1
|
Chitnis A, Vyas PK, Chaudhary P, Ghatavat G. Case-based discussion: Lymphocytic interstitial pneumonia a rare presentation in an immunocompetent adult male. Lung India 2015; 32:500-4. [PMID: 26628770 PMCID: PMC4587010 DOI: 10.4103/0970-2113.164164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Lymphocytic interstitial pneumonia (LIP) is a rare form of interstitial lung disease usually associated with other systemic diseases; however, idiopathic cases are being reported. As per recent ATS/ERS 2013 guidelines, diagnostic criteria of clinical, radiological and histopathological for LIP is same as 2002 except some cystic changes on HRCT chest. Many cases diagnosed in the past as LIP now turn out to be NSIP; therefore as per new ATS/ERS classification whenever anybody report a case of LIP, NSIP should always be kept in mind as differential diagnosis. Here we present a case of LIP in an immunocompetent adult male presented with history of persistent dry cough and breathlessness on exertion, confirmed on HRCT chest and histopathologically, treated successfully with steroids.
Collapse
Affiliation(s)
- Ajay Chitnis
- Department of Respiratory Medicine, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Pradeep Kumar Vyas
- Department of Respiratory Medicine, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Priyanka Chaudhary
- Department of Respiratory Medicine, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| | - Gaurav Ghatavat
- Department of Respiratory Medicine, Jaslok Hospital and Research Centre, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Clement A, Nathan N, Epaud R, Fauroux B, Corvol H. Interstitial lung diseases in children. Orphanet J Rare Dis 2010; 5:22. [PMID: 20727133 PMCID: PMC2939531 DOI: 10.1186/1750-1172-5-22] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 08/20/2010] [Indexed: 12/30/2022] Open
Abstract
Interstitial lung disease (ILD) in infants and children comprises a large spectrum of rare respiratory disorders that are mostly chronic and associated with high morbidity and mortality. These disorders are characterized by inflammatory and fibrotic changes that affect alveolar walls. Typical features of ILD include dyspnea, diffuse infiltrates on chest radiographs, and abnormal pulmonary function tests with restrictive ventilatory defect and/or impaired gas exchange. Many pathological situations can impair gas exchange and, therefore, may contribute to progressive lung damage and ILD. Consequently, diagnosis approach needs to be structured with a clinical evaluation requiring a careful history paying attention to exposures and systemic diseases. Several classifications for ILD have been proposed but none is entirely satisfactory especially in children. The present article reviews current concepts of pathophysiological mechanisms, etiology and diagnostic approaches, as well as therapeutic strategies. The following diagnostic grouping is used to discuss the various causes of pediatric ILD: 1) exposure-related ILD; 2) systemic disease-associated ILD; 3) alveolar structure disorder-associated ILD; and 4) ILD specific to infancy. Therapeutic options include mainly anti-inflammatory, immunosuppressive, and/or anti-fibrotic drugs. The outcome is highly variable with a mortality rate around 15%. An overall favorable response to corticosteroid therapy is observed in around 50% of cases, often associated with sequelae such as limited exercise tolerance or the need for long-term oxygen therapy.
Collapse
Affiliation(s)
- Annick Clement
- Pediatric Pulmonary Department, Reference Center for Rare Lung Diseases, AP-HP, Hôpital Trousseau, Inserm UMR S-938, Université Pierre et Marie Curie-Paris 6, Paris, F-75012 France.
| | | | | | | | | |
Collapse
|
3
|
Abstract
Vitamin D deficiency is increasingly being recognized as a prevalent problem in the general population. Patients with chronic lung diseases such as asthma, cystic fibrosis, chronic obstructive lung disease and interstitial pneumonia appear to be at increased risk for vitamin D deficiency for reasons that are not clear. Several studies indicate that vitamin D possesses a range of anti-inflammatory properties and may be involved in processes other than the previously believed functions of calcium and phosphate homeostasis. Various cytokines, cellular elements, oxidative stress and protease/antiprotease levels appear to affect lung fibroproliferation, remodelling and function, which may be influenced by vitamin D levels. Chronic lung diseases such as asthma and chronic obstructive lung disease have also been linked to vitamin D on a genetic basis. This immune and genetic influence of vitamin D may influence the pathogenesis of chronic lung diseases. A recent observational study notes a significant association between vitamin D deficiency and decreased pulmonary function tests in a large ambulatory population. The present review will examine the current literature regarding vitamin D deficiency, its prevalence in patients with chronic lung disease, vitamin D anti-inflammatory properties and the role of vitamin D in pulmonary function.
