1
|
Mussi VO, Simão TLBV, Almeida FM, Machado E, de Carvalho LD, Calixto SD, Sales GAM, Carvalho ECQ, Vasconcellos SEG, Catanho M, Suffys PN, Lasunskaia EB. A Murine Model of Mycobacterium kansasii Infection Reproducing Necrotic Lung Pathology Reveals Considerable Heterogeneity in Virulence of Clinical Isolates. Front Microbiol 2021; 12:718477. [PMID: 34504483 PMCID: PMC8422904 DOI: 10.3389/fmicb.2021.718477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 07/28/2021] [Indexed: 12/04/2022] Open
Abstract
Among non-tuberculous mycobacteria, Mycobacterium kansasii is one of the most pathogenic, able to cause pulmonary disease indistinguishable from tuberculosis in immunocompetent susceptible adults. The lack of animal models that reproduce human-like lung disease, associated with the necrotic lung pathology, impairs studies of M. kansasii virulence and pathogenicity. In this study, we examined the ability of the C57BL/6 mice, intratracheally infected with highly virulent M. kansasii strains, to produce a chronic infection and necrotic lung pathology. As a first approach, we evaluated ten M. kansasii strains isolated from Brazilian patients with pulmonary disease and the reference strain M. kansasii ATCC 12478 for virulence-associated features in macrophages infected in vitro; five of these strains differing in virulence were selected for in vivo analysis. Highly virulent isolates induced progressive lung disease in mice, forming large encapsulated caseous granulomas in later stages (120–150 days post-infection), while the low-virulent strain was cleared from the lungs by day 40. Two strains demonstrated increased virulence, causing premature death in the infected animals. These data demonstrate that C57BL/6 mice are an excellent candidate to investigate the virulence of M. kansasii isolates. We observed considerable heterogeneity in the virulence profile of these strains, in which the presence of highly virulent strains allowed us to establish a clinically relevant animal model. Comparing public genomic data between Brazilian isolates and isolates from other geographic regions worldwide demonstrated that at least some of the highly pathogenic strains isolated in Brazil display remarkable genomic similarities with the ATCC strain 12478 isolated in the United States 70 years ago (less than 100 SNPs of difference), as well as with some recent European clinical isolates. These data suggest that few pathogenic clones have been widely spread within M. kansasii population around the world.
Collapse
Affiliation(s)
- Vinicius O Mussi
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos, Brazil
| | - Thatiana L B V Simão
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos, Brazil
| | - Fabrício M Almeida
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos, Brazil
| | - Edson Machado
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Luciana D de Carvalho
- National Reference Laboratory for Tuberculosis, Reference Center Professor Helio Fraga, National School of Public Health, Fiocruz, Rio de Janeiro, Brazil
| | - Sanderson D Calixto
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos, Brazil
| | - Guilherme A M Sales
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos, Brazil
| | - Eulógio C Q Carvalho
- Laboratory of Animal Morphology and Pathology, State University of North Fluminense, Campos, Brazil
| | - Sidra E G Vasconcellos
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Marcos Catanho
- Laboratory of Molecular Genetics of Microorganisms, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Philip N Suffys
- Laboratory of Molecular Biology Applied to Mycobacteria, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - Elena B Lasunskaia
- Laboratory of Biology of Recognition, State University of North Fluminense, Campos, Brazil
| |
Collapse
|
2
|
Kwon BE, Ahn JH, Park EK, Jeong H, Lee HJ, Jung YJ, Shin SJ, Jeong HS, Yoo JS, Shin E, Yeo SG, Chang SY, Ko HJ. B Cell-Based Vaccine Transduced With ESAT6-Expressing Vaccinia Virus and Presenting α-Galactosylceramide Is a Novel Vaccine Candidate Against ESAT6-Expressing Mycobacterial Diseases. Front Immunol 2019; 10:2542. [PMID: 31736965 PMCID: PMC6830241 DOI: 10.3389/fimmu.2019.02542] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Early secretory antigenic target-6 (ESAT6) is a potent immunogenic antigen expressed in Mycobacterium tuberculosis as well as in some non-tuberculous mycobacteria (NTM), such as M. kansasii. M. kansasii is one of the most clinically relevant species of NTM that causes mycobacterial lung disease, which is clinically indistinguishable from tuberculosis. In the current study, we designed a novel cell-based vaccine using B cells that were transduced with vaccinia virus expressing ESAT6 (vacESAT6), and presenting α-galactosylceramide (αGC), a ligand of invariant NKT cells. We found that B cells loaded with αGC had increased levels of CD80 and CD86 after in vitro stimulation with NKT cells. Immunization of mice with B/αGC/vacESAT6 induced CD4+ T cells producing TNF-α and IFN-γ in response to heat-killed M. tuberculosis. Immunization of mice with B/αGC/vacESAT6 ameliorated severe lung inflammation caused by M. kansasii infection. We also confirmed that immunization with B/αGC/vacESAT6 reduced M. kansasii bacterial burden in the lungs. In addition, therapeutic administration of B/αGC/vacESAT6 increased IFN-γ+ CD4+ T cells and inhibited the progression of lung pathology caused by M. kansasii infection. Thus, B/αGC/vacESAT6 could be a potent vaccine candidate for the prevention and treatment of ESAT6-expressing mycobacterial infection caused by M. kansasii.
