse
|
5
|
Curley GF, O’Kane CM, McAuley DF, Matthay MA, Laffey JG. Cell-based Therapies for Acute Respiratory Distress Syndrome: Where Are We Now? Am J Respir Crit Care Med 2024; 209:789-797. [PMID: 38324017 PMCID: PMC10995569 DOI: 10.1164/rccm.202311-2046cp] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/07/2024] [Indexed: 02/08/2024] Open
Abstract
There is considerable interest in the potential for cell-based therapies, particularly mesenchymal stromal cells (MSCs) and their products, as a therapy for acute respiratory distress syndrome (ARDS). MSCs exert effects via diverse mechanisms including reducing excessive inflammation by modulating neutrophil, macrophage and T-cell function, decreasing pulmonary permeability and lung edema, and promoting tissue repair. Clinical studies indicate that MSCs are safe and well tolerated, with promising therapeutic benefits in specific clinical settings, leading to regulatory approvals of MSCs for specific indications in some countries.This perspective reassesses the therapeutic potential of MSC-based therapies for ARDS given insights from recent cell therapy trials in both COVID-19 and in 'classic' ARDS, and discusses studies in graft-vs.-host disease, one of the few licensed indications for MSC therapies. We identify important unknowns in the current literature, address challenges to clinical translation, and propose an approach to facilitate assessment of the therapeutic promise of MSC-based therapies for ARDS.
Collapse
Affiliation(s)
- Gerard F. Curley
- Department of Anaesthesia, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cecilia M. O’Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
| | - Daniel F. McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen’s University Belfast, Belfast, United Kingdom
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, United Kingdom
| | - Michael A. Matthay
- Department of Medicine and Department of Anesthesia, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, California
| | - John G. Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, Saolta University Healthcare System, Galway, Ireland; and
- Anaesthesia, School of Medicine, College of Medicine, Nursing and Health Sciences, and CÚRAM Centre for Research in Medical Devices, University of Galway, Galway, Ireland
| |
Collapse
|
6
|
McMullan RR, McAuley DF, O'Kane CM, Silversides JA. Vascular leak in sepsis: physiological basis and potential therapeutic advances. Crit Care 2024; 28:97. [PMID: 38521954 PMCID: PMC10961003 DOI: 10.1186/s13054-024-04875-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 03/14/2024] [Indexed: 03/25/2024] Open
Abstract
Sepsis is a life-threatening condition characterised by endothelial barrier dysfunction and impairment of normal microcirculatory function, resulting in a state of hypoperfusion and tissue oedema. No specific pharmacological therapies are currently used to attenuate microvascular injury. Given the prominent role of endothelial breakdown and microcirculatory dysfunction in sepsis, there is a need for effective strategies to protect the endothelium. In this review we will discuss key mechanisms and putative therapeutic agents relevant to endothelial barrier function.
Collapse
Affiliation(s)
- Ross R McMullan
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK.
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| | - Cecilia M O'Kane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK
| | - Jonathan A Silversides
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, Lisburn Road, Belfast, BT9 7BL, UK
- Department of Critical Care, Belfast Health and Social Care Trust, Belfast, UK
| |
Collapse
|
7
|
Aribindi K, Lim M, Lakshminrusimha S, Albertson T. Investigational pharmacological agents for the treatment of ARDS. Expert Opin Investig Drugs 2024; 33:243-277. [PMID: 38316432 DOI: 10.1080/13543784.2024.2315128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/25/2024] [Indexed: 02/07/2024]
Abstract
INTRODUCTION Acute Respiratory Distress Syndrome (ARDS) is a heterogeneous form of lung injury with severe hypoxemia and bilateral infiltrates after an inciting event that results in diffuse lung inflammation with a high mortality rate. While research in COVID-related ARDS has resulted in several pharmacotherapeutic agents that have undergone successful investigation, non-COVID ARDS studies have not resulted in many widely accepted pharmacotherapeutic agents despite exhaustive research. AREAS COVERED The aim of this review is to discuss adjuvant pharmacotherapies targeting non-COVID Acute Lung Injury (ALI)/ARDS and novel therapeutics in COVID associated ALI/ARDS. In ARDS, variable data may support selective use of neuromuscular blocking agents, corticosteroids and neutrophil elastase inhibitors, but are not yet universally used. COVID-ALI/ARDS has data supporting the use of IL-6 monoclonal antibodies, corticosteroids, and JAK inhibitor therapy. EXPERT OPINION Although ALI/ARDS modifying pharmacological agents have been identified in COVID-related disease, the data in non-COVID ALI/ARDS has been less compelling. The increased use of more specific molecular phenotyping based on physiologic parameters and biomarkers, will ensure equipoise between groups, and will likely allow more precision in confirming pharmacological agent efficacy in future studies.