Collapse
|
4
|
Abstract
Idiopathic pulmonary fibrosis, 1 of the 7 idiopathic interstitial pneumonias, carries an ominous prognosis. It has a median survival of 2.8 years. However, there is significant heterogeneity in the actual length of survival, which varies from months to >5 years. Unfortunately, in addition to lung transplantation, no known medical intervention alters the natural history of the disease. Currently, many phase-III clinical trials are ongoing, but there is no Federal Drug Administration approved therapy. Thus, it is important for the clinician to be able to evaluate prognostic factors. These will help him draw conclusions about the possible course of his idiopathic pulmonary fibrosis patients and make important therapeutic decisions (lung transplantation).
Collapse
|
5
|
Borensztajn K, Aberson H, Peppelenbosch MP, Spek CA. FXa-induced intracellular signaling links coagulation to neoangiogenesis: potential implications for fibrosis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:798-805. [PMID: 19339215 DOI: 10.1016/j.bbamcr.2009.01.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 01/14/2009] [Accepted: 01/15/2009] [Indexed: 02/06/2023]
Abstract
Fibrosis represents the end-stage of a broad range of disorders affecting organ function. These disorders are often associated with aberrant angiogenesis, but whether vascular abnormalities during fibrosis are characterized by excessive or diminished neo-vascularization remains questionable. Strikingly, activation of the coagulation cascade is frequently observed in association with the progression of fibroproliferative disorders. As we recently showed that coagulation factor (F)Xa induced fibrotic responses in fibroblasts, we hypothesized that FXa might indirectly induce angiogenesis by triggering fibroblasts to secrete proangiogenic factors. In the present study, we show that although FXa induces p42/44 MAP Kinase phosphorylation in endothelial cells, it has no direct effect on endothelial cell proliferation, protein synthesis and tube formation. In contrast, conditioned medium of fibroblasts stimulated with FXa enhanced endothelial cell proliferation, extra cellular matrix synthesis, wound healing and endothelial tube formation. FXa induced VEGF production by fibroblasts and a VEGF neutralizing antibody blocked the indirect effect of FXa on proliferation and realignment of endothelial cells identifying VEGF as a crucial player in angiogenesis during coagulation factor-induced fibrosis. Overall, our results establish a link between the coagulation cascade and angiogenesis during fibrosis.
Collapse
Affiliation(s)
- Keren Borensztajn
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, A. Deusinglaan 1, NL-9713 AV Groningen, The Netherlands.
| | | | | | | |
Collapse
|
6
|
Hiyama K, Tanimoto K, Nishimura Y, Tsugane M, Fukuba I, Sotomaru Y, Hiyama E, Nishiyama M. Exploration of the genes responsible for unlimited proliferation of immortalized lung fibroblasts. Exp Lung Res 2008; 34:373-90. [PMID: 18716925 DOI: 10.1080/01902140802221912] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Regulation mechanism of lung fibroblast proliferation remains unknown. To elucidate the key molecules in it, the authors here established mortal and immortal nontransformed lung fibroblast cell line/strains with elongated life span by telomerase reverse transcriptase gene transfection. Comparing the expression profiles of them, 51 genes were explored to be the candidates responsible for regulation of cellular proliferation of lung fibroblasts. This set of fibrobrast strains of same origin with different proliferative capacities may become useful model cells for research on lung fibroblast growth regulation and the candidate genes explored in this study may provide biomarkers or therapeutic targets of pulmonary fibrosis.