Collapse
Affiliation(s)
- Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Eun-Kyoung Park
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyunjin Jeong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| | - Hyo-Ji Lee
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Yu-Jin Jung
- Department of Biological Sciences, Kangwon National University, Chuncheon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Hye-Sook Jeong
- Division of Vaccine Research, Center for Infectious Disease Research, Korea National Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), Cheongju, South Korea
| | - Jung Sik Yoo
- Division of Vaccine Research, Center for Infectious Disease Research, Korea National Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), Cheongju, South Korea
| | - EunKyoung Shin
- Division of Vaccine Research, Center for Infectious Disease Research, Korea National Institute of Health (KNIH), Korea Centers for Disease Control and Prevention (KCDC), Cheongju, South Korea
| | - Sang-Gu Yeo
- Sejong Institute of Health and Environment, Sejong, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy and Research Institute of Pharmaceutical Science and Technology (RIPST), Ajou University, Suwon, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, South Korea
| |
Collapse
|
3
|
Lai HC, Chang CJ, Lin CS, Wu TR, Hsu YJ, Wu TS, Lu JJ, Martel J, Ojcius DM, Ku CL, Young JD, Lu CC. NK Cell-Derived IFN-γ Protects against Nontuberculous Mycobacterial Lung Infection. THE JOURNAL OF IMMUNOLOGY 2018; 201:1478-1490. [PMID: 30061197 DOI: 10.4049/jimmunol.1800123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 07/05/2018] [Indexed: 01/09/2023]
Abstract
In developed countries, pulmonary nontuberculous mycobacteria (NTM) infections are more prevalent than Mycobacterium tuberculosis infections. Given the differences in the pathogenesis of NTM and M. tuberculosis infections, separate studies are needed to investigate the pathological effects of NTM pathogens. Our previous study showed that anti-IFN-γ autoantibodies are detected in NTM-infected patients. However, the role of NK cells and especially NK cell-derived IFN-γ in this context has not been studied in detail. In the current study, we show that NK1.1 cell depletion increases bacterial load and mortality in a mouse model of pulmonary NTM infection. NK1.1 cell depletion exacerbates NTM-induced pathogenesis by reducing macrophage phagocytosis, dendritic cell development, cytokine production, and lung granuloma formation. Similar pathological phenomena are observed in IFN-γ-deficient (IFN-γ-/-) mice following NTM infection, and adoptive transfer of wild-type NK cells into IFN-γ-/- mice considerably reduces NTM pathogenesis. Injection of rIFN-γ also prevents NTM-induced pathogenesis in IFN-γ-/- mice. We observed that NK cells represent the main producers of IFN-γ in the lungs and production starts as soon as 1 d postinfection. Accordingly, injection of rIFN-γ into IFN-γ-/- mice 1 d (but not 2 wk) postinfection significantly improves immunity against NTM infection. NK cells also stimulate mycobacterial killing and IL-12 production by macrophages. Our results therefore indicate that IFN-γ production by NK cells plays an important role in activating and enhancing innate and adaptive immune responses at early stages of pulmonary NTM infection.