Collapse
Affiliation(s)
- Katyayini Aribindi
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
- Department of Medicine, Veterans Affairs North California Health Care System, Mather, CA, USA
| | - Michelle Lim
- Department of Pediatrics, Division of Pediatric Critical Care Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Satyan Lakshminrusimha
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| | - Timothy Albertson
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep Medicine, U.C. Davis School of Medicine, Sacramento, CA, USA
| |
Collapse
|
8
|
Huang Q, Le Y, Li S, Bian Y. Signaling pathways and potential therapeutic targets in acute respiratory distress syndrome (ARDS). Respir Res 2024; 25:30. [PMID: 38218783 PMCID: PMC10788036 DOI: 10.1186/s12931-024-02678-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a common condition associated with critically ill patients, characterized by bilateral chest radiographical opacities with refractory hypoxemia due to noncardiogenic pulmonary edema. Despite significant advances, the mortality of ARDS remains unacceptably high, and there are still no effective targeted pharmacotherapeutic agents. With the outbreak of coronavirus disease 19 worldwide, the mortality of ARDS has increased correspondingly. Comprehending the pathophysiology and the underlying molecular mechanisms of ARDS may thus be essential to developing effective therapeutic strategies and reducing mortality. To facilitate further understanding of its pathogenesis and exploring novel therapeutics, this review provides comprehensive information of ARDS from pathophysiology to molecular mechanisms and presents targeted therapeutics. We first describe the pathogenesis and pathophysiology of ARDS that involve dysregulated inflammation, alveolar-capillary barrier dysfunction, impaired alveolar fluid clearance and oxidative stress. Next, we summarize the molecular mechanisms and signaling pathways related to the above four aspects of ARDS pathophysiology, along with the latest research progress. Finally, we discuss the emerging therapeutic strategies that show exciting promise in ARDS, including several pharmacologic therapies, microRNA-based therapies and mesenchymal stromal cell therapies, highlighting the pathophysiological basis and the influences on signal transduction pathways for their use.
Collapse
Affiliation(s)
- Qianrui Huang
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China
| | - Yue Le
- Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, 87 Dingjia Bridge, Hunan Road, Gu Lou District, Nanjing, 210009, China
| | - Shusheng Li
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| | - Yi Bian
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095, Jie Fang Avenue, Wuhan, 430030, China.
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095, Jie Fang Avenue, Wuhan, 430030, China.
| |
Collapse
|
9
|
Millar JE, O'Kane CM. Mesenchymal Stromal Cells in Acute Respiratory Distress Syndrome: More Questions Than Answers. Am J Respir Crit Care Med 2023; 208:1257-1259. [PMID: 37939216 PMCID: PMC10765388 DOI: 10.1164/rccm.202310-1847ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 11/08/2023] [Indexed: 11/10/2023] Open
Affiliation(s)
- Jonathan E Millar
- Centre for Inflammation Research University of Edinburgh Edinburgh, United Kingdom
| | - Cecilia M O'Kane
- School of Medicine, Dentistry, and Biomedical Sciences Queen's University of Belfast Belfast, United Kingdom
| |
Collapse
|
10
|
Nagamura-Inoue T, Nagamura F. Umbilical cord blood and cord tissue banking as somatic stem cell resources to support medical cell modalities. Inflamm Regen 2023; 43:59. [PMID: 38053217 PMCID: PMC10696687 DOI: 10.1186/s41232-023-00311-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 11/21/2023] [Indexed: 12/07/2023] Open
Abstract
Human umbilical cord blood (CB) and umbilical cord tissue (UC) are attractive sources of somatic stem cells for gene and cell therapies. CB and UC can be obtained noninvasively from donors. CB, a known source of hematopoietic stem cells for transplantation, has attracted attention as a new source of immune cells, including universal chimeric antigen receptor-T cell therapy (CAR-T) and, more recently, universal CAR-natural killer cells. UC-derived mesenchymal stromal cells (UC-MSCs) have a higher proliferation potency than those derived from adult tissues and can be used anon-HLA restrictively. UC-MSCs meet the MSC criteria outlined by the International Society of Gene and Cellular Therapy. UC-MSCs are negative for HLA-DR, CD80, and CD86 and have an immunosuppressive ability that mitigates the proliferation of activated lymphocytes through secreting indoleamine 2,3-dioxygenase 1 and prostaglandin E2, and the expression of PD-L2 and PD-L1. We established the off-the-shelf cord blood/cord bank IMSUT CORD to support novel cell therapy modalities, including the CB-derived immune cells, MSCs, MSCs-derived extracellular vesicles, biological carriers loaded with chemotherapy drugs, prodrug, oncolytic viruses, nanoparticles, human artificial chromosome, combinational products with a scaffold, bio3D printing, and so on.