Collapse
Affiliation(s)
- Keiko Hiyama
- Department of Translational Cancer Research, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Bargagli E, Monaci F, Bianchi N, Bucci C, Rottoli P. Analysis of trace elements in bronchoalveolar lavage of patients with diffuse lung diseases. Biol Trace Elem Res 2008; 124:225-35. [PMID: 18665336 DOI: 10.1007/s12011-008-8143-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Accepted: 04/11/2008] [Indexed: 01/23/2023]
Abstract
Airborne trace elements are implicated in the etio-pathogenesis of a large number of pulmonary diseases. The aim of this study was to evaluate the reliability and effectiveness of direct determination of Cd, Cr, Cu, Fe, Mn, Ni, Pb, V, and Zn concentrations in bronchoalveolar lavage (BAL) samples from patients with sarcoidosis, idiopathic pulmonary fibrosis, and Langerhans cell histiocytosis and healthy (smoking and non-smoking) controls. A total of 44 individuals were recruited among sarcoidosis, idiopathic pulmonary fibrosis, and Langerhans cell histiocytosis patients and healthy (smoking and non-smoking) controls. Average Mn concentrations in BAL from patients were 45% lower than in controls (p < 0.01) and remarkable decreases in average concentrations of Cr, Ni and Zn were also found in BAL from patients with idiopathic pulmonary fibrosis and Langerhans cell histiocytosis. As these diseases are characterized by the enhanced activation of certain immunomodulatory cells and by generation of free radicals, the depressed Mn, Zn, Cr and Ni concentrations in BAL from patients may be due to oxidative stress. These preliminary results indicate that assessment of the elemental composition of BAL is a promising approach to study the pathogenesis of diffuse lung diseases and Langerhans cell histiocytosis.
Collapse
Affiliation(s)
- E Bargagli
- Department of Clinical Medicine and Immunological Sciences, University of Siena, Siena, Italy.
| | | | | | | | | |
Collapse
|
8
|
Kinnula VL, Myllärniemi M. Oxidant-antioxidant imbalance as a potential contributor to the progression of human pulmonary fibrosis. Antioxid Redox Signal 2008; 10:727-38. [PMID: 18177235 DOI: 10.1089/ars.2007.1942] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial pneumonia. IPF is a disease with poor prognosis and an aggressive nature, and poses major challenges to clinicians. Thus, a large part of research in the area has focused on the pathogenesis on IPF. Characteristic features in IPF include fibrotic lesions devoid of inflammatory cell infiltrates. There are experimental models of lung fibrosis (e.g., bleomycin-induced fibrosis), but they typically contain a prominent inflammatory pattern in the lung, which leads to relatively diffuse lung fibrosis. Nonetheless, experimental models have provided important information about the progression and pathways contributing to the lung fibrosis, including activation of transforming growth factor beta (TGF-beta). Both patient material and experimental models of lung fibrosis have displayed marked elevation of several markers of oxidant burden and signs for disturbed antioxidant/oxidant balance. Several studies also suggest that reactive oxygen species can cause activation of growth-regulatory cytokines, including TGF-beta. In addition, there are indications that endogenous and exogenous antioxidants/redox modulators can influence fibrogenesis, protect the lung against fibrosis, and prevent its progression. Factors that restore the antioxidant capacity and prevent sustained activation of growth-regulatory cytokines may have a therapeutic role in IPF.
