1
|
Suryadinata R, Martinello P, Bennett-Wood V, Robinson P. Heterozygous cis HYDIN mutations cause primary ciliary dyskinesia. MED 2025; 6:100508. [PMID: 39317196 DOI: 10.1016/j.medj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/09/2024] [Accepted: 08/20/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND The product of ciliary gene HYDIN is an integral component for c2b projection within the motile cilia central pair (CP) apparatus. Biallelic mutations of this gene cause primary ciliary dyskinesia (PCD), an uncommon heterogeneous recessive disorder affecting motile cilia, resulting in defective mucociliary clearance that leads to chronic suppurative lung disease. METHODS Nasal brushing samples were collected from two siblings attending the Victorian Diagnostic service for PCD. Nasal airway epithelial cells (NAECs) were cultured before cilia structure and function studies using high-speed video microscopy (HSVM), transmission electron microscopy, and immunofluorescence. FINDINGS Cultured NAECs from both siblings showed defective cilia beating patterns under HSVM. A confirmatory PCD diagnosis was achieved through immunofluorescence, which showed the loss of HYDIN and the associated protein SPEF2 from the cilia axoneme. CONCLUSIONS This case report details the diagnosis of two siblings who displayed similar defective cilia beating phenotypes seen in patients with PCD bearing recessive HYDIN mutations. Uniquely, both siblings carry two previously unreported HYDIN mutations, which are in the cis position, demonstrating the possibility for disease manifestation without biallelic mutations of ciliary genes. FUNDING The authors declare no funding support for this study.
Collapse
Affiliation(s)
- Randy Suryadinata
- Victorian Diagnostic Service for PCD, Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Paul Martinello
- Anatomical Pathology, Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Vicki Bennett-Wood
- Victorian Diagnostic Service for PCD, Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Phil Robinson
- Victorian Diagnostic Service for PCD, Royal Children's Hospital Melbourne, Parkville, VIC, Australia; Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
2
|
Seidl C, Da Silva F, Zhang K, Wohlgemuth K, Omran H, Niehrs C. Mucociliary Wnt signaling promotes cilia biogenesis and beating. Nat Commun 2023; 14:1259. [PMID: 36878953 PMCID: PMC9988884 DOI: 10.1038/s41467-023-36743-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
It is widely thought that Wnt/Lrp6 signaling proceeds through the cytoplasm and that motile cilia are signaling-inert nanomotors. Contrasting both views, we here show in the mucociliary epidermis of X. tropicalis embryos that motile cilia transduce a ciliary Wnt signal that is distinct from canonical β-catenin signaling. Instead, it engages a Wnt-Gsk3-Ppp1r11-Pp1 signaling axis. Mucociliary Wnt signaling is essential for ciliogenesis and it engages Lrp6 co-receptors that localize to cilia via a VxP ciliary targeting sequence. Live-cell imaging using a ciliary Gsk3 biosensor reveals an immediate response of motile cilia to Wnt ligand. Wnt treatment stimulates ciliary beating in X. tropicalis embryos and primary human airway mucociliary epithelia. Moreover, Wnt treatment improves ciliary function in X. tropicalis ciliopathy models of male infertility and primary ciliary dyskinesia (ccdc108, gas2l2). We conclude that X. tropicalis motile cilia are Wnt signaling organelles that transduce a distinct Wnt-Pp1 response.
Collapse
Affiliation(s)
- Carina Seidl
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Fabio Da Silva
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kaiqing Zhang
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany
| | - Kai Wohlgemuth
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Heymut Omran
- University Children's Hospital Muenster, Department of General Pediatrics, 48149, Muenster, Germany
| | - Christof Niehrs
- Division of Molecular Embryology, DKFZ-ZMBH Alliance, 69120, Heidelberg, Germany. .,Institute of Molecular Biology (IMB), 55128, Mainz, Germany.
| |
Collapse
|
3
|
Selo MA, Sake JA, Kim KJ, Ehrhardt C. In vitro and ex vivo models in inhalation biopharmaceutical research - advances, challenges and future perspectives. Adv Drug Deliv Rev 2021; 177:113862. [PMID: 34256080 DOI: 10.1016/j.addr.2021.113862] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 12/11/2022]
Abstract
Oral inhalation results in pulmonary drug targeting and thereby reduces systemic side effects, making it the preferred means of drug delivery for the treatment of respiratory disorders such as asthma, chronic obstructive pulmonary disease or cystic fibrosis. In addition, the high alveolar surface area, relatively low enzymatic activity and rich blood supply of the distal airspaces offer a promising pathway to the systemic circulation. This is particularly advantageous when a rapid onset of pharmacological action is desired or when the drug is suffering from stability issues or poor biopharmaceutical performance following oral administration. Several cell and tissue-based in vitro and ex vivo models have been developed over the years, with the intention to realistically mimic pulmonary biological barriers. It is the aim of this review to critically discuss the available models regarding their advantages and limitations and to elaborate further which biopharmaceutical questions can and cannot be answered using the existing models.
