1
|
Wu T, Li W, Zhuang L, Liu J, Wang P, Gu Y, Liu Y, Yu Y. Deficiency of Aging-Related Gene Chitinase-Like 4 Impairs Olfactory Epithelium Homeostasis. Cell Prolif 2025:e70055. [PMID: 40389328 DOI: 10.1111/cpr.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/23/2025] [Indexed: 05/21/2025] Open
Abstract
Mammalian olfactory epithelium (OE) undergoes consistent self-renewal throughout life. In OE homeostasis, globose basal cells (GBCs) contribute to the generation of olfactory sensory neurons (OSNs) to replace old ones. Chitinase-like 4 (Chil4), a chitinase-like protein expressed in supporting cells, plays a critical role in OE regeneration, while its role in tissue homeostasis is still elusive. Here, we found that Chil4 is upregulated in the aged OE. Deletion of Chil4 leads to a reduction in the number of GBCs and immature OSNs (iOSNs). Chil4-/- GBCs show attenuation in cell cycle progression and an aberrant expression pattern of cell-cycle-related genes such as Cdk1. Chil4 deletion causes loss of a specific subcluster of GAP43+ iOSNs expressing Cebpb, Nqo1 and low level of mature OSN (mOSN) marker Stoml3 (iOSN_CeStLNq), potentially suggesting a transitional state between immature and mature neurons. Chil4 knockout induces inflammatory activation in Iba1+ microglia (MG)-like cells in the OE. Chil4 downregulation in aged organoids reduced the number of mature sensory neurons, suggesting a necessary role of Chil4 in maintaining neuronal generation in the aged OE. Collectively, these observations reveal a previously unidentified function of Chil4, establishing the cellular mechanism underlying OE homeostasis.
Collapse
Affiliation(s)
- Tingting Wu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Weihao Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Liujing Zhuang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Jinxia Liu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory for Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou, China
| | - Ye Gu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yongliang Liu
- Department of Otolaryngology, Zibo Central Hospital, Zibo, Shandong, China
| | - Yiqun Yu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
- Olfactory Disorder Diagnosis and Treatment Center, Eye & ENT Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Yoda Y, Ito T, Wakamatsu J, Masuzaki T, Shima M. Short-Term Effects of Exposure to Atmospheric Ozone on the Nasal and Respiratory Symptoms in Adolescents. TOXICS 2025; 13:196. [PMID: 40137523 PMCID: PMC11945642 DOI: 10.3390/toxics13030196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/02/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025]
Abstract
Information regarding the effects of exposure to relatively low ozone (O3) concentrations in daily life is limited. We evaluated the effects of daily O3 exposure on nasal and respiratory symptoms in healthy students. A panel study was conducted with students (39 people) for approximately one month. They were asked to record the presence or absence of any nasal or respiratory symptoms each day. O3 concentrations were continuously measured inside and outside the classrooms, and the maximum 1 h, maximum 8 h average, and 24 h average values were calculated for the 24 h before recording the symptoms. Additionally, personal exposure to O3 was repeatedly measured every 24 h using passive samplers. Mixed-effects models were used to evaluate the association between daily symptoms and various O3 concentrations. Increases in maximum 1 h concentrations of indoor and outdoor O3 were significantly associated with the occurrence of nasal congestion and runny nose, respectively. These associations were more pronounced in those with a history of pollinosis or allergic rhinitis. Personal O3 exposure per 24 h was also associated with sneezing, runny nose, and nasal congestion. This study showed that the assessment of the amount of personal exposure levels is desired to evaluate the health effects of O3 exposure.
Collapse
Affiliation(s)
- Yoshiko Yoda
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya 663-8501, Hyogo, Japan;
- Faculty of Health Sciences for Welfare, Kansai University of Welfare Sciences, Kashiwara 582-0026, Osaka, Japan
| | - Takeshi Ito
- National Institute of Technology, Yuge College, Kamijima 794-2593, Ehime, Japan; (T.I.); (J.W.); (T.M.)
| | - Junko Wakamatsu
- National Institute of Technology, Yuge College, Kamijima 794-2593, Ehime, Japan; (T.I.); (J.W.); (T.M.)
| | - Tomonari Masuzaki
- National Institute of Technology, Yuge College, Kamijima 794-2593, Ehime, Japan; (T.I.); (J.W.); (T.M.)
| | - Masayuki Shima
- Department of Public Health, School of Medicine, Hyogo Medical University, Nishinomiya 663-8501, Hyogo, Japan;
- School of Nursing, Hyogo Medical University, Kobe 650-8530, Hyogo, Japan
| |
Collapse
|
3
|
Li J, Wei H, Wang N, Chen J, Zhang Y, An Z, Song J, Niu T, Wu W. Ozone-Induced Lung Injury are Mediated Via PPAR-Mediated Ferroptosis in Mice. Biol Trace Elem Res 2024:10.1007/s12011-024-04386-z. [PMID: 39370454 DOI: 10.1007/s12011-024-04386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024]
Abstract
In recent years, the concentration of PM2.5 in China has decreased, while the concentration of ozone remains rising. Exposure to ozone contributes to respiratory illnesses; however, little is known about the underlying molecular mechanisms. The present study established an ozone-induced lung injury mice model to investigate potential molecular biomarkers and toxic mechanisms. Collected and analyzed the ozone pollution data in Xinxiang city from 2015 to 2022. At the same time, 24 male C57BL/6 mice were randomly assigned to control group and ozone exposure group. The ozone exposure concentration is 1 ppm, with 4 h of daily exposure for 33 consecutive days. HE staining was used to assess lung histological alterations and lung injury. High-throughput sequencing performed on the lung tissues of mice was used to analyze the differential expressed genes and signal transduction pathways. Xinxiang city is suffering from ozone pollution, especially in summer. HE staining showed that the ozone exposure could induce obvious inflammatory cell infiltration, alveolar wall thickening, or fracture. Transcriptome data revealed that there is a 145 differentially expressed genes between two groups and the genes enriched in PPAR signaling pathway, ferroptosis. The pivotal genes in the PPAR pathway including Adipoq, Lpl, Pck1, and Plin1 expression were significantly reduced. Additionally, the expression of Acsl6 and Scl7a11, which are close to PPAR pathway and ferroptosis has decreased. Ozone exposure could disrupt the lipid metabolism balance via downregulating lipid peroxidation-related genes through the PPAR signaling pathway, which further induced lung cell ferroptosis and aggravated lung injury in mice.
Collapse
Affiliation(s)
- Juan Li
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Huai Wei
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Ning Wang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Jing Chen
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Ying Zhang
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Zhen An
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Jie Song
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Tianqi Niu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China
| | - Weidong Wu
- International Collaborative Laboratory for Air Pollution Health Effects and Intervention, School of Public Health, Xinxiang Medical University, 601 Jinsui Avenue, Xinxiang, 453003, Henan Province, China.
| |
Collapse
|
4
|
Rosser F, Balmes J. Ozone and childhood respiratory health: A primer for US pediatric providers and a call for a more protective standard. Pediatr Pulmonol 2023; 58:1355-1366. [PMID: 36815617 PMCID: PMC10121852 DOI: 10.1002/ppul.26368] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Ground level ozone is a potent respiratory toxicant with decades of accumulated data demonstrating respiratory harms to children. Despite the ubiquity of ozone in the United States, impacting both urban and rural communities, the associated harms of exposure to this important air pollutant are often infrequently or inadequately covered during medical training including pulmonary specialization. Thus, many providers caring for children's respiratory health may have limited knowledge of the harms which may result in reduced discussion of ozone pollution during clinical encounters. Further, the current US air quality standard for ozone does not adequately protect children. In this nonsystematic review, we present basic background information for healthcare providers caring for children's respiratory health, review the US process for setting air quality standards, discuss the respiratory harms of ozone for healthy children and those with underlying respiratory disease, highlight the urgent need for a more protective ozone standard to adequately protect children's respiratory health, review impacts of climate change on ozone levels, and provide information for discussion in clinical encounters.
