1
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
2
|
Chen Z, Wang L, Xu X, Zhou Q, Wang J, Chen Y, Wang N, Gong Z, Chen S. Molecular cloning and immune characterization of CIITA in artificially challenged Chinese tongue sole (Cynoglossus semilaevis) with Vibrio harveyi. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104091. [PMID: 33819543 DOI: 10.1016/j.dci.2021.104091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
In mammals, Class II, major histocompatibility complex (MHC II) transactivator (CIITA) recognizes microbial pathogens and triggers immune responses. In Chinese tongue sole Cynoglossus semilaevis, Cs-CIITA was prevalently expressed in various tissues. Cs-CIITA, Cs-MHC IIA and Cs-MHC IIB were expressed significantly higher in skin in susceptible families infected with Vibrio harveyi, while higher expression of Cs-CIITA and Cs-MHC IIB was examined in liver in resistant families. In addition, the three genes were up-regulated in gill, skin, intestine, liver, spleen and kidney at 48 h or 72 h after V. harveyi infection. Furthermore, the three genes were co-expressed in the epithelial mucous cells of gill, skin, and intestine. Knockdown of Cs-CIITA regulates the expression of other inflammation-related genes, including CD40, IL-1β, IL-8, RelB, NFκB, and Myd88. These results suggest that CIITA functions in the inflammatory responses of C. semilaevis against V. harveyi, via MHC II transcriptional regulation.
Collapse
Affiliation(s)
- Zhangfan Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Lei Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Xiwen Xu
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Qian Zhou
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Jie Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Yadong Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Na Wang
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Zhihong Gong
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China
| | - Songlin Chen
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences (CAFS), Key Laboratory for Sustainable Development of Marine Fisheries, Ministry of Agriculture, Qingdao, 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China; Shandong Key Laboratory of Marine Fisheries Biotechnology and Genetic Breeding, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences,Qingdao, 266071,China.
| |
Collapse
|
3
|
Protein arginine methyltransferase 1 (PRMT1) represses MHC II transcription in macrophages by methylating CIITA. Sci Rep 2017; 7:40531. [PMID: 28094290 PMCID: PMC5240148 DOI: 10.1038/srep40531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/07/2016] [Indexed: 12/14/2022] Open
Abstract
Efficient presentation of alien antigens triggers activation of T lymphocytes and robust host defense against invading pathogens. This pathophysiological process relies on the expression of major histocompatibility complex (MHC) molecules in antigen presenting cells such as macrophages. Aberrant MHC II transactivation plays a crucial role in the pathogenesis of atherosclerosis. Class II transactivator (CIITA) mediates MHC II induction by interferon gamma (IFN-γ). CIITA activity can be fine-tuned at the post-translational level, but the mechanisms are not fully appreciated. We investigated the role of protein arginine methyltransferase 1 (PRMT1) in this process. We report here that CIITA interacted with PRMT1. IFN-γ treatment down-regulated PRMT1 expression and attenuated PRMT1 binding on the MHC II promoter. Over-expression of PRMT1 repressed MHC II promoter activity while PRMT1 depletion enhanced MHC II transactivation. Mechanistically, PRMT1 methylated CIITA and promoted CIITA degradation. Therefore, our data reveal a previously unrecognized role for PRMT1 in suppressing CIITA-mediated MHC II transactivation.