Collapse
|
4
|
Lee DDH, Cardinale D, Nigro E, Butler CR, Rutman A, Fassad MR, Hirst RA, Moulding D, Agrotis A, Forsythe E, Peckham D, Robson E, Smith CM, Somavarapu S, Beales PL, Hart SL, Janes SM, Mitchison HM, Ketteler R, Hynds RE, O'Callaghan C. Higher throughput drug screening for rare respiratory diseases: readthrough therapy in primary ciliary dyskinesia. Eur Respir J 2021; 58:13993003.00455-2020. [PMID: 33795320 PMCID: PMC8514977 DOI: 10.1183/13993003.00455-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
BACKGROUND Development of therapeutic approaches for rare respiratory diseases is hampered by the lack of systems that allow medium-to-high-throughput screening of fully differentiated respiratory epithelium from affected patients. This is a particular problem for primary ciliary dyskinesia (PCD), a rare genetic disease caused by mutations in genes that adversely affect ciliary movement and consequently mucociliary transport. Primary cell culture of basal epithelial cells from nasal brush biopsies followed by ciliated differentiation at the air-liquid interface (ALI) has proven to be a useful tool in PCD diagnostics but the technique's broader utility, including in pre-clinical PCD research, has been restricted by the limited number of basal cells that can be expanded from such biopsies. METHODS We describe an immunofluorescence screening method, enabled by extensive expansion of basal cells from PCD patients and the directed differentiation of these cells into ciliated epithelium in miniaturised 96-well transwell format ALI cultures. As proof-of-principle, we performed a personalised investigation in a patient with a rare and severe form of PCD (reduced generation of motile cilia), in this case caused by a homozygous nonsense mutation in the MCIDAS gene. RESULTS Initial analyses of ciliary ultrastructure, beat pattern and beat frequency in the 96-well transwell format ALI cultures indicate that a range of different PCD defects can be retained in these cultures. The screening system in our proof-of-principal investigation allowed drugs that induce translational readthrough to be evaluated alone or in combination with nonsense-mediated decay inhibitors. We observed restoration of basal body formation but not the generation of cilia in the patient's nasal epithelial cells in vitro. CONCLUSION: Our study provides a platform for higher throughput analyses of airway epithelia that is applicable in a range of settings and suggests novel avenues for drug evaluation and development in PCD caused by nonsense mutations.
Collapse
Affiliation(s)
- Dani Do Hyang Lee
- UCL Great Ormond Street Institute of Child Health, London, UK
- D.D.H. Lee and D. Cardinale contributed equally
| | - Daniela Cardinale
- UCL Great Ormond Street Institute of Child Health, London, UK
- D.D.H. Lee and D. Cardinale contributed equally
| | - Ersilia Nigro
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Colin R Butler
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Andrew Rutman
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Mahmoud R Fassad
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
- Dept of Human Genetics, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Robert A Hirst
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Dale Moulding
- Developmental Biology and Cancer, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Alexander Agrotis
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Elisabeth Forsythe
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Daniel Peckham
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Evie Robson
- Leeds Institute for Medical Research, University of Leeds, Leeds, UK
| | - Claire M Smith
- UCL Great Ormond Street Institute of Child Health, London, UK
| | | | - Philip L Beales
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Stephen L Hart
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Sam M Janes
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
| | - Hannah M Mitchison
- Ciliary Disease Section, Genetics and Genomic Medicine Research and Teaching Dept, UCL Great Ormond Street Institute of Child Health, London, UK
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robert E Hynds
- Lungs for Living Research Centre, UCL Respiratory, Division of Medicine, University College London, London, UK
- UCL Cancer Institute, University College London, London, UK
- R.E. Hynds and C. O'Callaghan contributed equally to this article as lead authors and supervised the work
| | - Christopher O'Callaghan
- UCL Great Ormond Street Institute of Child Health, London, UK
- Centre for PCD Diagnosis and Research, Dept of Respiratory Sciences, University of Leicester, Leicester, UK
- R.E. Hynds and C. O'Callaghan contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
5
|
A novel ACE2 isoform is expressed in human respiratory epithelia and is upregulated in response to interferons and RNA respiratory virus infection. Nat Genet 2021; 53:205-214. [PMID: 33432184 DOI: 10.1038/s41588-020-00759-x] [Citation(s) in RCA: 117] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 12/01/2020] [Indexed: 01/29/2023]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is the main entry point in airway epithelial cells for SARS-CoV-2. ACE2 binding to the SARS-CoV-2 protein spike triggers viral fusion with the cell plasma membrane, resulting in viral RNA genome delivery into the host. Despite ACE2's critical role in SARS-CoV-2 infection, full understanding of ACE2 expression, including in response to viral infection, remains unclear. ACE2 was thought to encode five transcripts and one protein of 805 amino acids. In the present study, we identify a novel short isoform of ACE2 expressed in the airway epithelium, the main site of SARS-CoV-2 infection. Short ACE2 is substantially upregulated in response to interferon stimulation and rhinovirus infection, but not SARS-CoV-2 infection. This short isoform lacks SARS-CoV-2 spike high-affinity binding sites and, altogether, our data are consistent with a model where short ACE2 is unlikely to directly contribute to host susceptibility to SARS-CoV-2 infection.
Collapse
|
6
|
Wheway G, Mitchison HM. Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Front Genet 2019; 10:127. [PMID: 30915099 PMCID: PMC6421331 DOI: 10.3389/fgene.2019.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Cilia are highly specialized cellular organelles that serve multiple functions in human development and health. Their central importance in the body is demonstrated by the occurrence of a diverse range of developmental disorders that arise from defects of cilia structure and function, caused by a range of different inherited mutations found in more than 150 different genes. Genetic analysis has rapidly advanced our understanding of the cell biological basis of ciliopathies over the past two decades, with more recent technological advances in genomics rapidly accelerating this progress. The 100,000 Genomes Project was launched in 2012 in the UK to improve diagnosis and future care for individuals affected by rare diseases like ciliopathies, through whole genome sequencing (WGS). In this review we discuss the potential promise and medical impact of WGS for ciliopathies and report on current progress of the 100,000 Genomes Project, reviewing the medical, technical and ethical challenges and opportunities that new, large scale initiatives such as this can offer.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|