Collapse
Affiliation(s)
- Franziska Rosser
- Department of Pediatrics, Division of Pulmonary Medicine, University of Pittsburgh, School of Medicine, Pittsburgh, PA
| | - John Balmes
- Department of Medicine, University of California, San Francisco, San Francisco, CA
- School of Public Health, University of California, Berkeley, CA
| |
Collapse
|
5
|
Hildre TT, Heiro H, Sandven I, Hammarström B. Ambient Environmental Ozone and Variation of Fractional Exhaled Nitric Oxide (FeNO) in Hairdressers and Healthcare Workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4271. [PMID: 36901281 PMCID: PMC10001628 DOI: 10.3390/ijerph20054271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Fractional exhaled nitric oxide (FeNO) is a breath-related biomarker of eosinophilic asthma. The aim of this study was to investigate FeNO variations due to environmental or occupational exposures in respiratory healthy subjects. Overall, 14 hairdressers and 15 healthcare workers in Oslo were followed for 5 workdays. We registered the levels of FeNO after commuting and arriving at the workspace and after ≥3 h of work, in addition to symptoms of cold, commuting method, and hair treatments that were performed. Both short- and intermediate-term effects after exposure were evaluated. Environmental assessment of daily average levels of air quality particulate matter 2.5 (PM2.5), particulate matter 10 (PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), and ozone (O3) indicated a covariation in ozone and FeNO in which a 35-50% decrease in ozone was followed by a near 20% decrease in FeNO with a 24-h latency. Pedestrians had significantly increased FeNO readings. Symptoms of cold were associated with a significant increase in FeNO readings. We did not find any FeNO increase of statistical significance after occupational chemical exposure to hair treatments. The findings may be of clinical, environmental and occupational importance.
Collapse
|
6
|
Qi Y, Chen Y, Yan X, Liu W, Ma L, Liu Y, Ma Q, Liu S. Co-Exposure of Ambient Particulate Matter and Airborne Transmission Pathogens: The Impairment of the Upper Respiratory Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15892-15901. [PMID: 36240448 PMCID: PMC9670849 DOI: 10.1021/acs.est.2c03856] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Recent evidence has pinpointed the positive relevance between air particulate matter (PM) pollution and epidemic spread. However, there are still significant knowledge gaps in understanding the transmission and infection of pathogens loaded on PMs, for example, the interactions between pathogens and pre-existing atmospheric PM and the health effects of co-exposure on the inhalation systems. Here, we unraveled the interactions between fine particulate matter (FPM) and Pseudomonas aeruginosa (P. aeruginosa) and evaluated the infection and detrimental effects of co-exposure on the upper respiratory systems in both in vitro and in vivo models. We uncovered the higher accessibility and invasive ability of pathogens to epithelial cells after loading on FPMs, compared with the single exposure. Furthermore, we designed a novel laboratory exposure model to simulate a real co-exposure scenario. Intriguingly, the co-exposure induced more serious functional damage and longer inflammatory reactions to the upper respiratory tract, including the nasal cavity and trachea. Collectively, our results provide a new point of view on the transmission and infection of pathogens loaded on FPMs and uncover the in vivo systematic impairments of the inhalation tract under co-exposure through a novel laboratory exposure model. Hence, this study sheds light on further investigations of the detrimental effects of air pollution and epidemic spread.
Collapse
Affiliation(s)
- Yu Qi
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Yucai Chen
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu Yan
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Ma
- Aerosol
and Haze Laboratory, Advanced Innovation Center for Soft Matter Science
and Engineering, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Yongchun Liu
- Aerosol
and Haze Laboratory, Advanced Innovation Center for Soft Matter Science
and Engineering, Beijing University of Chemical
Technology, Beijing 100029, China
| | - Qingxin Ma
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Sijin Liu
- State
Key Laboratory of Environmental Chemistry and Ecotoxicology, Research
Center for Eco-Environmental Sciences, Chinese
Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
- College
of Resources and Environment, University
of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Wang W, Zhang W, Hu D, Li L, Cui L, Liu J, Liu S, Xu J, Wu S, Deng F, Guo X. Short-term ozone exposure and metabolic status in metabolically healthy obese and normal-weight young adults: A viewpoint of inflammatory pathways. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127462. [PMID: 34653859 DOI: 10.1016/j.jhazmat.2021.127462] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 09/09/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Unhealthy metabolic status increases risks of cardiovascular and other diseases. This study aims to explore whether there is a link between O3 and metabolic health indicators through a viewpoint of inflammatory pathways. 49 metabolically healthy normal-weight (MH-NW) and 39 metabolically healthy obese (MHO) young adults aged 18-26 years were recruited from a panel study with three visits. O3 exposure were estimated based on fixed-site environmental monitoring data and time-activity diary for each participant. Compared to MH-NW people, MHO people were more susceptible to the adverse effects on metabolic status, including blood pressure, glucose, and lipid indicators when exposed to O3. For instance, O3 exposure was associated with significant decreases in high-density lipoprotein cholesterol (HDL-C), and increases in C-peptide and low-density lipoprotein cholesterol (LDL-C) among MHO people, while only weaker changes in HDL-C and LDL-C among MH-NW people. Mediation analyses indicated that leptin mediated the metabolic health effects in both groups, while eosinophils and MCP-1 were also important mediating factors for the MHO people. Although both with a metabolically healthy status, compared to normal-weight people, obese people might be more susceptible to the negative effects of O3 on metabolic status, possibly through inflammatory indicators such as leptin, eosinophils, and MCP-1.
Collapse
Affiliation(s)
- Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Wenlou Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Dayu Hu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Luyi Li
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Liyan Cui
- Department of Laboratory Medicine, Peking University Third Hospital, Beijing 100191, China
| | - Junxiu Liu
- Department of Otolaryngology Head and Neck Surgery, Peking University Third Hospital, Beijing 100191, China
| | - Shan Liu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Junhui Xu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China.
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing 100191, China
| |
Collapse
|
8
|
Smith GJ, Tovar A, McFadden K, Moran TP, Wagner JG, Harkema JR, Kelada SNP. A Murine Model of Ozone-induced Nonatopic Asthma from the Collaborative Cross. Am J Respir Cell Mol Biol 2021; 65:672-674. [PMID: 34851239 PMCID: PMC8641798 DOI: 10.1165/rcmb.2020-0577le] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Gregory J. Smith
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Adelaide Tovar
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Kathryn McFadden
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | - Timothy P. Moran
- University of North Carolina at Chapel HillChapel Hill, North Carolina
| | | | | | | |
Collapse
|
9
|
Nejjari C, Marfak A, Rguig A, Maaroufi A, El Marouani I, El Haloui A, El Johra B, Ouahabi R, Moulki R, Azami AI, El Achhab Y. Ambient air pollution and emergency department visits among children and adults in Casablanca, Morocco. AIMS Public Health 2021; 8:285-302. [PMID: 34017892 PMCID: PMC8116191 DOI: 10.3934/publichealth.2021022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 02/26/2021] [Indexed: 11/18/2022] Open
Abstract
This study presents the relationships between ambient air pollutants and morbidity and emergency department visits among children and adults performed in Great Casablanca, the most populated and economic region in Morocco. This research was analyzed using conditional Poisson model for the period 2011-2013. In the period of study, the daily average concentrations of SO2, NO2, O3 and PM10 in Casablanca were 209.4 µg/m3, 61 µg/m3, 113.2 µg/m3 and 75.1 µg/m3, respectively. In children less than 5 years old, risk of asthma could be increased until 12% per 10 µg/m3 increase in NO2, PM10, SO2 and O3. In children over 5 years and adults, an increase of 10 µg/m3 air pollutant can cause an increase until 3% and 4% in respiratory consultations and acute respiratory infection, respectively. Similarly, impact on emergency department visits due to respiratory and cardiac illness was established. Our results suggest a not negligible impact on morbidity of outdoor air pollution by NO2, SO2, O3, and PM10.