Collapse
|
4
|
Weng X, Yu L, Liang P, Chen D, Cheng X, Yang Y, Li L, Zhang T, Zhou B, Wu X, Xu H, Fang M, Gao Y, Chen Q, Xu Y. Endothelial MRTF-A mediates angiotensin II induced cardiac hypertrophy. J Mol Cell Cardiol 2015; 80:23-33. [DOI: 10.1016/j.yjmcc.2014.11.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 11/06/2014] [Indexed: 11/25/2022]
|
5
|
Weng X, Yu L, Liang P, Li L, Dai X, Zhou B, Wu X, Xu H, Fang M, Chen Q, Xu Y. A crosstalk between chromatin remodeling and histone H3K4 methyltransferase complexes in endothelial cells regulates angiotensin II-induced cardiac hypertrophy. J Mol Cell Cardiol 2015; 82:48-58. [PMID: 25712920 DOI: 10.1016/j.yjmcc.2015.02.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 01/29/2015] [Accepted: 02/10/2015] [Indexed: 02/08/2023]
Abstract
Angiotensin II (Ang II) induces cardiac hypertrophy and fibrosis in part by stimulating endothelin (ET-1) transcription. The involvement of the epigenetic machinery in this process is largely undefined. In the present study, we examined the epigenetic maneuvering underlying cardiac hypertrophy and fibrosis following ET-1 transactivation by Ang II. In response to Ang II stimulation, core components of the mammalian chromatin remodeling complex (Brahma-related gene 1, or Brg1, and Brahma or Brm) and histone H3K4 methylation complex (Ash2, absent, small, or homeotic discs 2, or Ash2 and WD domain repeat 5, or Wdr5) were recruited to the ET-1 promoter region in endothelial cells. Over-expression of Brg1/Brm or Ash2/Wdr5 enhanced while depletion of Brg1/Brm or Ash2/Wdr5 attenuated Ang II-induced ET-1 transactivation. Endothelial-specific knockdown of Brg1/Brm or Ash2/Wdr5 ameliorated cardiac hypertrophy both in vitro and in vivo. More important, Brg1/Brm interacted with Ash2/Wdr5 on the ET-1 promoter to catalyze H3K4 methylation. The crosstalk between Brg11/Brm and Ash2/Wdr5 was mediated by myocardin-related transcription factor A (MRTF-A). In conclusion, our data have unveiled an epigenetic complex that links ET-1 transactivation in endothelial cells to Ang II-induced cardiac hypertrophy and fibrosis.
Collapse
Affiliation(s)
- Xinyu Weng
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Liming Yu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Peng Liang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Luyang Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xin Dai
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Bisheng Zhou
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Xiaoyan Wu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Huihui Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Mingming Fang
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China; Department of Nursing, Jiangsu Jiankang Vocational University, Nanjing, China.
| | - Qi Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
6
|
Yuan Z, Chen J, Chen D, Xu G, Xia M, Xu Y, Gao Y. Megakaryocytic leukemia 1 (MKL1) regulates hypoxia induced pulmonary hypertension in rats. PLoS One 2014; 9:e83895. [PMID: 24647044 PMCID: PMC3960100 DOI: 10.1371/journal.pone.0083895] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 11/18/2013] [Indexed: 11/19/2022] Open
Abstract
Hypoxia induced pulmonary hypertension (HPH) represents a complex pathology that involves active vascular remodeling, loss of vascular tone, enhanced pulmonary inflammation, and increased deposition of extracellular matrix proteins. Megakaryocytic leukemia 1 (MKL1) is a transcriptional regulator known to influence cellular response to stress signals in the vasculature. We report here that in response to chronic hypobaric hypoxia, MKL1 expression was up-regulated in the lungs in rats. Short hairpin RNA (shRNA) mediated depletion of MKL1 significantly ameliorated the elevation of pulmonary arterial pressure in vivo with a marked alleviation of vascular remodeling. MKL1 silencing also restored the expression of NO, a key vasoactive molecule necessary for the maintenance of vascular tone. In addition, hypoxia induced pulmonary inflammation was dampened in the absence of MKL1 as evidenced by normalized levels of pro-inflammatory cytokines and chemokines as well as reduced infiltration of pro-inflammatory immune cells in the lungs. Of note, MKL1 knockdown attenuated fibrogenesis in the lungs as indicated by picrosirius red staining. Finally, we demonstrate that MKL1 mediated transcriptional activation of type I collagen genes in smooth muscle cells under hypoxic conditions. In conclusion, we data highlight a previously unidentified role for MKL1 in the pathogenesis of HPH and as such lay down groundwork for future investigation and drug development.