Collapse
Affiliation(s)
- Tokiko Nagamura-Inoue
- Department of Cell Processing and Transfusion, Research Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
| | - Fumitaka Nagamura
- IMSUT CORD, Research Hospital, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Division of Advanced Medicine Promotion, The Advanced Clinical Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
11
|
Pochon C, Laroye C, Kimmoun A, Reppel L, Dhuyser A, Rousseau H, Gauthier M, Petitpain N, Chabot JF, Valentin S, de Carvalho Bittencourt M, Peres M, Aarnink A, Decot V, Bensoussan D, Gibot S. Efficacy of Wharton Jelly Mesenchymal Stromal Cells infusions in moderate to severe SARS-Cov-2 related acute respiratory distress syndrome: a phase 2a double-blind randomized controlled trial. Front Med (Lausanne) 2023; 10:1224865. [PMID: 37706025 PMCID: PMC10495568 DOI: 10.3389/fmed.2023.1224865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/03/2023] [Indexed: 09/15/2023] Open
Abstract
Background The COVID-19 pandemic caused a wave of acute respiratory distress syndrome (ARDS) with a high in-hospital mortality, especially in patients requiring invasive mechanical ventilation. Wharton Jelly-derived Mesenchymal Stromal Cells (WJ-MSCs) may counteract the pulmonary damage induced by the SARS-CoV-2 infection through pro-angiogenic effects, lung epithelial cell protection, and immunomodulation. Methods In this randomized, double-blind, placebo-controlled phase 2a trial, adult patients receiving invasive mechanical ventilation for SARS-CoV-2 induced moderate or severe ARDS were assigned to receive 1 intravenous infusion of 1 × 106 WJ-MSCs/kg or placebo within 48 h of invasive ventilation followed by 2 infusions of 0.5 × 106 WJ-MSCs/kg or placebo over 5 days. The primary endpoint was the percentage of patients with a PaO2/FiO2 > 200 on day 10. Results Thirty patients were included from November 2020 to May 2021, 15 in the WJ-MSC group and 15 in the placebo group. We did not find any significant difference in the PaO2/FiO2 ratio at day 10, with 18 and 15% of WJ-MSCs and placebo-treated patients reaching a ratio >200, respectively. Survival did not differ in the 2 groups with a 20% mortality rate at day 90. While we observed a higher number of ventilation-free days at 28 days in the WJ-MSC arm, this difference was not statistically significant (median of 11 (0-22) vs. 0 (0-18), p = 0.2). The infusions were well tolerated, with a low incidence of anti-HLA alloimmunization after 90 days. Conclusion While treatment with WJ-MSCs appeared safe and feasible in patients with SARS-CoV2 moderate or severe ARDS in this phase 2a trial, the treatment was not associated with an increased percentage of patients with P/F > 200 at 10d, nor did 90 day mortality improve in the treated group. Clinical trial registration https://beta.clinicaltrials.gov/study/NCT04625738, identifier NCT04625738.
Collapse
Affiliation(s)
- Cécile Pochon
- CHRU-Nancy, Pediatric Onco-Hematology Department, Nancy, France
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
| | - Caroline Laroye
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Antoine Kimmoun
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpitaux de Brabois, Nancy, France
- Université de Lorraine, Nancy, France
| | - Loic Reppel
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Adéle Dhuyser
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Hélène Rousseau
- CHRU-Nancy, Département Méthodologie, Promotion, Investigation, Hôpitaux de Brabois, Nancy, France
| | - Mélanie Gauthier
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Nadine Petitpain
- CHRU-Nancy, Département de Pharmacovigilance, Hôpitaux de Brabois, Nancy, France
| | - Jean-François Chabot
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | - Simon Valentin
- CHRU-Nancy, Pôle des Spécialités Médicales/Département de Pneumologie, Hôpitaux de Brabois, Nancy, France
| | | | - Michael Peres
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Alice Aarnink
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, HLA and Histocompatibility Laboratory, Nancy, France
| | - Véronique Decot
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Danièle Bensoussan
- Team 6 IMoPA, UMR 7365 CNRS-UL, Université de Lorraine, Nancy, France
- CHRU-Nancy, Unité de Thérapie Cellulaire et banque de tissus, Nancy, France
| | - Sébastien Gibot
- CHRU-Nancy, Service de Médecine Intensive et Réanimation, Hôpital Central, Nancy, France
| |
Collapse
|