Collapse
Affiliation(s)
- Chakib Nejjari
- Laboratory of Epidemiology, Clinical Research and Community Health, Faculty of Medicine and Pharmacy of Fez, Morocco
- Mohammed VI University for Health Sciences, Casablanca, Morocco
| | - Abdelghafour Marfak
- National School of Public Health, Rabat, Morocco
- Laboratory of Health Sciences and Technology, Higher Institute of Health Sciences, Hassan 1 University of Settat, Morocco
| | | | | | | | | | - Bouchra El Johra
- General Directorate of Meteorology of Morocco in Casablanca, Morocco
| | | | - Rachid Moulki
- Regional Health Directorate of Casablanca-Settat, Casablanca, Morocco
| | | | - Youness El Achhab
- Laboratory of Epidemiology, Clinical Research and Community Health, Faculty of Medicine and Pharmacy of Fez, Morocco
- Regional Center for Careers Education and Training, Fez-Meknes, Morocco
| |
Collapse
|
10
|
Choudhary I, Vo T, Paudel K, Patial S, Saini Y. Compartment-specific transcriptomics of ozone-exposed murine lungs reveals sex- and cell type-associated perturbations relevant to mucoinflammatory lung diseases. Am J Physiol Lung Cell Mol Physiol 2020; 320:L99-L125. [PMID: 33026818 DOI: 10.1152/ajplung.00381.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Ozone is known to cause lung injury, and resident cells of the respiratory tract (i.e., epithelial cells and macrophages) respond to inhaled ozone in a variety of ways that affect their survival, morphology, and functioning. However, a complete understanding of the sex-associated and the cell type-specific gene expression changes in response to ozone exposure is still limited. Through transcriptome profiling, we aimed to analyze gene expression alterations and associated enrichment of biological pathways in three distinct cell type-enriched compartments of ozone-exposed murine lungs. We subchronically exposed adult male and female mice to 0.8 ppm ozone or filtered air. RNA-Seq was performed on airway epithelium-enriched airways, parenchyma, and purified airspace macrophages. Differential gene expression and biological pathway analyses were performed and supported by cellular and immunohistochemical analyses. While a majority of differentially expressed genes (DEGs) in ozone-exposed versus air-exposed groups were common between both sexes, sex-specific DEGs were also identified in all of the three tissue compartments. As compared with ozone-exposed males, ozone-exposed females had significant alterations in gene expression in three compartments. Pathways relevant to cell division and DNA repair were enriched in the ozone-exposed airways, indicating ozone-induced airway injury and repair, which was further supported by immunohistochemical analyses. In addition to cell division and DNA repair pathways, inflammatory pathways were also enriched within the parenchyma, supporting contribution by both epithelial and immune cells. Further, immune response and cytokine-cytokine receptor interactions were enriched in macrophages, indicating ozone-induced macrophage activation. Finally, our analyses also revealed the overall upregulation of mucoinflammation- and mucous cell metaplasia-associated pathways following ozone exposure.
Collapse
Affiliation(s)
- Ishita Choudhary
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Thao Vo
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Kshitiz Paudel
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Sonika Patial
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | - Yogesh Saini
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| |
Collapse
|
11
|
Harkema JR, Eldridge EA, Freeland A, Jackson-Humbles D, Lewandowski RA, Wagner JG, Krieger SM, Hotchkiss JA. Pathogenesis and Persistence of Increased Epithelial Mucosubstances in the Nasal Airways of Rats and Mice Episodically Exposed to Ethylene. Toxicol Pathol 2020; 48:875-886. [PMID: 32975493 DOI: 10.1177/0192623320960459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rats repeatedly exposed to high airborne concentrations of ethylene develop eosinophilic rhinitis and mucous cell hyperplasia/hypertrophy (MCH) in nasal respiratory epithelium. Mechanisms underlying these lesions are not well understood to inform occupational exposure guidelines. In this study, we determined (1) the nasal histopathology in rats episodically exposed to ethylene, (2) the ethylene-induced nasal histopathology in similarly exposed mice, and (3) how innate lymphoid cells (ILCs) play a role in ethylene-induced MCH. Animals were exposed to 0 or 10,000 ppm ethylene, 6 h/d, 5 d/wk, for 2 weeks and sacrificed 1 day or 2 weeks postexposure. Others received three 2-week exposure blocks separated by 2-week intervals of no exposure. Episodic exposure was chosen to aid in distinguishing irritant from immune responses. Mucous cell hyperplasia/hypertrophy was induced by ethylene in both species. Rats developed a mild, but transient, eosinophilic rhinitis. Mucous cell hyperplasia/hypertrophy was transient in mice, but persistent in rats. Increases in epithelial mucosubstances after 2 weeks of exposure were only present in ILC-sufficient mice, but not in ILC-deficient mice suggesting that ILCs play a role in MCH and overexpression of genes associated with mucus production/secretion. These findings in animals suggest that inhaled ethylene does not act as a sensitizing agent and will not induce allergen-like nasal airway disease.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 3078Michigan State University, East Lansing, MI, USA
| | - Elyse A Eldridge
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 3078Michigan State University, East Lansing, MI, USA
| | - Amy Freeland
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 3078Michigan State University, East Lansing, MI, USA
| | - Daven Jackson-Humbles
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 3078Michigan State University, East Lansing, MI, USA
| | - Ryan A Lewandowski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 3078Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, 3078Michigan State University, East Lansing, MI, USA
| | - Shannon M Krieger
- 540144Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, USA
| | - Jon A Hotchkiss
- 540144Toxicology & Environmental Research and Consulting, The Dow Chemical Company, Midland, MI, USA
| |
Collapse
|
12
|
Wiegman CH, Li F, Ryffel B, Togbe D, Chung KF. Oxidative Stress in Ozone-Induced Chronic Lung Inflammation and Emphysema: A Facet of Chronic Obstructive Pulmonary Disease. Front Immunol 2020; 11:1957. [PMID: 32983127 PMCID: PMC7492639 DOI: 10.3389/fimmu.2020.01957] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 07/20/2020] [Indexed: 12/19/2022] Open
Abstract
Oxidative stress plays an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD) caused by cigarette smoke and characterized by chronic inflammation, alveolar destruction (emphysema) and bronchiolar obstruction. Ozone is a gaseous constituent of urban air pollution resulting from photochemical interaction of air pollutants such as nitrogen oxide and organic compounds. While acute exposure to ozone induces airway hyperreactivity and neutrophilic inflammation, chronic ozone exposure in mice causes activation of oxidative pathways resulting in cell death and a chronic bronchial inflammation with emphysema, mimicking cigarette smoke-induced COPD. Therefore, the chronic exposure to ozone has become a model for studying COPD. We review recent data on mechanisms of ozone induced lung disease focusing on pathways causing chronic respiratory epithelial cell injury, cell death, alveolar destruction, and tissue remodeling associated with the development of chronic inflammation and AHR. The initial oxidant insult may result from direct effects on the integrity of membranes and organelles of exposed epithelial cells in the airways causing a stress response with the release of mitochondrial reactive oxygen species (ROS), DNA, and proteases. Mitochondrial ROS and mitochondrial DNA activate NLRP3 inflammasome and the DNA sensors cGAS and STING accelerating cell death pathways including caspases with inflammation enhancing alveolar septa destruction, remodeling, and fibrosis. Inhibitors of mitochondrial ROS, NLRP3 inflammasome, DNA sensor, cell death pathways, and IL-1 represent novel therapeutic targets for chronic airways diseases underlined by oxidative stress.