Collapse
MESH Headings
- Animals
- Collagen Type I/genetics
- Collagen Type I/metabolism
- Cytokines/biosynthesis
- Gene Expression Regulation
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/physiopathology
- Hypoxia/complications
- Hypoxia/genetics
- Hypoxia/physiopathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Pulmonary Artery/metabolism
- Pulmonary Artery/physiopathology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Small Interfering/genetics
- RNA, Small Interfering/metabolism
- Rats
- Rats, Sprague-Dawley
- Signal Transduction
- Transcription Factors/antagonists & inhibitors
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Vascular Resistance
Collapse
Affiliation(s)
- Zhibin Yuan
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Jian Chen
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Dewei Chen
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Gang Xu
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
| | - Minjie Xia
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease, Department of Pathophysiology, Nanjing Medical University, Nanjing, Jiangsu, China
- * E-mail: (YX); (YQG)
| | - Yuqi Gao
- Department of Pathophysiology and High Altitude Physiology, College of High Altitude Military Medicine, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, Ministry of Education, Third Military Medical University, Chongqing, China
- Key Laboratory of High Altitude Medicine, PLA, Third Military Medical University, Chongqing, China
- * E-mail: (YX); (YQG)
| |
Collapse
|
7
|
Yu L, Weng X, Liang P, Dai X, Wu X, Xu H, Fang M, Fang F, Xu Y. MRTF-A mediates LPS-induced pro-inflammatory transcription by interacting with the COMPASS complex. J Cell Sci 2014; 127:4645-57. [DOI: 10.1242/jcs.152314] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Chronic inflammation underscores the pathogenesis of a range of human diseases. Lipopolysaccharide (LPS) elicits strong pro-inflammatory response in macrophages via the transcription factor NF-κB. The epigenetic mechanism underlying LPS-induced pro-inflammatory transcription is not completely appreciated. Herein we describe a role for myocardin related transcription factor A, or MRTF-A, in this process. MRTF-A over-expression potentiated while MRTF-A silencing dampened NF-κB dependent pro-inflammatory transcription. MRTF-A deficiency also alleviated the synthesis of pro-inflammatory mediators in a mouse model of colitis. LPS promoted the recruitment of MRTF-A to the promoters of pro-inflammatory genes in a NF-κB dependent manner. Reciprocally, MRTF-A influenced the nuclear enrichment and target binding of NF-κB. Mechanistically, MRTF-A was necessary for the accumulation of active histone modifications on NF-κB target promoters by communicating with the histone H3K4 methyltransferase complex (COMPASS). Silencing of individual members of COMPASS, including ASH2, WDR5, and SET1, down-regulated the production of pro-inflammatory mediators and impaired the NF-κB kinetics. In summary, our work has uncovered a previously unknown function for MRTF-A and provided insights into the rationalized development of anti-inflammatory therapeutic strategies.
Collapse
|
8
|
Tian W, Xu H, Fang F, Chen Q, Xu Y, Shen A. Brahma-related gene 1 bridges epigenetic regulation of proinflammatory cytokine production to steatohepatitis in mice. Hepatology 2013; 58:576-88. [PMID: 23281043 DOI: 10.1002/hep.26207] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 12/11/2012] [Indexed: 01/07/2023]
Abstract
UNLABELLED Chronic inflammation, inflicted by the spillover of proinflammatory mediators, links metabolic dysfunction to nonalcoholic steatohepatitis (NASH). The epigenetic maneuverings that underscore accelerated synthesis of proinflammatory mediators in response to nutritional inputs are not clearly defined. Here we report that the ATP-dependent chromatin remodeling proteins Brahma-related gene 1 (Brg1) and Brahma (Brm) were up-regulated in vitro in cultured hepatocytes treated with free fatty acid or glucose and in vivo in animal models of NASH. Occupancy of Brg1 and Brm on the promoter regions of proinflammatory genes was increased in vitro in cells and ex vivo in liver tissues. Estradiol suppressed the induction and recruitment of Brg1/Brm by palmitate. Recruitment of Brg1 and Brm relied on nuclear factor kappa B/p65; reciprocally, Brg1 and Brm contributed to the stabilization of p65 binding. Importantly, overexpression of Brg1/Brm enhanced, whereas knockdown of Brg1/Brm attenuated, the induction of proinflammatory mediators in hepatocytes challenged with excessive nutrient. Mechanistically, Brg1 and Brm were involved in the maintenance of a chromatin microenvironment marked by active histone modifications and friendly to the access of the general transcriptional machinery. Finally, depletion of Brg1/Brm by short hairpin RNA attenuated the release of proinflammatory mediators in the liver and significantly ameliorated hepatic pathology in NASH mice. CONCLUSION Our data illustrate a Brg1-dependent pathway that connects the epigenetic regulation of proinflammatory genes to the pathogenesis of NASH and point to a potential druggable target in the therapeutic intervention of NASH.