Collapse
Affiliation(s)
- Vuokko L Kinnula
- Department of Medicine, Division of Pulmonary Medicine, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | | |
Collapse
|
9
|
Baran CP, Opalek JM, McMaken S, Newland CA, O'Brien JM, Hunter MG, Bringardner BD, Monick MM, Brigstock DR, Stromberg PC, Hunninghake GW, Marsh CB. Important roles for macrophage colony-stimulating factor, CC chemokine ligand 2, and mononuclear phagocytes in the pathogenesis of pulmonary fibrosis. Am J Respir Crit Care Med 2007; 176:78-89. [PMID: 17431224 PMCID: PMC2049062 DOI: 10.1164/rccm.200609-1279oc] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
RATIONALE An increase in the number of mononuclear phagocytes in lung biopsies from patients with idiopathic pulmonary fibrosis (IPF) worsens prognosis. Chemokines that recruit mononuclear phagocytes, such as CC chemokine ligand 2 (CCL2), are elevated in bronchoalveolar lavage (BAL) fluid (BALF) from patients with IPF. However, little attention is given to the role of the mononuclear phagocyte survival and recruitment factor, macrophage colony-stimulating factor (M-CSF), in pulmonary fibrosis. OBJECTIVES To investigate the role of mononuclear phagocytes and M-CSF in pulmonary fibrosis. METHODS Wild-type, M-CSF-/-, or CCL2-/- mice received intraperitoneal bleomycin. Lung inflammation and fibrosis were measured by immunohistochemistry, ELISA, collagen assay, BAL differentials, real-time polymerase chain reaction, and Western blot analysis. Human and mouse macrophages were stimulated with M-CSF for CCL2 expression. BALF from patients with IPF was examined for M-CSF and CCL2. MEASUREMENTS AND MAIN RESULTS M-CSF-/- and CCL2-/- mice had less lung fibrosis, mononuclear phagocyte recruitment, collagen deposition, and connective tissue growth factor (CTGF) expression after bleomycin administration than wild-type littermates. Human and mouse macrophages stimulated with M-CSF had increased CCL2 production, and intratracheal administration of M-CSF in mice induced CCL2 production in BALF. Finally, BALF from patients with IPF contained significantly more M-CSF and CCL2 than BALF from normal volunteers. Elevated levels of M-CSF were associated with elevated CCL2 in BALF and the diagnosis of IPF. CONCLUSIONS These data suggest that M-CSF contributes to the pathogenesis of pulmonary fibrosis in mice and in patients with IPF through the involvement of mononuclear phagocytes and CCL2 production.
Collapse
Affiliation(s)
- Christopher P Baran
- Department of Internal Medicine, Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, the Dorothy M. Davis Heart and Lung Research Institute, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Burns SM. Ask the Experts. Crit Care Nurse 2006. [DOI: 10.4037/ccn2006.26.6.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Suzanne M. Burns
- Suzanne M. Burns is a professor of nursing in the acute and specialty care division and an advanced practice nurse in the medical intensive care unit at the University of Virginia Health System in Charlottesville, Va
| |
Collapse
|
11
|
Lederer DJ, Arcasoy SM, Wilt JS, D'Ovidio F, Sonett JR, Kawut SM. Six-minute-walk distance predicts waiting list survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2006; 174:659-64. [PMID: 16778159 PMCID: PMC2648057 DOI: 10.1164/rccm.200604-520oc] [Citation(s) in RCA: 254] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 06/14/2006] [Indexed: 12/21/2022] Open
Abstract
RATIONALE Functional studies may be useful to predict survival in idiopathic pulmonary fibrosis (IPF). Various cutoffs of 6-min-walk distance (6MWD) have been suggested to identify patients at a high risk of death. OBJECTIVES To examine the association between 6MWD and survival in patients with IPF listed for lung transplantation, and to identify sensitive and specific cutoffs for predicting death at 6 mo. METHODS We performed a retrospective cohort study of 454 patients classified as having IPF listed for lung transplantation with the United Network for Organ Sharing between June 30, 2004 and July 22, 2005. MEASUREMENTS AND MAIN RESULTS Lower 6MWD was associated with an increased mortality rate (p value for linear trend < 0.0001). Patients with a walk distance less than 207 m had a more than fourfold greater mortality rate than those with a walk distance of 207 m or more, despite adjustment for demographics, anthropomorphics, FVC % predicted, pulmonary hypertension, and medical comorbidities (adjusted rate ratio, 4.7; 95% confidence interval, 2.5-8.9; p < 0.0001). 6MWD was a significantly better predictor of 6-mo mortality than was FVC % predicted (c-statistic = 0.73 vs. 0.59, respectively; p = 0.02). CONCLUSIONS Lower 6MWD was strongly and independently associated with an increased mortality rate for wait-listed patients classified as having IPF. 6MWD was a better predictor of death at 6 mo than was FVC % predicted.
Collapse
Affiliation(s)
- David J Lederer
- Department of Medicine, College of Physicians and Surgeons, Joseph L. Mailman School of Public Health, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
12
|
|