Collapse
Affiliation(s)
- Coen H. Wiegman
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Feng Li
- Department of Pulmonary Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
- ArtImmune SAS, Orléans, France
| | - Kian Fan Chung
- Section of Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| |
Collapse
|
13
|
da Costa Loureiro L, da Costa Loureiro L, Gabriel-Junior EA, Zambuzi FA, Fontanari C, Sales-Campos H, Frantz FG, Faccioli LH, Sorgi CA. Pulmonary surfactant phosphatidylcholines induce immunological adaptation of alveolar macrophages. Mol Immunol 2020; 122:163-172. [PMID: 32361419 DOI: 10.1016/j.molimm.2020.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 12/14/2022]
Abstract
Pulmonary surfactant plays an important role in lung surface tension, defense against invading pathogens, and immune response. Furthermore, alveolar macrophages (AM) that comprise the front line of immune defense against inhaled microorganisms are covered by a layer of pulmonary fluid. Phosphatidylcholines (PCs), including unsaturated lipids such as 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), are the most prevalent phospholipids in pulmonary surfactant. POPC reacts with ozone to produce 1-palmitoyl-2-(9-oxo-nonanoyl)-sn-glycero-3-phosphocholine (PONPC), a soluble mediator that initiates an inflammatory reaction in the lungs. However, the modulatory effects of POPC and PONPC on biology and activity of AM remain inconclusive. The exposure of AM (cell line AMJ2-C11) to POPC and PONPC was not directly related to the production of inflammatory mediators. However, AM, pre-incubated with POPC or PONPC, showed enhanced response after lipopolysaccharide (LPS) stimulation, and increased the production of nitric oxide and cytokines. This phenomenon was also observed for classical-polarized macrophages (M1). This increment on the production of inflammatory mediators was not associated with macrophage polarization, but with up-regulation of Tlr4 and Myd88 gene expression, which was in accordance with the adaptation of immune cells. This observation was confirmed by the histone acetylation epigenetic pathway. In contrast to the priming effect of POPC on AM activity, a harmful immune response, induced on incubation with PONPC, improved prostaglandin E2 (PGE2) formation, resulting in diminished bacterial phagocytosis. Additionally, PONPC induced production of CXCL1/KC, which potentially mediates neutrophil recruitment and enhances tissue inflammation. These results disclosed another dynamic mechanism by which pulmonary surfactant lipids (natural or oxidized) primed macrophage activity, thus affecting lung host defense.
Collapse
Affiliation(s)
- Luma da Costa Loureiro
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Luana da Costa Loureiro
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Edson Alves Gabriel-Junior
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiana Albani Zambuzi
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Caroline Fontanari
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Helioswilton Sales-Campos
- Departamento de Biociências e Tecnologia, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, Goiás, Brazil
| | - Fabiani Gai Frantz
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lúcia Helena Faccioli
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Carlos Arterio Sorgi
- Instituto de Ciências Biológicas, Programa de Pós-Graduação em Imunologia Básica e Aplicada (PPGIBA), Universidade Federal do Amazonas (UFAM), Manaus, Amazonas, Brazil; Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
14
|
Thurston GD, Balmes JR, Garcia E, Gilliland FD, Rice MB, Schikowski T, Van Winkle LS, Annesi-Maesano I, Burchard EG, Carlsten C, Harkema JR, Khreis H, Kleeberger SR, Kodavanti UP, London SJ, McConnell R, Peden DB, Pinkerton KE, Reibman J, White CW. Outdoor Air Pollution and New-Onset Airway Disease. An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2020; 17:387-398. [PMID: 32233861 PMCID: PMC7175976 DOI: 10.1513/annalsats.202001-046st] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Although it is well accepted that air pollution exposure exacerbates preexisting airway disease, it has not been firmly established that long-term pollution exposure increases the risk of new-onset asthma or chronic obstruction pulmonary disease (COPD). This Workshop brought together experts on mechanistic, epidemiological, and clinical aspects of airway disease to review current knowledge regarding whether air pollution is a causal factor in the development of asthma and/or COPD. Speakers presented recent evidence in their respective areas of expertise related to air pollution and new airway disease incidence, followed by interactive discussions. A writing committee summarized their collective findings. The Epidemiology Group found that long-term exposure to air pollution, especially metrics of traffic-related air pollution such as nitrogen dioxide and black carbon, is associated with onset of childhood asthma. However, the evidence for a causal role in adult-onset asthma or COPD remains insufficient. The Mechanistic Group concluded that air pollution exposure can cause airway remodeling, which can lead to asthma or COPD, as well as asthma-like phenotypes that worsen with long-term exposure to air pollution, especially fine particulate matter and ozone. The Clinical Group concluded that air pollution is a plausible contributor to the onset of both asthma and COPD. Available evidence indicates that long-term exposure to air pollution is a cause of childhood asthma, but the evidence for a similar determination for adult asthma or COPD remains insufficient. Further research is needed to elucidate the exact biological mechanism underlying incident childhood asthma, and the specific air pollutant that causes it.
Collapse
|
15
|
Harkema JR, Eldridge EA, Lewandowski RP, Wagner JG. Influx, Persistence, and Recall of Eosinophils and GATA-3+ Innate Lymphoid Cells in the Nasal Mucosa of Mice Exposed and Reexposed to the Gaseous Air Pollutant Ozone. Toxicol Pathol 2019; 48:323-337. [PMID: 31729279 DOI: 10.1177/0192623319882768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mice exposed to the air pollutant ozone develop eosinophilic rhinitis that is mediated by group 2, GATA-3+, innate lymphoid cells (ILC2s). In the present study, we determined the influx, persistence, and recall of nasal ILC2s and eosinophils in ozone-exposed mice. C57BL/6 (T/B cell sufficient, ILC sufficient), Rag2-/- (T/B cell deficient, ILC sufficient), and Rag2-/-Il2rg-/- (T/B cell deficient, ILC deficient) mice were exposed to 0 or 0.8 ppm ozone for 1 or 9 weekdays and killed 1 or 17 days postexposure. GATA-3+ lymphocytes were sparse in nasal tissue of air-exposed ILC-sufficient mice and absent in ILC-deficient mice. Nine-day, but not 1-day, ozone exposures induced nasal influxes of eosinophils and GATA-3+ lymphocytes in C57BL/6 and Rag2-/- mice but not in Rag2-/-Il2rg-/- mice. Eosinophils waned 17 days postexposure in ILC-sufficient strains of mice. GATA-3+ lymphocytes in C57BL/6 mice also attenuated after exposure but not in ILC-sufficient Rag2-/- mice. Eosinophils, but not GATA-3+ cells, increased rapidly with reexposure in ILC-sufficient mice. Type 2 immune-related messenger RNA expression correlated with cellular responses to ozone. These new findings in mice further elucidate the role of ILC2s in ozone-induced eosinophilic rhinitis and support epidemiologic associations between ozone exposure and eosinophilic inflammation in children.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Elyse A Eldridge
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - Ryan P Lewandowski
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
16
|
Harkema JR, Wagner JG. Innate Lymphoid Cell-Dependent Airway Epithelial and Inflammatory Responses to Inhaled Ozone: A New Paradigm in Pathogenesis. Toxicol Pathol 2019; 47:993-1003. [PMID: 31537180 DOI: 10.1177/0192623319873872] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Epidemiological associations have been made between the new onset of childhood rhinitis/asthma and exposures to elevated ambient levels of ozone, a commonly encountered gaseous air pollutant. Our laboratory was the first to find that mice repeatedly exposed to ozone develop nasal type 2 immunity and eosinophilic rhinitis with mucous cell metaplasia. More recently, we have found that these ozone-induced upper airway alterations are mediated by group 2 innate lymphoid cells (ILC2s) and not by T and B cells that are important in adaptive immune responses typically associated with allergic rhinitis and asthma. Furthermore, repeated exposures of mice to ozone cause ILC2-mediated type 2 immunity and airway pathology in the lungs, like those found in the nasal airways. Our recent findings in ozone-exposed mice complement and extend previous reports of nonallergic nasal airway disease in ozone-exposed rats and nonhuman primates. Overall, these experimental results in laboratory animals suggest a plausible ILC2-dependent paradigm for the toxicologic pathobiology that underlies the development of nonallergic rhinitis/asthma in children who live in environments with repeated occurrences of high ambient concentrations of ozone.