Collapse
Affiliation(s)
- Wenfang Tian
- State Key Laboratory of Reproductive Medicine, Department of Pathophysiology, Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | |
Collapse
|
9
|
Sun L, Li H, Chen J, Dehennaut V, Zhao Y, Yang Y, Iwasaki Y, Kahn-Perles B, Leprince D, Chen Q, Shen A, Xu Y. A SUMOylation-dependent pathway regulates SIRT1 transcription and lung cancer metastasis. J Natl Cancer Inst 2013; 105:887-98. [PMID: 23704280 DOI: 10.1093/jnci/djt118] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Epithelial-to-mesenchymal transition (EMT) plays a pivotal role in lung cancer metastasis. The class III deacetylase sirtuin 1 (SIRT1) possesses both pro- and anticarcinogenic properties. The role of SIRT1 in lung cancer EMT is largely undefined. METHODS The effect of SIRT1 on migration of lung cancer cells was evaluated by wound healing assay in vitro and metastasis assay in nude mice in vivo. Protein expression in human lung cancers and cultured lung cancer cells was assessed by western blotting and immunohistochemistry. Interaction between protein and DNA was measured by chromatin immunoprecipitation assay. SIRT1 promoter activity was determined by reporter assay. RESULTS SIRT1 activation antagonized migration of lung cancer cells by suppressing EMT in vitro. Activation of SIRT1 by resveratrol also statistically significantly hampered (by 68.33%; P < .001, two-sided test) lung cancer cell metastasis in vivo. Hypoxia repressed SIRT1 transcription through promoting the competition between Sp1 and HIC1 on the SIRT1 proximal promoter in a SUMOylation-dependent manner. Disruption of SUMOylation by targeting either Ubc9 or PIASy restored SIRT1 expression in and favored an epithelial-like phenotype of cancer cells, thereby preventing metastasis. Decreased SIRT1 combined with elevated PIASy expression was implicated in more-invasive types of lung cancers in humans. CONCLUSIONS We have identified a novel pathway that links SIRT1 down-regulation to hypoxia-induced EMT in lung cancer cells and may shed light on the development of novel antitumor therapeutics.
Collapse
Affiliation(s)
- Lina Sun
- State Key Laboratory of Reproductive Medicine, Department of Pathophysiology, Provincial Key Laboratory of Cardiovascular Disease, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
CHEN PENG, LIU BING, HU MING. The effect of hydroxycamptothecin and pingyangmycin on human squamous cell carcinoma of the tongue. Oncol Lett 2013; 5:947-952. [PMID: 23426884 PMCID: PMC3576210 DOI: 10.3892/ol.2013.1109] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2012] [Accepted: 12/30/2012] [Indexed: 11/17/2022] Open
Abstract
The purpose of this study was to test hydroxycamptothecin (HCPT) and pingyangmycin (PYM) for their ability to inhibit the squamous cells of tongue carcinoma (Tca8113 cells). The effect of these compounds was tested using the MTT assay in vitro, clonogenic assays, flow cytometry, morphological observation, telomeric repeat amplification protocol (TRAP), transplantation of tumors into athymic mice and TUNEL staining. Treatment with HCPT and PYM, alone or in combination, inhibited the tumor cells and showed a greater inhibition when the drugs were combined. The cloning efficiency of Tca8113 cells was decreased. The microstructure and cell cycle of the cells changed significantly as a result of treatment. Telomerase activity was significantly inhibited in a time-dependent manner. By appearing to promote apoptosis, the drugs demonstrated a significant level of inhibition of the tumor cells in an athymic mouse model, promoting prolonged survival. HCPT and PYM have a marked cytotoxic effect on Tca8113 cells which is improved when used in combination.
Collapse
Affiliation(s)
- PENG CHEN
- Department of Oral and Maxillofacial Surgery, General Hospital of PLA, Beijing 100853
| | - BING LIU
- Department of Stomatology, General Air Force Hospital of PLA, Beijing 100036,
P.R. China
| | - MING HU
- Department of Oral and Maxillofacial Surgery, General Hospital of PLA, Beijing 100853
| |
Collapse
|
11
|
Königshoff M, Rojas M. Galectin-3: The Bridge over Troubled Waters. Am J Respir Crit Care Med 2012; 185:473-5. [DOI: 10.1164/rccm.201112-2190ed] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|