Collapse
Affiliation(s)
- Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Microbiota Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan 33303, Taiwan.,Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Gueishan, Taoyuan 33303, Taiwan
| | - Chih-Jung Chang
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Microbiota Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Chuan-Sheng Lin
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Microbiota Research Center, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Research Center for Emerging Viral Infections, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Tsung-Ru Wu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Ya-Jing Hsu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - Ting-Shu Wu
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan
| | - Jang-Jih Lu
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan
| | - Jan Martel
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan
| | - David M Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Department of Biomedical Sciences, Arthur A. Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103
| | - Cheng-Lung Ku
- Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Laboratory of Human Immunology and Infectious Diseases, Graduate Institute of Clinical Medical Sciences, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan
| | - John D Young
- Center for Molecular and Clinical Immunology, Chang Gung University, Gueishan, Taoyuan 33302, Taiwan.,Chang Gung Immunology Consortium, Linkou Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan.,Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, NY 10021; and
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Xinzhuang, New Taipei City 24205, Taiwan
| |
Collapse
|
4
|
Disseminated Mycobacterium kansasii infection with cutaneous lesions in an immunocompetent patient. Int J Infect Dis 2017; 62:59-63. [PMID: 28712930 DOI: 10.1016/j.ijid.2017.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 07/05/2017] [Accepted: 07/06/2017] [Indexed: 02/05/2023] Open
Abstract
A case of disseminated Mycobacterium kansasii infection involving the skin and soft tissue in a 57-year-old male farmer who presented with recurrent fever, respiratory syndromes, and skin lesions is reported. The positive findings of syndromes, laboratory examinations, and identification of M. kansasii in puncture fluid indicated the diagnosis of disseminated M. kansasii infection involving the skin and soft tissue, lungs, and mediastinal lymph nodes. After applying the standard HRE regimen (isoniazid 300mg/day, rifampicin 600mg/day, and ethambutol 750mg/day), the patient's temperature normalized and his symptoms improved gradually. No notable adverse drug reactions occurred and the skin lesions had healed after 4 months of follow-up. Disseminated M. kansasii infections occur mainly in immunocompromised patients. Moreover, disseminated infections with skin lesions is rare in immunocompetent patients. Following a review of the literature, only eight similar cases were identified as of disseminated M. kansasii infection with cutaneous lesions, and thecase presented here appears to be the second involving an immunocompetent individual. Special attention should be paid to a persistent and chronic rash following a chronic respiratory syndrome in order to exclude skin disease caused by non-tuberculous mycobacteria.
Collapse
|
5
|
Mycobacterium kansasii-induced death of murine macrophages involves endoplasmic reticulum stress responses mediated by reactive oxygen species generation or calpain activation. Apoptosis 2013; 18:150-9. [PMID: 23264129 DOI: 10.1007/s10495-012-0792-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Although pathogenic mechanisms of tuberculosis have been extensively studied, little is known about the pathogenic mechanisms of Mycobacterium kansasii. In this work the influence of virulence and ER-stress mediated apoptosis of macrophages during two different strains of M. kansasii infection was investigated. We show that M. kansasii infection is associated with ER stress-mediated apoptosis in the murine macrophage cell line RAW 264.7. Infection of RAW 264.7 cells in vitro with apoptosis-inducing a clinical isolate of M. kansasii SM-1 (SM-1) resulted in strong induction of ER stress responses compared with M. kansasii type strain (ATCC 12478)-infected RAW 264.7 cells. Interestingly, inhibition of calpain prevented the induction of CHOP and Bip in ATCC 12478-infected RAW 264.7 cells but not in RAW 264.7 cells infected with SM-1. In contrast, reactive oxygen species (ROS) were significantly increased only in RAW 264.7 cells infected with SM-1. We propose that ROS generation is important for triggering ER stress-mediated apoptosis during SM-1 infection, whereas ATCC 12478-induced, ER stress-mediated apoptosis is associated with calpain activation. Our results demonstrate that the ER stress pathway plays important roles in the pathogenesis of M. kansasii infections, and that different strains of M. kansasii induce different patterns of ER stress-mediated apoptosis.