Collapse
Affiliation(s)
- Jack R Harkema
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| | - James G Wagner
- Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
17
|
Sokolowska M, Quesniaux VFJ, Akdis CA, Chung KF, Ryffel B, Togbe D. Acute Respiratory Barrier Disruption by Ozone Exposure in Mice. Front Immunol 2019; 10:2169. [PMID: 31608051 PMCID: PMC6758598 DOI: 10.3389/fimmu.2019.02169] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022] Open
Abstract
Ozone exposure causes irritation, airway hyperreactivity (AHR), inflammation of the airways, and destruction of alveoli (emphysema), the gas exchange area of the lung in human and mice. This review focuses on the acute disruption of the respiratory epithelial barrier in mice. A single high dose ozone exposure (1 ppm for 1 h) causes first a break of the bronchiolar epithelium within 2 h with leak of serum proteins in the broncho-alveolar space, disruption of epithelial tight junctions and cell death, which is followed at 6 h by ROS activation, AHR, myeloid cell recruitment, and remodeling. High ROS levels activate a novel PGAM5 phosphatase dependent cell-death pathway, called oxeiptosis. Bronchiolar cell wall damage and inflammation upon a single ozone exposure are reversible. However, chronic ozone exposure leads to progressive and irreversible loss of alveolar epithelial cells and alveoli with reduced gas exchange space known as emphysema. It is further associated with chronic inflammation and fibrosis of the lung, resembling other environmental pollutants and cigarette smoke in pathogenesis of asthma, and chronic obstructive pulmonary disease (COPD). Here, we review recent data on the mechanisms of ozone induced injury on the different cell types and pathways with a focus on the role of the IL-1 family cytokines and the related IL-33. The relation of chronic ozone exposure induced lung disease with asthma and COPD and the fact that ozone exacerbates asthma and COPD is emphasized.
Collapse
Affiliation(s)
- Milena Sokolowska
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Valerie F J Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Cezmi A Akdis
- Swiss Institute of Allergy and Asthma Research, University of Zurich, Davos, Switzerland.,Christine Kühne - Center for Allergy Research and Education (CK-CARE), Davos, Switzerland
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France
| | - Dieudonnée Togbe
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orléans, France.,ArtImmune SAS, Artinem, Orléans, France
| |
Collapse
|
18
|
Larson ED, Magno JPM, Steritz MJ, Llanes EGDV, Cardwell J, Pedro M, Roberts TB, Einarsdottir E, Rosanes RAQ, Greenlee C, Santos RAP, Yousaf A, Streubel SO, Santos ATR, Ruiz AG, Lagrana-Villagracia SM, Ray D, Yarza TKL, Scholes MA, Anderson CB, Acharya A, Gubbels SP, Bamshad MJ, Cass SP, Lee NR, Shaikh RS, Nickerson DA, Mohlke KL, Prager JD, Cruz TLG, Yoon PJ, Abes GT, Schwartz DA, Chan AL, Wine TM, Cutiongco-de la Paz EM, Friedman N, Kechris K, Kere J, Leal SM, Yang IV, Patel JA, Tantoco MLC, Riazuddin S, Chan KH, Mattila PS, Reyes-Quintos MRT, Ahmed ZM, Jenkins HA, Chonmaitree T, Hafrén L, Chiong CM, Santos-Cortez RLP. A2ML1 and otitis media: novel variants, differential expression, and relevant pathways. Hum Mutat 2019; 40:1156-1171. [PMID: 31009165 DOI: 10.1002/humu.23769] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 02/26/2019] [Accepted: 04/18/2019] [Indexed: 12/16/2022]
Abstract
A genetic basis for otitis media is established, however, the role of rare variants in disease etiology is largely unknown. Previously a duplication variant within A2ML1 was identified as a significant risk factor for otitis media in an indigenous Filipino population and in US children. In this report exome and Sanger sequencing was performed using DNA samples from the indigenous Filipino population, Filipino cochlear implantees, US probands, Finnish, and Pakistani families with otitis media. Sixteen novel, damaging A2ML1 variants identified in otitis media patients were rare or low-frequency in population-matched controls. In the indigenous population, both gingivitis and A2ML1 variants including the known duplication variant and the novel splice variant c.4061 + 1 G>C were independently associated with otitis media. Sequencing of salivary RNA samples from indigenous Filipinos demonstrated lower A2ML1 expression according to the carriage of A2ML1 variants. Sequencing of additional salivary RNA samples from US patients with otitis media revealed differentially expressed genes that are highly correlated with A2ML1 expression levels. In particular, RND3 is upregulated in both A2ML1 variant carriers and high-A2ML1 expressors. These findings support a role for A2ML1 in keratinocyte differentiation within the middle ear as part of otitis media pathology and the potential application of ROCK inhibition in otitis media.
Collapse
Affiliation(s)
- Eric D Larson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jose Pedrito M Magno
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines
| | - Matthew J Steritz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Erasmo Gonzalo D V Llanes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Jonathan Cardwell
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Melquiadesa Pedro
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Tori Bootpetch Roberts
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Elisabet Einarsdottir
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Rose Anne Q Rosanes
- Department of Community Dentistry, College of Dentistry, University of the Philippines Manila, Manila, Philippines
| | - Christopher Greenlee
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Ayesha Yousaf
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Sven-Olrik Streubel
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | | | - Amanda G Ruiz
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Sheryl Mae Lagrana-Villagracia
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Dylan Ray
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Talitha Karisse L Yarza
- Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Melissa A Scholes
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Catherine B Anderson
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Anushree Acharya
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | | | - Samuel P Gubbels
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Michael J Bamshad
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Stephen P Cass
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Nanette R Lee
- USC-Office of Population Studies Foundation, Inc. and Department of Anthropology, Sociology and History, University of San Carlos, Cebu, Philippines
| | - Rehan S Shaikh
- Institute of Molecular Biology and Biotechnology, Bahauddin Zakariya University, Multan, Punjab, Pakistan
| | - Deborah A Nickerson
- Department of Genome Sciences, University of Washington, Seattle, Washington
| | - Karen L Mohlke
- Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| | - Jeremy D Prager
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Teresa Luisa G Cruz
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Patricia J Yoon
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Generoso T Abes
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - David A Schwartz
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Abner L Chan
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Todd M Wine
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Eva Maria Cutiongco-de la Paz
- Philippine Genome Center, University of the Philippines, Quezon City, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Norman Friedman
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Katerina Kechris
- Department of Biostatistics and Bioinformatics, Colorado School of Public Health, Aurora, Colorado
| | - Juha Kere
- Folkhälsan Institute of Genetics and Molecular Neurology Research Program, University of Helsinki, Helsinki, Finland.,Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
| | - Suzanne M Leal
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas
| | - Ivana V Yang
- Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado
| | - Janak A Patel
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Ma Leah C Tantoco
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Saima Riazuddin
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Kenny H Chan
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Department of Pediatric Otolaryngology, Children's Hospital Colorado, Aurora, Colorado
| | - Petri S Mattila
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Maria Rina T Reyes-Quintos
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines.,University of the Philippines Manila - National Institutes of Health, Manila, Philippines
| | - Zubair M Ahmed
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland
| | - Herman A Jenkins
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado
| | - Tasnee Chonmaitree
- Division of Infectious Diseases, Department of Pediatrics, University of Texas Medical Branch, Galveston, Texas
| | - Lena Hafrén
- Department of Otorhinolaryngology, Head & Neck Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Charlotte M Chiong
- Department of Otorhinolaryngology, University of the Philippines Manila College of Medicine - Philippine General Hospital, Manila, Philippines.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Newborn Hearing Screening Reference Center, University of the Philippines Manila - National Institutes of Health (NIH), Manila, Philippines
| | - Regie Lyn P Santos-Cortez
- Department of Otolaryngology, University of Colorado School of Medicine, Aurora, Colorado.,Philippine National Ear Institute, University of the Philippines Manila - National Institutes of Health, Manila, Philippines.,Center for Children's Surgery, Children's Hospital Colorado, Aurora, Colorado
| |
Collapse
|
19
|
Ehsanifar M, Tameh AA, Farzadkia M, Kalantari RR, Zavareh MS, Nikzaad H, Jafari AJ. Exposure to nanoscale diesel exhaust particles: Oxidative stress, neuroinflammation, anxiety and depression on adult male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:338-347. [PMID: 30391838 DOI: 10.1016/j.ecoenv.2018.10.090] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 10/10/2018] [Accepted: 10/24/2018] [Indexed: 05/28/2023]
Abstract
Exposure to nanoscale diesel engines exhausted particles (DEPs) is a well-recognized risk factor for respiratory and cardiovascular diseases. Rodents as commonly used models for urban air pollution in health effect studies demonstrate constant stimulation of inflammatory responses in the main areas of the brain. Nevertheless, the primary effect of diesel exhaust particulate matter on some of the brain regions and relation by behavioral alterations still remains untouched. We evaluated the brain regional inflammatory responses to a nanosized subfraction of diesel engines exhaust particulate matter (DEPs < 200 nm) in an adult male mice brain. Adult male mice were exposed to DEPs for 3, 6, and 8 h per day, 12 weeks and five days per week. Degree of anxiety and the depression by elevated plus maze and Forced Swimming Test respectively (FST) did measurement. After behavior tests, the plasma and some of the brain regions such as olfactory bulb (OB) and hippocampus (HI) were analyzed for oxidative stress and inflammatory responses. The inflammation and oxidative stress changes in OB and HI, markedly coincides with the results of behavioral alterations. These responses corresponded with rapid induction of MDA and nitrite oxide (NO) in brain regions and neuronal nitric oxide synthase (nNOS) mRNA followed by IL6, IL1α, and TNFα in OB and HI. The different times of DEPs exposure, leads to oxidative stress and inflammatory in plasma and brain regions. That this cumulative transport of inhaled nanoscale DEPs into the brain and creating to inflammation responses of brain regions may cause problems of brain function and anxiety and depression.
Collapse
Affiliation(s)
- Mojtaba Ehsanifar
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran; Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran.
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Mahdi Farzadkia
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantari
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | | | - Hossein Nikzaad
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology and Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
20
|
Michaudel C, Maillet I, Fauconnier L, Quesniaux V, Chung KF, Wiegman C, Peter D, Ryffel B. Interleukin-1α Mediates Ozone-Induced Myeloid Differentiation Factor-88-Dependent Epithelial Tissue Injury and Inflammation. Front Immunol 2018; 9:916. [PMID: 29867931 PMCID: PMC5950844 DOI: 10.3389/fimmu.2018.00916] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Accepted: 04/13/2018] [Indexed: 02/04/2023] Open
Abstract
Air pollution associated with ozone exposure represents a major inducer of respiratory disease in man. In mice, a single ozone exposure causes lung injury with disruption of the respiratory barrier and inflammation. We investigated the role of interleukin-1 (IL-1)-associated cytokines upon a single ozone exposure (1 ppm for 1 h) using IL-1α-, IL-1β-, and IL-18-deficient mice or an anti-IL-1α neutralizing antibody underlying the rapid epithelial cell death. Here, we demonstrate the release of the alarmin IL-1α after ozone exposure and that the acute respiratory barrier injury and inflammation and airway hyperreactivity are IL-1α-dependent. IL-1α signaling via IL-1R1 depends on the adaptor protein myeloid differentiation factor-88 (MyD88). Importantly, epithelial cell signaling is critical, since deletion of MyD88 in lung type I alveolar epithelial cells reduced ozone-induced inflammation. In addition, intratracheal injection of recombinant rmIL-1α in MyD88acid mice led to reduction of inflammation in comparison with wild type mice treated with rmIL-1α. Therefore, a major part of inflammation is mediated by IL-1α signaling in epithelial cells. In conclusion, the alarmin IL-1α released upon ozone-induced tissue damage and inflammation is mediated by MyD88 signaling in epithelial cells. Therefore, IL-1α may represent a therapeutic target to attenuate ozone-induced lung inflammation and hyperreactivity.
Collapse
Affiliation(s)
- Chloé Michaudel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | - Isabelle Maillet
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | | | - Valérie Quesniaux
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| | - Kian Fan Chung
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Coen Wiegman
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom.,NIHR Respiratory Biomedical Research Unit, Royal Brompton & Harefield NHS Foundation Trust, London, United Kingdom
| | - Daniel Peter
- Immunology and Respiratory Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | - Bernhard Ryffel
- Laboratory of Experimental and Molecular Immunology and Neurogenetics (INEM), UMR 7355 CNRS-University of Orleans, Orleans, France
| |
Collapse
|
21
|
Kumagai K, Lewandowski RP, Jackson-Humbles DN, Buglak N, Li N, White K, Van Dyken SJ, Wagner JG, Harkema JR. Innate Lymphoid Cells Mediate Pulmonary Eosinophilic Inflammation, Airway Mucous Cell Metaplasia, and Type 2 Immunity in Mice Exposed to Ozone. Toxicol Pathol 2017; 45:692-704. [PMID: 28891433 DOI: 10.1177/0192623317728135] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Exposure to elevated levels of ambient ozone in photochemical smog is associated with eosinophilic airway inflammation and nonatopic asthma in children. In the present study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced nonatopic asthma by using lymphoid cell-sufficient C57BL/6 mice, ILC-sufficient Rag2-/- mice (devoid of T and B cells), and ILC-deficient Rag2-/-Il2rg-/- mice (depleted of all lymphoid cells including ILCs). Mice were exposed to 0 or 0.8 parts per million ozone for 1 day or 9 consecutive weekdays (4 hr/day). A single exposure to ozone caused neutrophilic inflammation, airway epithelial injury, and reparative DNA synthesis in all strains of mice, irrespective of the presence or absence of ILCs. In contrast, 9-day exposures induced eosinophilic inflammation and mucous cell metaplasia only in the lungs of ILC-sufficient mice. Repeated ozone exposures also elicited increased messenger RNA expression of transcripts associated with type 2 immunity and airway mucus production in ILC-sufficient mice. ILC-deficient mice repeatedly exposed to ozone had no pulmonary pathology or increased gene expression related to type 2 immunity. These results suggest a new paradigm for the biologic mechanisms underlying the development of a phenotype of childhood nonatopic asthma that has been linked to ambient ozone exposures.