Collapse
|
6
|
Chen CC, Tsai SH, Lu CC, Hu ST, Wu TS, Huang TT, Saïd-Sadier N, Ojcius DM, Lai HC. Activation of an NLRP3 inflammasome restricts Mycobacterium kansasii infection. PLoS One 2012; 7:e36292. [PMID: 22558425 PMCID: PMC3340363 DOI: 10.1371/journal.pone.0036292] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 03/29/2012] [Indexed: 11/19/2022] Open
Abstract
Mycobacterium kansasii has emerged as an important nontuberculous mycobacterium pathogen, whose incidence and prevalence have been increasing in the last decade. M. kansasii can cause pulmonary tuberculosis clinically and radiographically indistinguishable from that caused by Mycobacterium tuberculosis infection. Unlike the widely-studied M. tuberculosis, little is known about the innate immune response against M. kansasii infection. Although inflammasome activation plays an important role in host defense against bacterial infection, its role against atypical mycobacteria remains poorly understood. In this report, the role of inflammasome activity in THP-1 macrophages against M. kansasii infection was studied. Results indicated that viable, but not heat-killed, M. kansasii induced caspase-1-dependent IL-1β secretion in macrophages. The underlying mechanism was found to be through activation of an inflammasome containing the NLR (Nod-like receptor) family member NLRP3 and the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD). Further, potassium efflux, lysosomal acidification, ROS production and cathepsin B release played a role in M. kansasii-induced inflammasome activation. Finally, the secreted IL-1β derived from caspase-1 activation was shown to restrict intracellular M. kansasii. These findings demonstrate a biological role for the NLRP3 inflammasome in host defense against M. kansasii.
Collapse
Affiliation(s)
- Chang-Chieh Chen
- Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Chutung, Hsinchu, Taiwan, Republic of China
| | - Sheng-Hui Tsai
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Chia-Chen Lu
- Department of Respiratory Therapy, Fu Jen Catholic University, Taipei, Taiwan, Republic of China
| | - Shiau-Ting Hu
- Institute of Microbiology and Immunology, School of Life Science, National Yang-Ming University, Taipei, Taiwan, Republic of China
- Department of Microbiology and Immunology, School of Medicine, National Yang-Ming University, Taipei, Taiwan, Republic of China
| | - Ting-Shu Wu
- Department of Internal Medicine, Chang Gung Memorial Hospital and Graduate Institute of Clinical Medical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Tsung-Teng Huang
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Laboratory of Nanomaterials, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
| | - Najwane Saïd-Sadier
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - David M. Ojcius
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Health Sciences Research Institute and School of Natural Sciences, University of California Merced, Merced, California, United States of America
| | - Hsin-Chih Lai
- Center for Molecular and Clinical Immunology, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Department of Medical Biotechnology and Laboratory Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- Research Center of Bacterial Pathogenesis, Chang Gung University, Kweishan, Taoyuan, Taiwan, Republic of China
- * E-mail:
| |
Collapse
|
7
|
Wieland CW, van der Windt GJW, Wiersinga WJ, Florquin S, van der Poll T. CD14 contributes to pulmonary inflammation and mortality during murine tuberculosis. Immunology 2008; 125:272-9. [PMID: 18393969 DOI: 10.1111/j.1365-2567.2008.02840.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Toll-like receptors play an essential role in the innate recognition of micro-organisms by the host. CD14 is one of the extracellular adaptor proteins required for recognition of Gram-negative bacteria and possibly also Mycobacterium tuberculosis. Therefore, we intranasally infected wild-type (WT) and CD14 knock-out (KO) mice with virulent M. tuberculosis H37Rv. We found no differences in bacterial load in the main target organ lung up to 32 weeks after infection. From 20 weeks onward 57% of WT mice succumbed, whereas all CD14 KO mice survived. The improved outcome of CD14 KO mice was accompanied by reduced pulmonary inflammation; lung cell counts and percentage of inflamed lung tissue were reduced in CD14 WT mice. These data suggest that during chronic infection CD14 KO mice are protected from lethality caused by lung tuberculosis because of a reduction of the inflammatory response.
Collapse
Affiliation(s)
- Catharina W Wieland
- Center of Infection and Immunity Amsterdam (CINIMA), University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
8
|
Appelmelk BJ, den Dunnen J, Driessen NN, Ummels R, Pak M, Nigou J, Larrouy-Maumus G, Gurcha SS, Movahedzadeh F, Geurtsen J, Brown EJ, Eysink Smeets MM, Besra GS, Willemsen PTJ, Lowary TL, van Kooyk Y, Maaskant JJ, Stoker NG, van der Ley P, Puzo G, Vandenbroucke-Grauls CMJE, Wieland CW, van der Poll T, Geijtenbeek TBH, van der Sar AM, Bitter W. The mannose cap of mycobacterial lipoarabinomannan does not dominate the Mycobacterium–host interaction. Cell Microbiol 2008; 10:930-44. [DOI: 10.1111/j.1462-5822.2007.01097.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|