Collapse
Affiliation(s)
- Kazuyoshi Kumagai
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ryan P Lewandowski
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Daven N Jackson-Humbles
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas Buglak
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Ning Li
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Kaylin White
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Steven J Van Dyken
- 2 Department of Medicine, University of California, San Francisco, California, USA
| | - James G Wagner
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| | - Jack R Harkema
- 1 Department of Pathobiology and Diagnostic Investigation, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
22
|
McCant D, Lange S, Haney J, Honeycutt M. The perpetuation of the misconception that rats receive a 3-5 times lower lung tissue dose than humans at the same ozone concentration. Inhal Toxicol 2017; 29:187-196. [PMID: 28697635 DOI: 10.1080/08958378.2017.1323982] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This paper highlights the pervasive misconception concerning 1994 findings from Hatch et al. about ozone (O3) tissue dose in humans versus rats. That study exposed humans to 0.4 ppm and rats to 2 ppm 18O-labeled O3 and found comparable incorporation of 18O into bronchoalveolar lavage constituents. However, during O3 exposure humans were exercising, which increased their ventilation rate five-fold, while rats were at rest. This resulted in similar O3 tissue doses between the two species, and predominantly explained the comparable 18O incorporation at five-fold different concentrations. The five-times higher exercising human inhalation rate offset the five-times lower concentration, producing the same human dose expected at rest at 2 ppm (i.e. 0.4 ppm × 4686 L/2 hour ≈ 2 ppm × 998 L/2 hour). In 2013, Hatch et al. showed that resting humans and resting rats experienced fairly comparable 18O incorporation at the same O3 exposure concentration and activity state into BALF cells. Despite these findings, we show here that in the peer-reviewed literature a substantial proportion of researchers continue to perpetuate the misunderstanding that human lung tissue doses of O3 are simply 3-5 times greater than rat doses at the same O3 concentration, due to interspecies differences, and not considering activity state. It is important to correct this misconception to ensure an appropriate understanding of the implications of O3 studies by the scientific community and policy experts making regulatory decisions (e.g. the US Environmental Protection Agency's National Ambient Air Quality Standards for O3).
Collapse
Affiliation(s)
- Darrell McCant
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| | - Sabine Lange
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| | - Joseph Haney
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| | - Michael Honeycutt
- a Toxicology Division , Texas Commission on Environmental Quality , Austin , TX , USA
| |
Collapse
|
23
|
Duan L, Li J, Ma P, Yang X, Xu S. Vitamin E antagonizes ozone-induced asthma exacerbation in Balb/c mice through the Nrf2 pathway. Food Chem Toxicol 2017. [PMID: 28624471 DOI: 10.1016/j.fct.2017.06.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Millions of people are regularly exposed to ozone, a gas known to contribute significantly to worsening the symptoms of patients with asthma. However, the mechanisms underlying these ozone exacerbation effects are not fully understood. In this study, we examined the exacerbation effect of ozone in OVA-induced asthma mice and tried to demonstrate the protective mechanism of vitamin E (VE). An asthma mouse model was established, and used to identify the exacerbating effects of ozone by assessing cytokine and serum immunoglobulin concentrations, airway leukocyte infiltration, histopathological changes in lung tissues, and airway hyper-responsiveness. We then determined the amount of reactive oxygen species (ROS) accumulated, the extent to which VE induced ROS elimination, and examined the antagonistic effects of VE on the ozone-induced exacerbating effects. This study showed that 1-ppm ozone exposure could exacerbate OVA-induced asthma in mice. More importantly we found that ozone induced oxidative stress in asthmatic airways may lead to the inhibition of Nuclear factor-erythroid 2-related factor 2 (Nrf2), and may subsequently induce even more exaggerated oxidative stress associated with asthma exacerbation. Through VE induced Nrf2 activation and the subsequent increase in Nrf2 target protein expression, this study suggests a novel mechanism for alleviating ozone exacerbated asthma symptoms.
Collapse
Affiliation(s)
- Liju Duan
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; College of Public Health, Zhengzhou University, Zhengzhou 450001, China
| | - Jinquan Li
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Ping Ma
- Research Center of Basic Medical Sciences, School of Basic Medical Sciences, Hubei University of Science and Technology, Xianning 437100, China
| | - Xu Yang
- Section of Environmental Biomedicine, Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan 430079, China
| | - Shunqing Xu
- Key Laboratory of Environment and Health (Huazhong University of Science and Technology), Ministry of Education & Ministry of Environmental Protection, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
24
|
Harkema JR, Hotchkiss LA, Vetter NA, Jackson-Humbles DN, Lewandowski RP, Wagner JG. Strain Differences in a Murine Model of Air Pollutant-induced Nonatopic Asthma and Rhinitis. Toxicol Pathol 2016; 45:161-171. [PMID: 28068894 DOI: 10.1177/0192623316674274] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ozone is an irritating gas found in photochemical smog. Epidemiological associations have been made between the onset of asthma and childhood exposures to increasing levels of ambient ozone (i.e., air pollutant-induced nonatopic asthma). Individuals, however, vary in their susceptibility to this outdoor air pollutant, which may be due, in part, to their genetic makeup. The present study was designed to test the hypothesis that there are murine strain-dependent differences in pulmonary and nasal pathologic responses to repeated ozone exposures. C57BL/6NTac and BALB/cNTac mice were exposed to 0 or 0.8 ppm ozone, 4 hr/day, for 9 consecutive weekdays. In both strains of mice, ozone induced eosinophilic inflammation and mucous cell metaplasia in the nasal and pulmonary airways. Lungs of ozone-exposed C57BL/6NTac mice, however, had greater eosinophilic inflammation, mucous cell metaplasia, and expression of genes related to type 2 immunity and airway mucus hypersecretion, as compared to similarly exposed BALB/cNTac mice. Ozone-exposed C57BL/6NTac mice also had greater eosinophilic rhinitis but a similar degree of mucous cell metaplasia in nasal epithelium, as ozone-exposed BALB/cNTac mice. These findings suggest that nonatopic individuals may differ in their inflammatory and epithelial responses to repeated ozone exposures that are due, in part, to genetic factors.
Collapse
Affiliation(s)
- Jack R Harkema
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Lucas A Hotchkiss
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Nicholas A Vetter
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Daven N Jackson-Humbles
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Ryan P Lewandowski
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| | - James G Wagner
- 1 Department of Pathobiology and Diagnostic Investigation, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
25
|
Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. Nanoscale Particulate Matter from Urban Traffic Rapidly Induces Oxidative Stress and Inflammation in Olfactory Epithelium with Concomitant Effects on Brain. ENVIRONMENTAL HEALTH PERSPECTIVES 2016; 124:1537-1546. [PMID: 27187980 PMCID: PMC5047762 DOI: 10.1289/ehp134] [Citation(s) in RCA: 125] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 02/29/2016] [Accepted: 05/02/2016] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rodent models for urban air pollution show consistent induction of inflammatory responses in major brain regions. However, the initial impact of air pollution particulate material on olfactory gateways has not been reported. OBJECTIVE We evaluated the olfactory neuroepithelium (OE) and brain regional responses to a nanosized subfraction of urban traffic ultrafine particulate matter (nPM, < 200 nm) in vivo, ex vivo, and in vitro. METHODS Adult mice were exposed to reaerosolized nPM for 5, 20, and 45 cumulative hours over 3 weeks. The OE, the olfactory bulb (OB), the cerebral cortex, and the cerebellum were analyzed for oxidative stress and inflammatory responses. Acute responses of the OE to liquid nPM suspensions were studied with ex vivo and primary OE cultures. RESULTS After exposure to nPM, the OE and OB had rapid increases of 4-hydroxy-2-nonenal (4-HNE) and 3-nitrotyrosine (3-NT) protein adducts, whereas the cerebral cortex and cerebellum did not respond at any time. All brain regions showed increased levels of tumor necrosis factor-α (TNFα) protein by 45 hr, with earlier induction of TNFα mRNA in OE and OB. These responses corresponded to in vitro OE and mixed glial responses, with rapid induction of nitrite and inducible nitric oxide synthase (iNOS), followed by induction of TNFα. CONCLUSIONS These findings show the differential time course of oxidative stress and inflammatory responses to nPM between the OE and the brain. Slow cumulative transport of inhaled nPM into the brain may contribute to delayed responses of proximal and distal brain regions, with potential input from systemic factors. CITATION Cheng H, Saffari A, Sioutas C, Forman HJ, Morgan TE, Finch CE. 2016. Nanoscale particulate matter from urban traffic rapidly induces oxidative stress and inflammation in olfactory epithelium with concomitant effects on brain. Environ Health Perspect 124:1537-1546; http://dx.doi.org/10.1289/EHP134.
Collapse
Affiliation(s)
- Hank Cheng
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| | - Arian Saffari
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Constantinos Sioutas
- Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | | | | | - Caleb E. Finch
- Leonard Davis School of Gerontology,
- USC Dornsife College,
| |
Collapse
|
26
|
Rosenblum Lichtenstein JH, Molina RM, Donaghey TC, Hsu YHH, Mathews JA, Kasahara DI, Park JA, Bordini A, Godleski JJ, Gillis BS, Brain JD. Repeated Mouse Lung Exposures to Stachybotrys chartarum Shift Immune Response from Type 1 to Type 2. Am J Respir Cell Mol Biol 2016; 55:521-531. [PMID: 27148627 DOI: 10.1165/rcmb.2015-0291oc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
After a single or multiple intratracheal instillations of Stachybotrys chartarum (S. chartarum or black mold) spores in BALB/c mice, we characterized cytokine production, metabolites, and inflammatory patterns by analyzing mouse bronchoalveolar lavage (BAL), lung tissue, and plasma. We found marked differences in BAL cell counts, especially large increases in lymphocytes and eosinophils in multiple-dosed mice. Formation of eosinophil-rich granulomas and airway goblet cell metaplasia were prevalent in the lungs of multiple-dosed mice but not in single- or saline-dosed groups. We detected changes in the cytokine expression profiles in both the BAL and plasma. Multiple pulmonary exposures to S. chartarum induced significant metabolic changes in the lungs but not in the plasma. These changes suggest a shift from type 1 inflammation after an acute exposure to type 2 inflammation after multiple exposures to S. chartarum. Eotaxin, vascular endothelial growth factor (VEGF), MIP-1α, MIP-1β, TNF-α, and the IL-8 analogs macrophage inflammatory protein-2 (MIP-2) and keratinocyte chemoattractant (KC), had more dramatic changes in multiple- than in single-dosed mice, and parallel the cytokines that characterize humans with histories of mold exposures versus unexposed control subjects. This repeated exposure model allows us to more realistically characterize responses to mold, such as cytokine, metabolic, and cellular changes.
Collapse
Affiliation(s)
- Jamie H Rosenblum Lichtenstein
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Ramon M Molina
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Thomas C Donaghey
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Yi-Hsiang H Hsu
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts.,2 Hebrew SeniorLife Institute for Aging Research and Harvard Medical School, Boston, Massachusetts; and
| | - Joel A Mathews
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - David I Kasahara
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jin-Ah Park
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - André Bordini
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - John J Godleski
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Bruce S Gillis
- 3 Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois
| | - Joseph D Brain
- 1 Molecular and Integrative Physiological Sciences Program, Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
27
|
Ciencewicki JM, Verhein KC, Gerrish K, McCaw ZR, Li J, Bushel PR, Kleeberger SR. Effects of mannose-binding lectin on pulmonary gene expression and innate immune inflammatory response to ozone. Am J Physiol Lung Cell Mol Physiol 2016; 311:L280-91. [PMID: 27106289 DOI: 10.1152/ajplung.00205.2015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 04/20/2016] [Indexed: 02/07/2023] Open
Abstract
Ozone is a common, potent oxidant pollutant in industrialized nations. Ozone exposure causes airway hyperreactivity, lung hyperpermeability, inflammation, and cell damage in humans and laboratory animals, and exposure to ozone has been associated with exacerbation of asthma, altered lung function, and mortality. The mechanisms of ozone-induced lung injury and differential susceptibility are not fully understood. Ozone-induced lung inflammation is mediated, in part, by the innate immune system. We hypothesized that mannose-binding lectin (MBL), an innate immunity serum protein, contributes to the proinflammatory events caused by ozone-mediated activation of the innate immune system. Wild-type (Mbl(+/+)) and MBL-deficient (Mbl(-/-)) mice were exposed to ozone (0.3 ppm) for up to 72 h, and bronchoalveolar lavage fluid was examined for inflammatory markers. Mean numbers of eosinophils and neutrophils and levels of the neutrophil attractants C-X-C motif chemokines 2 [Cxcl2 (major intrinsic protein 2)] and 5 [Cxcl5 (limb expression, LIX)] in the bronchoalveolar lavage fluid were significantly lower in Mbl(-/-) than Mbl(+/+) mice exposed to ozone. Using genome-wide mRNA microarray analyses, we identified significant differences in transcript response profiles and networks at baseline [e.g., nuclear factor erythroid-related factor 2 (NRF2)-mediated oxidative stress response] and after exposure (e.g., humoral immune response) between Mbl(+/+) and Mbl(-/-) mice. The microarray data were further analyzed to discover several informative differential response patterns and subsequent gene sets, including the antimicrobial response and the inflammatory response. We also used the lists of gene transcripts to search the LINCS L1000CDS(2) data sets to identify agents that are predicted to perturb ozone-induced changes in gene transcripts and inflammation. These novel findings demonstrate that targeted deletion of Mbl caused differential levels of inflammation-related gene sets at baseline and after exposure to ozone and significantly reduced pulmonary inflammation, thus indicating an important innate immunomodulatory role of the gene in this model.
Collapse
Affiliation(s)
- Jonathan M Ciencewicki
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kirsten C Verhein
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Kevin Gerrish
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina; and
| | - Zachary R McCaw
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Jianying Li
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina
| | - Steven R Kleeberger
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina;
| |
Collapse
|
28
|
Abstract
A non-cancer inhalation chronic toxicity assessment for diethylamine (DEA, CAS number 109-89-7) was conducted by the Texas Commission on Environmental Quality. A chronic Reference Value (ReV) was determined based on a high-quality study conducted in mice and rats by the National Toxicology Program. Chronic inhalation ReVs are health-based exposure concentrations used in assessing health risks of long-term (i.e. lifetime) chemical exposure. DEA is used industrially as an organic intermediate to produce corrosion inhibitors, and is widely used in rubber, pharmaceuticals, resins, pesticides, insect repellants, dye processing and as a polymerization inhibitor. Although systemic effects have been noted at higher concentrations, DEA acts primarily as a respiratory irritant with effects occurring in the upper respiratory tract. Rats were exposed to 0, 31, 62.5 and 125 ppm DEA and mice to 0, 16, 31 and 62.5 ppm DEA for 6 h/day, 5 days/week for 105 weeks. Mice were slightly more sensitive than rats. The critical effect identified in mice was hyperostosis in the turbinates although DEA caused a number of other non-neoplatic lesions. Dose–response data were suitable to benchmark concentration (BMC) modeling. The human equivalent point of departure (PODHEC) was calculated from the 95% lower limit of the BMC(10) using default duration and animal-to-human dosimetric adjustments. Total uncertainty factors of 90 were applied to the PODHEC to account for variation in sensitivity within the human population, toxicodynamic differences between mice and humans, and database uncertainty. The chronic ReV for DEA is 11 ppb (33 µg/m3).
Collapse
Affiliation(s)
- Roberta L Grant
- a Toxicology Division, Texas Commission on Environmental Quality , Austin , TX , USA and
| | - Samuel O Taiwo
- a Toxicology Division, Texas Commission on Environmental Quality , Austin , TX , USA and.,b Environmental Health and Safety Department of Texas, A&M University , College Station , TX , USA
| | - Darrell McCant
- a Toxicology Division, Texas Commission on Environmental Quality , Austin , TX , USA and
| |
Collapse
|